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Abstract

G-networks are novel product form queuing networks that, in addition to ordinary cus-
tomers, contain unusual entities such as “negative customers” which eliminate normal cus-
tomers, and “triggers” that move other customers from some queue to another. Recently we
introduced one more special type of customer, a “reset”, which may be sent out by any server
at the end of a service epoch, and that will reset the queue to which it arrives into its steady
state when that queue is empty. A reset which arrives to a non-empty queue has no effect at
all. The sample paths of a system with resets is significantly different from that of a system
without resets, because the arrival of a reset to an empty queue will provoke a positive jump
in queue length which may be of arbitrarily large size, while ithout resets positive jumps are
only of size +1 when a positive customer arrives to a queue. In this paper we review this
novel model, and then discuss its traffic equations. We introduce the concept of “stationary
equivalence” for queueing models, and of “flow equivalence” for distinct queueing models.
We show that the flow equivalence of two G-networks implies that they are also stationary
equivalent. We then show that the stationary probability distribution of a G-network with
resets is identical to that of a G-nework without resets whose transition probabilities for
positive (ordinary) customers has been increased in a specific manner. Our results show that
a G-network with resets has the same form of traffic equations and the same joint stationary
probability distribution of queue length as that of a G-network without resets.

1 Introduction

Queueing networks are used to model systems in which a set of customers circulate among
servers, possibly waiting in line, then obtaining service, after which they may proceed to another
service station or leave the service system altogether after completing a series of service requests.
Queueing networks are widely used in industry to represent manufacturing systems, job-shops,
the Internet, telephone and telecommunication networks, or other service facilities. Because of
their widespread usage and great complexity, such systems have been studied abundantly over
the last one hundred years, and over the last thirty years mathematical methods and software
tools have been developed to analyse and predict their behaviour. Software tools that have been
successfully used in this area include simulation packages, analytical solvers, and approximate
numerical solvers.
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Typically, the time dependent behaviour of such systems is characterised by very large sys-
tems of differential-difference equations which describe the manner in which the probability
distribution of the queue lengths and of other quantities of interest (such as the stage of ser-
vice occupied by each customer in the network), evolve over time. These state equations are
relations concerning the change over time of the joint probability distributions of network state.
The number of equations concerned can be countably infinite if the network is “open”, i.e. if the
network exchanges customers with the oustide world. Although the number is finite when the
system is “closed”, it will grow very rapidly with the number of customers and service stations
even in this case.

Because such systems can be very complex, mathematical methods have been developed to
study their steady state or long term behaviour [1, 2]. Such methods can be used to obtain
exact algebraic expressions in terms of significant parameters such as service time distributions,
customer arrival rates, and the transition probabilities of customers from one queue to another,
which simplify the computation of many of the measures of interest. In particular, certain classes
of queueing networks have been shown to have “product form” which is a remarkable property
stating that, in steady-state, the joint probability distribution of system state can be expressed
as the product of its marginal distributions. Such a result, when it is available, considerably
simplifies the exact analysis of complex queueing networks and aids in the computation of
performance measures for large computer systems and networks.

G-networks were introduced in the last decade so as to model the behaviour of queueing
networks in which, in addition to customers which request and receive service, we can also
model the behaviour of control actions such as the removal of certain customers using “negative
customers”, and the displacement of customers from one queue to another before they receive
service using “triggers” [3, 4, 5, 6, 7, 13]. For instance, negative customers can be used to model
flow control in a system, while triggers can be used to model actions resulting in load balancing.
Multiple classes of customers are used in queueing networks to model groups of customers which
have distinct probabilistic characteristics, and multiple class versions of G-networks have been
developed, and solution techniques for state dependent arrival and service processes have been
derived [10, 11, 12]. Formal mathematical relationships between G-networks and stochastic
neural networks (RNN) are described in [8, 9, 16].

“Reset” customers introduced in [15] are a recent extension to G-networks. Resets are special
signals that can be sent from some queue in the network to any other queue; they may also arrive
from outside the network. A normal customer leaving a queue can become a reset and then be
sent to some other queue. When a reset arrives at a queue:

• 1) If the queue is not empty, the reset has no effect and is immediately lost.

• 2) If the queue is empty then the queue length is reset to a random queue length whose
distribution is identical to the stationary distribution at that queue.

