! IPCI (¥ ] LUIICHC

ondon

Fast Adaptation with Random Neural Networks

Erol Gelenbe

www.ee.imperial.ac.uk/gelenbe
Denis Gabor Professor
Head of Intelligent Systems and Networks
Dept of Electrical and Electronic Engineering
Imperial College
London SW7 2BT




| am grateful to my PhD students who have worked
or are working with me on random neural networks
and/or their applications

Univ. of Paris: Andreas Stafylopatis, Jean-Michel Fourneau,
Volkan Atalay, Myriam Mokhtari, Vassilada Koubi, Ferhan
Pekergin, Jean-Michel Fourneau, Ali Labed, Christine
Hubert

Duke University: Hakan Bakircioglu, Anoop Ghanwani,
Yutao Feng, Chris Cramer, Yonghuan Cao, Hossam
Abdelbaki, Taskin Kocak

UCF: Rong Wang, Pu Su, Peixiang Liu, Will Washington,
Esin Seref, Zhiguang Xu, Khaled Hussain, Ricardo Lent

Imperial: Arturo Nunez, Varol Kaptan, Mike Gellman,
Georgios Loukas, Yu Wang



Thank you to the agencies and companies who have
supported my RNN work generously over the last 15 yr:

- France (1989-97):. ONERA, CNRS C3,
Esprit Projects QOMIPS, EPOCH and
LYDIA

- USA (1993-): ONR, ARO, IBM, Sandoz,
US Army Stricom, NAWCTSD, NSF,
Schwartz Electro-Optics, Lucent

- UK (2003-): EPSRC, MoD, General
Dynamics UK Ltd, EU FP6 for grant
awards for the next three years, hopefully
more ..



Random Spiking Behaviour of Neurons
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Random Spiking Behaviour of Neurons

Work started as an individual basic research project,
motivated by a critical look at modeling biological neurons,
rather than using popular connectionist models

Biological characteristics of the model needed to include:
-Action potential “Signals” in the form of spikes of fixed
amplitude

-Modeling recurrent networks

-Random delays between spikes

-Conveying information along axons via variable spike rates
-Modeling different signals, e.g. electrical and chemical
-Store and fire behaviour of the soma (head of the neuron)
-Reduction of neuronal potential after firing

-Possibility of representing axonal delays between neurons
-Arbitrary network connectivity



Random Spiking Behaviour of Neurons

Mathematical properties that we hoped for, but did not
always expect to obtain, but which were obtained

-Existence and uniqueness of solution to the models
-Closed form analytical solutions for large systems
-Convergent learning for recurrent networks
-Polynomial speed for recurrent gradient descent
-Hebbian and reinforcement learning algorithms
-Analytical annealing

We exploited the analogy with queuing networks, and this
also opened a new chapter in queuing network theory now
called “G-networks” where richer models were developed



ueuirng NewoOrks.
Exploiting the Analogy

-Discrete state space, typically continuous time, stochastic
models arising in studying populations, dams, production
systems, communication networks ..

-Important theoretical foundation for computer systems
performance analysis

-Open (external Arrivals and Departures), as in Telephony,
or Closed (Finite Population) as in Compartment Models
-Systems comprised of Customers and Servers

-Theory is over 100 years old and still very active .. e.g. the
Swedish Academy of Science’s Mathematics Division has a
full year invited program in 2004 on the subject (sniff sniff, |
am going to Stockholm from 11/15/04 for one month !)

-Big activity at Bell Labs, AT&T Labs, IBM Research

- More than 100,000 papers on the subject ..



