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Random Spiking Behaviour of Neurons 





Random Spiking Behaviour of Neurons 
Work started as an individual basic research project, 
motivated by a critical look at modeling biological neurons, 
rather than using popular connectionist models

Biological characteristics of the model needed to include:
-Action potential “Signals” in the form of spikes of fixed 
amplitude
-Modeling recurrent networks
-Random delays between spikes
-Conveying information along axons via variable spike rates
-Modeling different signals, e.g. electrical and chemical
-Store and fire behaviour of the soma (head of the neuron)
-Reduction of neuronal potential after firing
-Possibility of representing axonal delays between neurons
-Arbitrary network connectivity



Random Spiking Behaviour of Neurons 

Mathematical properties that we hoped for, but did not 
always expect to obtain, but which were obtained

-Existence and uniqueness of solution to the models 
-Closed form analytical solutions for large systems
-Convergent learning for recurrent networks
-Polynomial speed for recurrent gradient descent
-Hebbian and reinforcement learning algorithms
-Analytical annealing

We exploited the analogy with queuing networks, and this 
also opened a new chapter in queuing network theory now 
called “G-networks” where richer models were developed



Queuing Networks: 
Exploiting the Analogy 

-Discrete state space, typically continuous time, stochastic 
models arising in studying populations, dams, production 
systems, communication networks ..
-Important theoretical foundation for computer systems 
performance analysis  
-Open (external Arrivals and Departures), as in Telephony, 
or Closed (Finite Population) as in Compartment Models
-Systems comprised of Customers and Servers
-Theory is over 100 years old and still very active .. e.g. the 
Swedish Academy of Science’s Mathematics Division has a 
full year invited program in 2004 on the subject (sniff sniff, I
am going to Stockholm from 11/15/04 for one month !)
-Big activity at Bell Labs, AT&T Labs, IBM Research
- More than 100,000 papers on the subject ..



Queuing Network
Random Neural Network

-Open (external Arrivals and Departures), as in Telephony, 
or Closed (Finite Population) as in Compartment Models
-Systems comprised of Customers and Servers
-Servers = Neurons
-Customer .. Arriving to server will increase the queue 
length by +1
-Excitatory spike arriving to neuron will increase its soma’s 
potential by +1
-Service completion (neuron firing) at server (neuron) will 
send out a customer (spike), and reduce queue length by 1
-Inhibitory spike arriving to neuron will decrease its soma’s 
potential by -1
-Spikes (customers) leaving neuron i (server i) will move to 
neuron j (server j) in a probabilistic manner





Mathematical Model: A “neural” network with 
n neurons

Internal State of Neuron i, is an Integer xi > 0
Network State at time t is a Vector 

x(t) = (x1(t), … , xi(t), … , xk(t), … , xn(t))
Is the Internal Potential of Neuron I

If xi(t)> 0, we say that Neuron i is excited and it may fire 
at t+ in which case it will send out a spike

If xi(t)=0, the Neuron cannot fire at t+

When Neuron i fires: :
- It sends a spike to some Neuron k, w.p. pik

- Its internal state changes xi(t+) = xi(t) - 1



State of Network
x(t) = (x1(t), … , xi(t), … , xl(t), … , xn(t)), xi(t)>0

If xi > 0, we say that Neuron i is excited
If xi(t)> 0, then Neuron i will fire with probability  ri∆t in 

the interval [t,t+∆t] , and as a result:
- Its internal state changes xi(t+) = xi(t) – 1 
- It sends a spike to some Neuron m  w.p. pim

The arriving spike at Neuron m is an 
- Excitatory Spike w.p. pim

+

- Inhibitory Spike w.p. pim
-

- pim = pim
+ + pim

- with  Σn
m=1 pim < 1 for all i=1,..,n 



Rates and Weights
x(t) = (x1(t), … , xi(t), … , xl (t), … , xn(t)), xi(t)>0

If xi(t)> 0, then Neuron i will fire with probability  
ri∆t in the interval [t,t+∆t] , and as a result:

From Neuron i to Neuron l 
- Excitatory Weight or Rate is wim

+ = ri pim
+

- Inhibitory Weight or Rate is wim
- = ri pim

-

- Total Firing Rate is ri = Σn
m=1 wim

+ + wim
–

To Neuron i, from Outside the Network
- External Excitatory Spikes arrive at rate Λi

- External Inhibitory Spikes arrive at rate λi



State Equations
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Cortico-Thalamic Response to Somato-Sensory Input
Or ….

What Does the Rat Think when you Tweak Her/His 
Whisker?



Rat Brain Modeling with the 
Random Neural Nework







But Back to the Rat’s Whiskers and Nicollelis’ and Others’ Measurements



Network Architecture from Physiological Data





Single Cell Recordings
(Nicollelis et al ’97)

Simultaneous Multiple
Cell Recordings
(Nicollelis et al.)