In [15] we have shown that this model has product form solution under assumptions of Poisson
external arrivals, exponential service times for ordinary customers, and Markovian customer
movement between queues including transitions of ordinary customers which become negative
customers, triggers or resets.

In an “ordinary” G-network, the sample paths describing the manner in which the N-
dimensional state representing the number of customers in each of the N queues only has positive
jumps of size one, resulting from the arrival of some customer at a queue. However, the arrival
of a reset customer to a queue results in a random sized positive jump in the sample path. Thus
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the sample paths of queueing models with resets have jumps which are distinct from the those
of models without resets. Despite this difference, we will show that these two distinct models
are equivalent in an interesting and non-trivial manner.

1.1 G-Networks with Resets

The G-network model we consider has N service centres and customer queues. Each queue j has
independent and identically exponentially distributed service times with rates µj, j = 1 , ..., N .
Queue j receives positive customers from outside the network according to a Poisson process of
rate λ+

j . Positive customers are the ordinary queuing network customers which receive service
at the various queues. In addition to the usual customers, the network also contains “signals”.
These signals arrive to the queue i from outside the network in a Poisson stream with parameter
λ−

i . Both positive customers and signals can also arrive to a queue from some other queue.

In this paper, signals can be one of three special types of customers:

• Negative customers which destroy an existing customer,

• Triggers which move a customer from some queue to another,

• Resets which are the new type of customers introduced in [15].

When an ordinary or “positive” customer leaves a queue at the end of a service epoch, it
will either leave the network, enter another queue as an ordinary customer, or arrive at another
queue as a signal. Customer transitions are defined by the probability matrices P+ = [P+

ij ]
for a positive customer leaving a queue and joining another queue as a positive customer, or
P− = [P−

ij ] for a normal customer leaving a queue heading into another queue as a signal.
Positive customers to a queue either arrive from outside the network, or they arrive from other
queues. In the latter case, they are either positive customers which have been triggered (by
signals) from other queues, or they are positive customers which have completed service at some
other queue. Signals, on the other hand, can either arrive from outside the network, or they
result from the change of a positive customer leaving a queue to become a signal at another
queue. With probability di, a positive customer leaves the network after completing service at
queue i:

di = 1 −
N

∑

j=1

[P+
ij + P−

ij ]. (1)

The effect of signals is described as follows:

• When a signal arrives from some queue i to some queue j with probability P−
ij :

1. If queue j is non-empty, the signal triggers a customer to move instantaneously to
some other queue with probability αi,j, and with probability [1− αi,j] the signal has
no effect. With probability Qjk the customer which has been triggered moves to some
other queue k, or leaves the network with probability Qj,N+1. Note that for any i,
we have:

Qi,N+1 = 1 −
N

∑

j=1

Qi,j. (2)

2. If queue j is empty, the signal will create a random batch of Yij customers at queue
j with probability βi,j . With probability [1 − βi,j ] the signal has no effect. The
distribution of Yij is denoted by Pr[Yij = xj] = τj(xj).
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• In all cases, after a signal has acted upon the queue to which it arrives, it vanishes (i.e.,
signals do not queue or receive service).

When a signal arrives from outside the network to some queue j, we replace the probabilities
αi,j, βi,j by α0,j , β0,j .

1.2 Traffic equations and stationary solution for G-networks

For each queue i, the traffic equations are used to describe the arrival rate Λ+
i of positive

customers, and the arrival rate Λ−
i of signals (including resets, negative customers and triggers).

Notation Consider the following system of equations, which can be interpreted as the traffic
equations for the G-network with resets:

Λ+
i = λ+

i +
N

∑

j=1

µjρjP
+
ji +

N
∑

j=1

λ−
j ρjα0,jQj,i

+
N

∑

j=1

N
∑

k=1

µjρjP
−
jkρkαj,kQk,i

+λ−
i β0,i +

N
∑

j=1

µjρjP
−
ji βi,j (3)

and:

Λ−
i = λ−

i α0,i +
N

∑

j=1

µjρjP
−
ji αj,i (4)

where:

ρi =
Λ+

i

µi + Λ−
i

(5)

To render the notation more compact, let us define the following vectors:

~Λ+ with elements [Λ+
i ],

~λ+ with elements [λ−
i ],

~Λ− with elements [Λ−
i ],

~λ− with elements [λ−
i ],

α0 = (α0,1, ... , α0,N ), β0 = (β0,1, ... , β0,N ).