Juculrlgy Neuiwork
Random Neural Network

-Open (external Arrivals and Departures), as in Telephony,
or Closed (Finite Population) as in Compartment Models
-Systems comprised of Customers and Servers

-Servers = Neurons

-Customer .. Arriving to server will increase the queue
length by +1

-Excitatory spike arriving to neuron will increase its soma’s
potential by +1

-Service completion (neuron firing) at server (neuron) will
send out a customer (spike), and reduce queue length by 1
-Inhibitory spike arriving to neuron will decrease its soma’s
potential by -1

-Spikes (customers) leaving neuron i (server 1) will move to
neuron j (server j) in a probabilistic manner



e This 1s a spiked neural network model .. exctation
spikes “+17 and inhibition spikes “-17 trawvel in the
newtork

e The state of neuron % 1s a non-negative integer k;

e The state of the n-neuron network 1s a. vector (kl, en kﬂ)



Internal State of Neuron I, is an Integer x, > 0
Network State at time t is a Vector

Is the Internal Potential of Neuron |

f xi(t)> 0, we say that Neuron I is excited and it may fire
at t* In which case it will send out a spike

Xi(t)=0,

- It sends a spike to some Neuron k, w.p. p;,
- Its internal state changes x(t*) = xi(t) - 1



State of Network

If X, > 0, we say that Neuron i is excited
Xi(t)> 0 Dt
[t,t+Dt] , and as a result:
Its internal state changes xi(t*) = xi(t) — 1
It sends a spike to some Neuron m w.p. p;,
‘he arriving spike at Neuron m is an
- Excitatory Spike w.p. pi,*
- Inhibitory Spike w.p. pi,"
- Pim= P’ + Py~ With S'_; p,, <1foralli=1,..,n




Rates Welights

Xi(t)> 0

Dt [t,t+Dt] , and as a result:

-rom Neuron | to Neuron |

- Excitatory Weight or Rate isw,.* =r,p;,"
- Inhibitory Weight or Rate isw, " =T, P~

- Total Firing Rate is ;= 3" _,w; . * + W, _~

"0 Neuron I, from Outside the Network

- External Excitatory Spikes arrive at rate L.

- External Inhibitory Spikes arrive at rate | .




State Equations

p(k,t) =Pr[x(t) =k] where{x(t):t23 O}isa discrete state- space Markov process,
and ki'=k+e-e, ki"=k+e +¢
k' =k+e, k =k-g:

The Chapman - Kolmogorov Equations
% p(k,t) =a [p(k;™ Or Pk, (1) > 01+ p(k;™ ) 1+ A [Pk, (1 +r.dy ) + L p(k, 1)1k (t) > O]

- p A L0+ (®) > 0]+ L]

p(k) =limPr{x(t) =k], ~and g =limPr[x(t)>0]

Theorem If the C- K equations have a stationary solution,

then it has the " product- form’ p(k):,Fi’lqiki (1- g), where



Probability that
Neuron | is excited

External Arrival

Rate of Excitatory W J i

Spikes

Firing Rate of
Neuron |

External Arrival
Rate of Inhibitory
Spikes



Theorem (Gelenbe 93, Gelenbe - Schassberger 95)
The system of non- linear  equations

o +
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has an unique solution if all the ¢ <1

, 1£1 £n

0

Theorem (Gelenbeetal.99) Let g:[01]'® R be continuous
and bounded. For any e>0, there exists an
RNN  with two output neurons d,,q, St

Supr [0,1]Y | g(X) B y(X) I< £ iy y(X) ) 1'qcaro+ - 1_qcao-




Cortico-Thalamic Response to Somato-Sensory Input
Or....
What Does the Rat Think when you Tweak Her/His
Whisker?

vPM

CELLS

POSTSTIMULUS TIME (ms) s0

Figure 1: Input from the brain stem (Prv) and response at thalamms (WVEPMM) and corcex
(=11 reprinted from WNoac .. Nicolelis ot al. “Hecontructing the engram: simultanecons,
mdtiple =ice, many s=ingle neuaron recorndines", VMewion vol, 18, SE-S587, 1907,



Rat Brain Modeling with the
Random Neural Nework

e Clarify Some of the Mechanisms which Influence (Brain) Cortico-
Thalamic Oscillations

e Start with Oscillations Observed in a Physiologically well under-
stood system: the Rat “Barrel Neurons’

e Use a Recurrent “Random Network (RNN)" Spiked Model which
actually Models the (Observed) Natural Neurons' Spiked Be-
haviour

e |dentify Primary Factors Causing Oscillations



e \We propose a theoretical model that can provide insight into
the nature of the observed response in SpV, VPM and SI which
(cf. Nicolelis) “cannot be defined as discrete representations of
the cutaneous periphery”.