Predictions of Calibrated
RNN Mathematical Model
(Gelenbe & Cramer ’98, ’99)

Comparing Measurements 
and Theory:

Calibrated RNN Model and
Cortico-Thalamic

Oscillations







When Feedback in Cortex is Dominantly 
Negative, Cortico-Thalamic Oscillations 

Disappear





Developments

• Learning techniques: Hebbian, Gradient Based, 
Reinforcement Learning

• Analytical (Simulated) Annealing
• Applications to Image Processing
• New Mathematical Developments and 

Extensions
• Applications to QoS in the Internet: 

- Video Compression and Video Traffic 
Shaping,
- QoS Driven Routing Protocols and 
CPN 



Gradient Computation for the Recurrent RNN is O(n3)



Random Neural Network

Neurons exchange Excitatory and Inhibitory Spikes (Signals)

Inter-neuronal Weights are Replaced by Firing Rates

Neuron Excitation Probabilities obtained from Non-Linear State Equations

Steady-State Probability is Product of Marginal Probabilities

Separability of the Stationary Solution based on Neuron Excitation Probabilities

Existence and Uniqueness of Solutions for Recurrent Network

Learning Algorithms for Recurrent Network are O(n3)

Multiple Classes (1998) and Multiple Class Learning (2002)



Texture Based Object Identification Using the 
RNN, US Patent ’99 (E. Gelenbe, Y. Feng)



1) MRI Image Segmentation 



Brain Image Segmentation with RNN



Extracting Abnormal Objects from MRI 
Images of the Brain

Extracting Tumors 
from MRI   

T1   and  T2 Images

Separating Healthy
Tissue from Tumor

Simulating and Planning
Gamma Therapy & Surgery



2) Registration of Optical, IR, SAR 
Terrain Images (Gelenbe-Khaled 02)

Geometric Processing of Synthetic Image to Maximise Correct Match: 
Aim-point Adjustment and Image Scaling



IR Image of the same Scene



Computation of Error in Image



3) RNN based Adaptive Video Compression:
Combining Motion Detection and RNN Still Image 

Compression



Neural Still Image Compression
Find RNN R that Minimizes

|| R(I) - I ||
Over a Training Set of Images {I }



RNN based Adaptive Video Compression









4) Analytical Annealing with the RNN: Multicast Routing
(Similar Results with the Traveling Salesman Problem)

• Finding an optimal many-to-
many communications path in 
a network is equivalent to 
finding a Minimal Steiner Tree 
which is NP-hard

• The best heuristics are the 
Average Distance Heuristic 
(ADH) and the Minimal 
Spanning Tree (MSTH) for the 
network graph

• RNN Analytical Annealing 
improves the number of 
optimal solutions found by 
ADH and MST by 
approximately 10%  



5) Goal Based Learning
Get to destination D at minimum cost without getting lost -- If 

you get lost someone else will have to complete the 
mission
x = current position, d = position of destination

s = speed,  s-1 = time for one step motion 
D = directional decision,  
GD(x,d) = s-1  +   [1-p(x+sD)] G (x+sD,d) 

+ p(x+sD){G(0,x+sD) + G (x+sD,d)}
= s-1  + G (x+sD,d) + 2p(x+sD)G(0,x+sD) 

p(x+sD) = probability of getting “lost” at position x+sD
G(u,v) = cumulative cost incurred to get from point u to v

G(0,x+sD) is the cost of bringing a new entity to x+sD



Reinforcement Learning in 
G-Networks

• Fully Connected 
System

• Fully Recurrent with 
Excitatory and 
Inhibitory Weights

• Decision Output is the 
one corresponding to 
the largest q of all the 
neurons



Reinforcement Learning Algorithm

• Decision threshold – Recent Historical Value of Reward

• Recent Reward Rl
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• Re-normalise all weights

• Compute q = (q1, … , qn)  from the fixed-point
• Select Decision k such that qk > qi for all i=1, …, n

∑ −+ +=
n

i miwmiwr
1

* )],(),([

*

*

),(),(

),(),(

i

i

i

i

r
r

jiwjiw

r
r

jiwjiw

−−

++

←

←



Combining QoS-class dependent routing from 
G-Networks using Triggers and

Reinforcement Learning – the CPN Routing Algorithm

Many Internet applications have QoS requirements.
• Voice over IP, video conferencing
• Time Critical and Secure Applications
• Network games  and networked simulation
• Web based commerce and banking

– IETF has proposed QoS techniques such as 
IntServ, DiffServ

– In CPN Users formulate their QoS Goals, smart 
packets probe and make routing decisions, while 
dumb packets transport data and gather intelligence



In Principle, Global QoS Optimisation is Possible:
Network Routing subject to QoS Constraints



Difficulties of Global Optimisation
• The network is very large – for specific users, 

optimisation is relevant for a subset of routes at a 
time

• The system is large .. information delay, control delay 
and combinatorial explosion: global algorithms can 
be very slow and come too late

• The system is highly dynamic – traffic varies 
significantly over short periods of time

• There are large quantities of traffic in the pipes –
congestion can occur suddenly, reaction and detours 
must be very rapid

• Measurements local to subset of users, and 
adaptivity is needed which is relevant to the users 
most concerned by the measurements