Also, let P+, P−, Q, be matrices with elements P+[i, j], P−[i, j] and Q[i, j], respectively, and
let A and B be the N × N matrices with elements αij and βij , respectively, for 1 ≤ i, j ≤ N .

Remark Notice that a network Ĝ without resets is equivalent to a network with resets if the
matrix B is identically 0, and if the vector β0 is also identically zero.

We will write X ∗ Y to represent the matrix obtained by the element by element product of
the two N ×N matrices X and Y , and let u ∗ v be the element by element product of N -vectors
u and v.

Lemma 1 The traffic equations for the G-network with resets (3), (4) can be written as:

~Λ+ = λ+ + λ− ∗ β0 + ~Λ+{FP+ + [1 − F ]Q + FP− ∗ B}, (6)
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~Λ− = λ+ ∗ α0 + ~Λ+FP− ∗ A, (7)

where F is the N × N diagonal matrix whose elements are given by:

Fi,i =
µi

µi + Λ−
i

, (8)

Fi,j = 0, i 6= j.

Proof We can write (3) as:

Λ+
i = λ+

i +
N

∑

j=1

µjρjP
+
ji +

N
∑

j=1

Λ−
j ρjQj,i + λ−

i β0,i +
N

∑

j=1

µjρjP
−
ji βi,j (9)

which becomes (6) when we use vector notation. On the other hand, by substituting (5) in (4)
we obtain:

Λ−
i = λ−

i α0,i +
N

∑

j=1

Λ+
j

µj

µj + Λ−
j

P−
ji αj,i (10)

which becomes (7) when it is written in vector notation. Q.E.D.

The next result establishes that the stationary solution to a G-network with resets has product
form. The result was first proved in [15]; however we present the proof again in the Appendix
at the end of this paper in order to provide the reader with a self-contained presentation.

Theorem 1 Consider the G-network, denoted by G, which is specified using:

• (i) The matrices P−, P+, Q, A, B, and vectors α0, β0,

• (ii) The external arrival rates λ+
i and λ−

i , and

• (iii) The reset probability distribution:

τj(xj) = (1 − ρj)(ρj)
(xj−1), xj > 0 (11)

τj(0) = 0. (12)

Let (X1(t), ... ,XN (t)) represent the queue length vector at time t for the system G with N
servers, and let π(~x) be the stationary probability, if it exists, that the network state is ~x =
(x1, ... , xN ).

If equations (3), (4), (5) have non-negative solutions such that all the ρi < 1, for i =
1, ... , N , then the stationary distribution for G exists and has the product form:

π(~x) =
N
∏

i=1

πi(xi) (13)

where the πi(xi) = (ρi)
xi(1 − ρi) are the marginal probabilities of queue length at each of the

queues.
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2 Flow Equivalence and Stationary Equivalence of Queueing

Networks

Let us first formalize two properties of queueing networks, the first one being very common in
queueing network models, while the second one is specific to G-networks:

• The first property will be called stationary equivalence (SE): we will say that two queueing
networks with the same number of queues are SE if the stationary joint queue length
distributions of both systems are identical.

• The second property will be called flow equivalence (FE): two queueing models which
have the same number of servers are said to be FE if (i) the steady-state rate at which
positive customers arrive at each queue are identical in each of the two networks, and (ii)
the steady-state rate at which signals arrive at each queue are identical.

More formally, the two definitions are as follows.

Definition 1 Let X(t) = (X1(t), ... ,XN (t)), x(t) = (x1, ... , xN (t)) be the vectors of queue
lengths for two queueing networks Q and Q̂ each having N service centres. We will say that Q
and Q̂ are SE if and only if for all N -vectors ~x with non-negative integer elements:

limt→∞P [X(t) = ~x] = limt→∞P [x(t) = ~x]. (14)

Definition 2 Let Λ+
i (Q), Λ−

i (Q) denote the arrival rates of positive customers and signals to
the i − th queue of G-network Q. We will say that two G-networks Q and Q∗ with N service
centres are FE if and only if Λ+

i (Q) = Λ+
i (Q∗), and Λ−

i (Q) = Λ−
i (Q∗) for all i = 1, ... , N .