e [he purpose of the model is to investigate how the individual
neuron characteristics, and the network architecture that con-
nects the layers, and the cells within each layer, impacts the
observed response.

e [he model is composed of three schematic layers which rep-
resent the physiologically identified layers in the rat: T (tha-
lamus), R (reticular layer) and C (cortex) with the excitatory
(+) and inhibitory (-) connections and feedback loops shown in
Figure 3.

e Feedback loops — both excitatory and inhibitory — are present
both inside cortex and between the various ensembles of cells.



The Biological Model

e The somatosensory stimulus (involving a single whisker of the
rat) impacts a physiological System in which the number of
thalamic cells 7' is of the order of 107, while 10? cortical cells
(' are involved.

e [he model assumes that all cortical cells involved are statisti-
cally identical, that all thalamic cells are statistically identical,
and that all reticular layer cells are also statistically identical.

e In relation to Simons et al., thalamic cells T' correspond to
thalamo-cortical units (TCU), cortical cells (' correspond to
“regular spike” barrel units (RSU) ofsomatosensory cortex.



But Back to the Rat’s Whiskers and Nicollelis’ and Others’ Measurements
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Figure 2: Distinct cell poststimmulus firing, reprinted from M.A L. Nicolelis et al. “Recon-
tructing the engram: simultaneous, multiple site, many single neuron recordings” . Nearon

vol, 18, G20-537, 1097,



Network Architecture from Physiological Data
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» [ he maximum cortex cell firing rate observed in the measure
ments in Figure 2 ranges from 40 to 300 pulses per second o
0.04 to 0.3 pulses/ms. We take an intermediate value in thi
range for our numerical examples, setting . = (l.1. The choic:
of .. = ), = [}, = 10 1s compatible with the value se
lected for ., since for the RNMN model the choice of r. implie
that (a) when a cortex neuron is excited it fires on the averag:
each r. ! milliseconds, and (b) a cortex neuron has an averag
latency of r_. ! milliseconds between the arrival at its input o
signals of sufficient strength to excite 1t, and the moment i
starts emitting its first output spike.

» Assuming that maximum firing rates in thalamus (VPM) ar
some ten times higher than in cortex, as are firing rates in th:
reticular area, we take . r, — 1.

» \VWe have assumed that 209% of cortex to cortex connection:
are inhibitory, while 80% are excitatory; this is consistent witl
known data (Steriade '60) who reports at most 25% cortex t«
cortex inhibitory connections in certain species of monkeys).
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Comparing Measurements
and Theory:
Calibrated RNN Model and
Cortico-Thalamic
Oscillations

Single Cell Recordings
(Nicollelis et al '97)

VP Cortex pulses per sscond

a 0. 05 0.1

Predictions of Calibrated
RNN Mathematical Model Simultaneous Multiple
(Gelenbe & Cramer 98, '99) Cell Recordings

(Nicollelis et al.)
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nodel for cortex with observations, and the duration of oscillation:
circa 50 ms) are comparable to but perhaps slightly greater thar
hose observed. Another corroboration of model predictions con
“erns the observed latencies to peak response In cortical cells whict
ire reported by Simons et al. to be of just under 12ms. This 1
rery consistent with the model predictions where peak response 1
ybserved some 10 fo 15ms after onset of the stimulus,
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When Feedback in Cortex is Dominantly
Negative, Cortico-Thalamic Osclillations
Disappear

Dominant Negative F-B in C: Oscillations largely Disap
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e Posrtive Feedback loops within cortex significantly affect the ex-
Istence of the damped oscillatory phenomenon, and its duration.

e Positive cortex to thalamus Feedback 1s not needed for cortical
oscillations, but 1s needed for thalamic oscillations.

e Cortex to thalamus negative Feedback via the reticular layer,
and cortex to cortex inhibitory connections, contribute to damp-

Ing.
e [he reticular layer affects the amplitude of the oscillations, but
not their causes. Projections from thalamus to cortex reduce the

amplitude but do not modify the damping constants or periods
of the oscillations.