CPN Philosophy

• Let the Measurements and the Adaptivity
be under user control

• Let the user make his/her own QoS and 
economic decisions

• Remain close to, and compatible with IP



OSI Layers & CPN
• TCP/IP is a layered protocol stack
• Application handles particular 

applications, Presentation handles 
compression and encryption of data, 
Session controls establishment, 
management, termination of sessions

• Transport provides flow of data
• Network handles the transmission of 

packets in the network
• Data-link is responsible for the 

interaction of the device driver in the 
operating system and the  network card 
in the machine

• Physical defines electrical and 
mechanical specifications

Application

Transport

Network

Data Link

Physical

Presentation

Session



QoS in the Internet can be Controlled via 
CPN’s Cognitive Routers 

Operating at the Periphery of the IP World
Hosts

Internet

Hosts

..

Cognitive Router RNN for each Destination/QoS

Each neuron represents a choice of 
outgoing link to other routers.  
Reinforcement learning updates and stores 
the best outgoing path for each destination 
– QoS pair, using metrics information in 
ACK packets.

Edge Routers

1

5

4
3

2

6

CRs Edge Routers CRs



Quote from LM & Cisco’s Proposal to Darpa
March 8, 2004

“ … We believe the next evolution in path switching will be 
the employment of various infrastructure sensing devices 
to collect path data and allow a user, a network 
administrator, or an automated process to specify paths 
to routers within their domain authority … … the 
cognitive router (CR) schema that was developed by 
Erol Gelenbe under the rubric of “cognitive packet 
networks” (CPN) [2] … represents a dramatic change in 
the ability of a network to make intelligent routing 
decisions.  CRs use neural networks that essentially 
form multi-dimensional routing tables that respond 
immediately to the route performance parameters 
captured by the packets flowing through them.  CRs
employ extended QoS parameters and can change 
routes when they recognize route degradation.  Because 
decisions are based only on local information provided 
by the smart packets, CRs are not afflicted with the 
problems inherent in … BGP … ” 



CPN Principles

• CPN operates seamlessly with IP and creates a 
self-aware network environment 

• Users assign goals
• Packets collectively learn to achieve the goals
• Learning is performed by sharing information 

between packets
• Packets sharing the same goals can be grouped 

into classes
• Nodes are storage centers, mailboxes and 

processing units



CPN and Smart Packets
Smart Packets route themselves based on QoS Goals, 

e.g., 
Minimise Delay or Loss or Combination
Minimise Jitter (for Voice)
Maximise Dispersion (for security)
Minimise Cost
Optimise Cost/Benefit

Smart Packets make observations & take decisions 

ACK Packets bring back observed data and trace 
activity

Dumb Packets execute instructions, carry payload and 
also may make observations



• Conventional QoS Goals are extrapolated from 
Paths, Traffic, Delay & Loss Information – this is 
the “Sufficient Level of Information” for Self-
Aware Networking

• Smart packets collect path information and dates
• ACK packets return Path, Delay & Loss 

Information and deposit W(K,c,n,D), L(K,c,n,D) 
at Node c on the return path, entering from Node 
n in Class K

• Smart packets use W(K,c,n,D) and L(K,c,n,D) for 
decision making (e.g. Reinforcement Learning)

Cognitive Adaptive Routing



CPN Test-Bed Measurements
Ongoing Route Discovery by Smart Packets



CPN Test-Bed Measurements
Ongoing Route Discovery by Smart Packets



QoS Driven Application 
Voice over CPN

Fig. 1.  Voice over CPN



Experimental Results 
Voice over CPN

Fig. 4



Experimental Results 
Voice over CPN

Fig. 6 : Average roundtrip delay (left) and jitter (right) for user payload when only DPs
are allowed to carry user payload 



Experimental Results 
Voice over CPN

Fig. 7. Probability of packet desequencing perceived by the receiver side



CPN for Traffic Engineering





Wireless Power-Aware Adhoc
CPN Test-Bed







… as we conclude …

• The challenges for the next decade are:
- To model accurately increasingly 
complex natural brain systems and 
understand their functional behaviour
- To exploit neural paradigms in order to
provide adaptive control for complex 
socio-economic systems (health systems, 
business systems, trading systems, IT 
networks .. )



Model accurately complex natural brain systems 
and understand their functional behaviour

Observation  Action

Amygdala

Emotions

Hippocampus

Maps & Situations

Neo-

Cortex

Procedures



Neural Network Control of Socio-Economic 
Systems: e.g. DARPA’s Cognitive Networks

Smart
Packets

Emergent Behavior
Analysis

ACK Packets

Strategic Route 
Modeling and 

Global Optimization

Precedence Based Routing 
Learned link fidelity models

Filter priorities

Link Quality 
Prediction

Traffic Engineering
Connection Management
Multi-homing Path Selection
Relay, Route Splitting

Cognitive Route Control
Cognitive (RNN) Route Selection
Store/Forward Buffer
Upstream Filter Assertion

Tactical

Strategic

MetaMission 
Awareness

Payload 
Packets

Military Networks and InternetMilitary Networks and Internet
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