The next result follows directly from Theorem 1 and the definitions we have just given.

Theorem 2 If the G-networks G and G∗ with the same number N of service centers are FE,
and have identical (exponential) service times distributions centre by centre (say with service
rates in both systems given by µ1, ... µN), then they are also SE.

2.1 Equivalence of Distinct Models

The next theorem says that two G-networks, one with resets and the other without reset cus-
tomers, are stochastically equivalent provided that the parameter set of the system without resets
is obtained in a specific manner from the parameter set of the network with resets. Specifically,
the probabilites associated with transitions of positive customers for the network without resets
are greater than that of the network with resets in a specific manner.

Theorem 3 Consider two G-networks G and Ĝ with the same number N of service centers, and
identical exponential service time distributions with rates µ1, ... µN . G has reset customers and
parameter set P−, P+, Q, A, B, α0, β0, with reset probability distribution:

τj(xj) = (1 − ρj)(ρj)
(xj−1), xj > 0 (15)

τj(0) = 0. (16)

where ρj = Λ+
j /[µj + Λ−

j ]. The network Ĝ does not have reset customers and is defined by the
parameter set P−

n , P+
n , Qn, An, αn

0 , where:

6



• An = A and the vectors α0 and αn
0 are identical,

• P+
n = P+,

• The vector β0 need not be specified for Ĝ, or alternatively we may just say that it has the
value βn

0 = 0.

• Finally, P−
n = P+ + P− ∗ B .

Then G and Ĝ are SE.

Proof We will first prove that Ĝ and G are FE, and then invoke Theorem 2 to show that they
are also SE.

To prove that they are FE, notice that by Lemma 1, the traffic equations for G may be
written as:

~Λ− = λ+ ∗ α0 + ~Λ+FP− ∗ A, (17)

which is unchanged from (7), while (6) is identical to:

~Λ+ = λ+ + λ− ∗ β0 + ~Λ+{F [P+ + P− ∗ B] + [1 − F ]Q}, (18)

which, by substituting P−
n = P+ + P− ∗ B can be written as:

~Λ+ = λ+ + λ− ∗ β0 + ~Λ+{FP−
n + [1 − F ]Q}. (19)

Now note that (19) and (17) are the traffic equations for Ĝ, so that G and Ĝ are FE and are
therefore also SE by Theorem 2, completing the proof. Q.E.D

3 Conclusions

In this paper we have reviewed G-network queueing models with the recent extension of “reset”
customers. We have recalled the product form result for the model with “resets” and then
discussed their traffic equations. We also introduce the concept of “stationary equivalence” for
queueing models, and of “flow equivalence” for distinct queueing models. We show that the flow
equivalence of two G-networks implies that they are also stationary equivalent.

Based on these two concepts of equivalence, we show that the stationary probability distribu-
tion of a G-network with resets is identical to that of a G-nework without resets whose transition
probabilities for positive (ordinary) customers has been increased in a manner which depends on
the reset transition probabilities. The proof is based on showing that a G-network with resets
has traffic equations which have the same general form of those for a G-network without resets.
Future work will consider extensions to more complex state transition rules and to other novel
product form results.
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4 Appendix: Proof of Theorem 1

For the sake of completeness, this Appendix contains the proof of Theorem 1 which was given
in [15], which establishes that (13) satisfies the global balance equations (21). We write:

π(~x) = lim t→∞ Pr[(X1(t), ... ,XN (t)) = ~x]. (20)

amd use ~ei to denote the N -vector which is 0 everywhere, except in position i where it has the
value 1: ~ei = (0, .. , 1, .. , 0). The Chapman-Kolmogorov equations for the G-network with
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resets in steady-state, i.e. the global balance equations, can be written as:

π(~x)
∑N

i=1

[

λ+
i + (µi + λ−

i α0,i)1{xi>0} + λ−
i 1{xi=0}β0,i

]

=
∑N

i=1 λ+
i π(~x − ~ei)1{xi>0}

+
∑N

i=1 µiπ(~x + ~ei)di

+
∑N

i=1 λ−
i α0,iQi,N+1π(~x + ~ei)