Developments

Learning techniques: Hebbian, Gradient Based,
Reinforcement Learning

Analytical (Simulated) Annealing
Applications to Image Processing

New Mathematical Developments and
Extensions

Applications to QoS in the Internet:
- Video Compression and Video Traffic
Shaping,
- QoS Driven Routing Protocols and
CPN



Gradient Computation for the Recurrent RNN is O(n3)

Lot € = (41 o amaa i ) @Dl clesfinie the 71 2< 7 matisc

W = '[['U-'I (a7 ) _u'_[fsj.:lﬁ:]j’ﬂ}i_[_f:l} T f = Lyaany 72
The vertor exuatlons call o be witter as:
M SO T uw, ) = Oafow T w, o)W 4 v w, vl
M S Gw T (WL ] = SO v )W v, v,

where the elemnents of the n-vesctors v H a1 = [f]a',' (ETE T RN e o f T L 1
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—1fA(E) i =i £
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0 for all other values of (w, 1)

Notice that
o Gwt(u,v) = yH(w, v)g.[I — W]
A ST, v = oy, v g [ — W !

where T denotes the o by 1 wlentaty matrix. Henwee the madn
computational effort in this algorithm is to obtain [T — W',

()



Random Neural Network

Neurons exchange Excitatory and Inhibitory Spikes (Signals)
Inter-neuronal Weights are Replaced by Firing Rates
Neuron Excitation Probabilities obtained from Non-Linear State Equations
Steady-State Probability is Product of Marginal Probabilities
Separabllity of the Stationary Solution based on Neuron Excitation Probabilities
Existence and Uniqueness of Solutions for Recurrent Network
Learning Algorithms for Recurrent Network are O(n3)

Multiple Classes (1998) and Multiple Class Learning (2002)



Texture Based Object Identification Using the
RNN, US Patent '99 (E. Gelenbe, Y. Feng)

IMAGE NEURAL NETWORK

AN

OUTPUT

Cakn
-

N




0

&

Hiskogram (o]

1) MRI Image Segmentation

(0] MSE hisiogram kor bwa deestiers on region for C less fer 1

Classibar 1

Classiicr 2

(b WEE hisiogram for tao o ceestians on region for Chassnar 1

1 T T T T T
L] .
Clesifier]
14
12
10
a
]
4 Clssharl
| M
i Z 1 4 5
HEE

L4 1)

Fiszamys T A T2 MH mvegy bty bavizg

TEET= Y] LD R BT
HHA exalisal 12
[i]
150
150
[i]
o 5] 150 0 7] !

AN preresie G e T2 W00 S,



Brain Image Segmentation with RNN




Extracting Abnormal Objects from MRI
Images of the Brain

Simulating and Planning
Gamma Therapy & Surgery

Extracting Tumors
from MRI
T1 and T2 Images




2) Registration of Optical, IR, SAR
Terrain Images (Gelenbe-Khaled 02)

Geometric Processing of Synthetic Image to Maximise Correct Match:
Aim-point Adjustment and Image Scaling



IR Image of the same Scene




Computation of Error in Image




S) RNN pased Adaptive Video Compression:
_ombining Motion Detection and RNN Still Imags
Compression

DECOR P RESS




Neural Still Image Compression
Find RNN R that Minimizes

| R(1) - T]

Over a Training Set of Images {l }

L ———

COMPRESSED
IMAZE

Rl I

o —

NELIRAL ENCODERLTIECODER

RECCNETRLCTED
IMALL

Fagure 212 Compaesion of an arbitramily large tmage wsmng a newral encodes /decoder



RNN based Adaptive Video Compression
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Figure 25: Experimental results for motion detection with d = 1:  a) PSNR as a
function of frame number,  b) Number of bits transmitted as a function of frame
number
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4) Analytcal Annealing with the KRININ: IMiulticast Routing
(Similar Results with the Traveling Salesman Problem)

Finding an optimal many-to- 4 DN R S R S == = T
many communications path in S IS Ao NSO NN S O __EEEIES);H _______ ]

a network is equivalent to
finding a Minimal Steiner Tree
which is NP-hard

The best heuristics are the (L FR R S s o s TR I s
Average Distance Heuristic 13
(ADH) and the Minimal
Spanning Tree (MSTH) for the
network graph

RNN Analytical Annealing
Improves the number of
optimal solutions found by
ADH and MST by
approximately 10%

Ratio to optimal solution

I 1 I I 1 I 1 I -
4 & =] 10 12 14 16 18 20 2z b
Mo, of destination vertices, |D|




5) Goal Based Learning

et to destination D at minimum cost without getting lost -- If
you get lost someone else will have to complete the
mission
X = current position, d = position of destination
s = speed, st =time for one step motion
D = directional decision,
Gp(x,d) =st1+ [1-p(x+sD)] G (x+sD,d)
+ p(Xx+sD){G(0,x+sD) + G (x+sD,d)}
=s1+G (x+sD,d) + 2p(x+sD)G(0,x+sD)

pP(x+sD) = probability of getting “lost” at position x+sD

G(u,v) = cumulative cost incurred to get from point u to v
G(0,x+sD) is the cost of bringing a new entity to x+sD



Reinforcement Learning In
G-Networks

 Fully Connected
System *

e Fully Recurrent with *
Excitatory and
Inhibitory Weights

e Decision Output is the
one corresponding to
the largest g of all the
neurons

ML



Reinforcement Learning Algorithm

 Decision threshold — Recent Historical Value of Reward

T =4, +@-aR,R=G"

* Recent Reward R,
If

0D e w0+ R
T,., £ R, thenW(' ) W) e R

R
n - 2°

wo(i, k) = w (i, k) +

w*(i,k) = w"(i,k)+ ,
else (i, k) (k) + ——

w-(,])-~ w (I, ])+ R



 Re-normalise all weights

n
* (o)

F =AW G m) +w (i, m))

« Compute q=(qq, ..- , g, from the fixed-point
» Select Decision k such that g, > g; for all I=1, ..., n



Combining QoS-class dependent routing from
G-Networks using Triggers and
Reinforcement Learning — the CPN Routing Algorithm

Many Internet applications have QoS requirements.
 Voice over IP, video conferencing
* Time Critical and Secure Applications
* Network games and networked simulation
 Web based commerce and banking

— IETF has proposed QoS techniques such as
ntServ, DiffServ

— In CPN Users formulate their QoS Goals, smart
packets probe and make routing decisions, while
dumb packets transport data and gather intelligenc
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Network Routing subject to QoS Constraints

IlLet &7 — (W, L) be a graph with node set & and link
sel L. A link with origin node s and destination node s 1=
denoted by (s, vy, Withh NV, () and NV _({m) we denole the
=cl ol mcoming arnd outgoing neighbors o node s, that is.
respective v,

Ny =4V ¢ (m.mn) <= L},
MN_[(m) ==V ¢ (r.m) < L}

With each ink ¥ = (.7 ). e, &= W there 15 an associated
Ciost Conee =~ 0 and delay donee = (L It 3 — (vre1. ...,k ) 15 A
chirected path ( a subgraph ol ¢ cmnmsisting ol nodes vy . (L, w72,
ey = owm gy for all 1 = &, = k., i 2 j. and links (vre;, ;4 1),
1 =< & == & — 1) then we dehne the cost and delay ol the path

respechively,

l:d__dlij'-':l = Z Coarraa -
-Dlij"':l — Z "-!l.l.-:.l.--

Lo 1=
The set of all paths with origin node s, destination node 2 and
delay less than of equal o & 1s denoted bw Fo.i(d). The set
of all paths from s o e is denoted simply by Pe. For army o,
we are interested 1 inmding a path = P (d ) such that

CO ) = ) Tor all g o= ().