+
∑N

i=1

∑N
j=1 λ−

i α0,iQi,jπ(~x + ~ei − ~ej)1{xj>0}

+
∑N

i=1

∑N
j=1 µiπ(~x + ~ei − ~ej)P

+
ij 1{xj>0}

+
∑N

i=1

∑N
j=1 µiπ(~x + ~ei + ~ej)P

−
ij Qj,N+1αi,j

+
∑N

i=1

∑N
j=1

∑N
k=1 µiπ(~x + ~ei + ~ej − ~ek)P

−
ij Qj,kαi,j1{xk>0}

+
∑N

i=1

∑N
j=1 µiπ(~x + ~ei)P

−
ij (1 − αi,j)1{xj>0}

+
∑N

i=1

∑N
j=1 µiπ(~x + ~ei − xj ~ej)P

−
ij βi,j1{xj>0}τj(xj)

+
∑N

i=1 λ−
i β0,iπ(~x − xi~ei)1{xi>0}τi(xi)

+
∑N

i=1

∑N
j=1 µiπ(~x + ~ei)P

−
ij (1 − βi,j)1{xj=0}

(21)

We start by by substituting (13) in (21), and dividing both sides by the resulting expression
by (ρi)

xi . This results in:

∑N
i=1

[

λ+
i + (µi + λ−

i α0,i)1{xi>0} + λ−
i 1{xi=0}β0,i

]

=
∑N

i=1 λ+
i

1
ρi

1{xi>0}

+
∑N

i=1 µiρidi

+
∑N

i=1 λ−
i α0,iQi,N+1ρi

+
∑N

i=1

∑N
j=1 λ−

i α0,iQi,j
ρi

ρj
1{xj>0}

+
∑N

i=1

∑N
j=1 µi

ρi

ρj
P+

ij 1{xj>0}

+
∑N

i=1

∑N
j=1 µiρiρjP

−
ij Qj,N+1αi,j

+
∑N

i=1

∑N
j=1

∑N
k=1 µi

ρiρj

ρk
P−

ij Qj,kαi,j1{xk>0}

+
∑N

i=1

∑N
j=1 µiρiP

−
ij (1 − αi,j)1{xj>0}

+
∑N

i=1

∑N
j=1 µi

ρi

(ρj)
xj P−

ij βi,j1{xj>0}τj(xj)

+
∑N

i=1
λ−

i
β0,i

ρ
xi
i

1{xi>0}τi(xi)

+
∑N

i=1

∑N
j=1 µiρiP

−
ij (1 − βi,j)1{xj=0}

(22)

which, using τj(xj) simplifies to:

∑N
i=1

[

λ+
i + (µi + λ−

i α0,i)1{xi>0} + λ−
i 1{xi=0}β0,i

]

=
∑N

i=1 λ+
i

1
ρi

1{xi>0}

+
∑N

i=1 µiρidi

+
∑N

i=1 λ−
i α0,iQi,N+1ρi

+
∑N

i=1

∑N
j=1 λ−

i α0,iQi,j
ρi

ρj
1{xj>0}

+
∑N

i=1

∑N
j=1 µi

ρi

ρj
P+

ij 1{xj>0}

+
∑N

i=1

∑N
j=1 µiρiρjP

−
ij Qj,N+1αi,j

+
∑N

i=1

∑N
j=1

∑N
k=1 µi

ρiρj

ρk
P−

ij Qj,kαi,j1{xk>0}

+
∑N

i=1

∑N
j=1 µiρiP

−
ij (1 − αi,j)1{xj>0}

+
∑N

i=1

∑N
j=1 µi

ρi

ρj
(1 − ρj)P

−
ij βi,j1{xj>0}

+
∑N

i=1 λ−
i β0,i[

1
ρi

− 1]1{xi>0}

+
∑N

i=1

∑N
j=1 µiρiP

−
ij (1 − βi,j)1{xj=0}

(23)
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or better still, to:

∑N
i=1

[

λ+
i + (µi + λ−

i α0,i)1{xi>0} + λ−
i 1{xi=0}β0,i

]

=
∑N

i=1 λ+
i

1
ρi

1{xi>0} [1]

+
∑N

i=1 µiρidi [2]

+
∑N

i=1 λ−
i α0,iQi,N+1ρi [3]

+
∑N

i=1

∑N
j=1 λ−

i α0,iQi,j
ρi

ρj
1{xj>0} [4]

+
∑N

i=1

∑N
j=1 µi

ρi

ρj
P+

ij 1{xj>0} [5]