Difficulties of Global Optimisation

The network is very large — for specific users,
optimisation is relevant for a subset of routes at a
time

The system is large .. information delay, control delay

and combinatorial explosion: global algorithms can
be very slow and come too late

The system is highly dynamic — traffic varies
significantly over short periods of time

There are large gquantities of traffic in the pipes —
congestion can occur suddenly, reaction and detours
must be very rapid

Measurements local to subset of users, and
adaptivity is needed which is relevant to the users
most concerned by the measurements



CPN Philosophy

e Let the Measurements and the Adaptivity
be under user control

e Let the user make his/her own QoS and
economic decisions

 Remain close to, and compatible with IP



OSI Layers & CPN

TCP/IP is a layered protocol stack

Application handles particular
applications, Presentation handles
compression and encryption of data,
Session controls establishment,
management, termination of sessions

Transport provides flow of data

Network handles the transmission of
packets in the network

Data-link is responsible for the
Interaction of the device driver in the
operating system and the network card
In the machine

Physical defines electrical and
mechanical specifications

Application

Presentation

Segn

Thspart

Network

Data Link

Physical




QoS In the Internet can be Controlled via
CPN’s Cognitive Routers
Operating at the Periphery of the IP World

Hosts CRs Edge Routers Edge Routers CRs Hosts

3 (2),

%
= '. ey

-
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March 8, 2004

“ ... We believe the next evolution in path switching will be
the employment of various infrastructure sensing devices
to collect path data and allow a user, a network
administrator, or an automated process to specify paths
to routers within their domain authority ... ... the
cognitive router (CR) schema that was developed by
Erol Gelenbe under the rubric of “cognitive packet
networks” (CPN) [2] ... represents a dramatic change in
the ability of a network to make intelligent routing
decisions. CRs use neural networks that essentially
form multi-dimensional routing tables that respond
Immediately to the route performance parameters
captured by the packets flowing through them. CRs
employ extended QoS parameters and can change
routes when they recognize route degradation. Because
decisions are based only on local information provided
by the smart packets, CRs are not afflicted with the
problems inherentin ... BGP ...~



CPN Principles

CPN operates seamlessly with IP and creates a
self-aware network environment

Users assign goals
Packets collectively learn to achieve the goals

_earning is performed by sharing information
petween packets

Packets sharing the same goals can be grouped
Into classes

Nodes are storage centers, mailboxes and
processing units




CPN and Smart Packets

Smart Packets route themselves based on QoS Goals,
e.g.,
Minimise Delay or Loss or Combination
Minimise Jitter (for Voice)
Maximise Dispersion (for security)
Minimise Cost
Optimise Cost/Benefit

Smalrt Packets make observations & take decisions

ACK Packets bring back observed data and trace
activity

Dumb Packets execute instructions, carry payload and
also may make observations



Cognitive Adaptive Routing

Conventional QoS Goals are extrapolated from
Paths, Traffic, Delay & Loss Information — this Is
the “Sufficient Level of Information” for Self-
Aware Networking

Smart packets collect path information and dates
ACK packets return Path, Delay & Loss
Information and deposit W(K,c,n,D), L(K,c,n,D)
at Node c on the return path, entering from Node
n in Class K

Smart packets use W(K,c,n,D) and L(K,c,n,D) for
decision making (e.g. Reinforcement Learning)




CFN lesSl-bed lvieasurements
Ongoing Route Discovery by Smart Packets
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QoS Driven Application
Voice over CPN
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CPN for Traffic Engineering
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Wireless Power-Aware Adhoc

CPN Test-Bed
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... as we conclude ...

 The challenges for the next decade are:

- To model accurately increasingly
complex natural brain systems and
understand their functional behaviour

- To exploit neural paradigms Iin order to

provide adaptive control for complex
soclo-economic systems (health systems,
business systems, trading systems, IT
networks .. )
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Neural Network Control of Socio-Economic
Systems: e.g. DARPA'’s Cognitive Networks

Military Networks and Internet
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