+
∑N

i=1

∑N
j=1 µiρiρjP

−
ij Qj,N+1αi,j [6]

+
∑N

i=1

∑N
j=1

∑N
k=1 µi

ρiρj

ρk
P−

ij Qj,kαi,j1{xk>0} [7]

+
∑N

i=1

∑N
j=1 µiρiP

−
ij (1 − αi,j)1{xj>0} [8]

+
∑N

i=1

∑N
j=1 µi

ρi

ρj
P−

ij βi,j1{xj>0} [9]

−
∑N

i=1

∑N
j=1 µiρiP

−
ij βi,j1{xj>0} [10]

+
∑N

i=1
λ−

i
β0,i

ρi
1{xi>0} [11]

−
∑N

i=1 λ−
i β0,i1{xi>0} [12]

+
∑N

i=1

∑N
j=1 µiρiP

−
ij (1 − βi,j)1{xj=0} [13]

(24)

¿From (3) and (24), it follows that
∑N

i=1 Λ+
i 1{xi>0} = ρi( [1] + [4] + [5] + [7] + [9] + [11])

where the numbers in brackets correspond to the terms as numbered in equation (24). Using

also the relationship (5) which is ρi =
Λ+

i

µi + Λ−
i

, we can replace (24) by:

∑N
i=1

[

λ+
i + (µi + λ−

i α0,i)1{xi>0} + λ−
i 1{xi=0}β0,i

]

=
∑N

i=1[ µi + Λ−
i ]1{xi>0}

+
∑N

i=1 µiρidi [2]

+
∑N

i=1 λ−
i α0,iQi,N+1ρi [3]

+
∑N

i=1

∑N
j=1 µiρiρjP

−
ij Qj,N+1αi,j [6]

+
∑N

i=1

∑N
j=1 µiρiP

−
ij (1 − αi,j)1{xj>0} [8]

−
∑N

i=1

∑N
j=1 µiρiP

−
ij βi,j1{xj>0} [10]

−
∑N

i=1 λ−
i β0,i1{xi>0} [12]

+
∑N

i=1

∑N
j=1 µiρiP

−
ij (1 − βi,j)1{xj=0} [13]

(25)

Now if we cancel the µi term on both sides we remain with:

∑N
i=1

[

λ+
i + λ−

i α0,i1{xi>0} + λ−
i 1{xi=0}β0,i

]

=
∑N

i=1 Λ−
i 1{xi>0}

+
∑N

i=1 µiρidi [2]

+
∑N

i=1 λ−
i α0,iQi,N+1ρi [3]

+
∑N

i=1

∑N
j=1 µiρiρjP

−
ij Qj,N+1αi,j [6]

+
∑N

i=1

∑N
j=1 µiρiP

−
ij (1 − αi,j)1{xj>0} [8]

−
∑N

i=1

∑N
j=1 µiρiP

−
ij βi,j1{xj>0} [10]

−
∑N

i=1 λ−
i β0,i1{xi>0} [12]

+
∑N

i=1

∑N
j=1 µiρiP

−
ij (1 − βi,j)1{xj=0} [13]

(26)

We then simplify equation (26) by using (4), with the middle term on the left-hand-side of (26)
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and [8] in (26), yielding:

∑N
i=1

[

λ+
i + λ−

i 1{xi=0}β0,i

]

=

+
∑N

i=1 µiρidi [2]

+
∑N

i=1 λ−
i α0,iQi,N+1ρi [3]

+
∑N

i=1

∑N
j=1 µiρiρjP

−
ij Qj,N+1αi,j [6]

+
∑N

i=1

∑N
j=1 µiρiP

−
ij 1{xj>0} [8∗]

−
∑N

i=1

∑N
j=1 µiρiP

−
ij βi,j1{xj>0} [10]

−
∑N

i=1 λ−
i β0,i1{xi>0} [12]

+
∑N

i=1

∑N
j=1 µiρiP

−
ij (1 − βi,j)1{xj=0} [13]

(27)

Using 1{xi>0} = 1 − 1{xi=0} in the left-hand-side term and in [10], we group terms in the
left-hand-side, eliminate [12], and modify [10], resulting in:

∑N
i=1

[

λ+
i + λ−

i β0,i

]

=

+
∑N

i=1 µiρidi [2]

+
∑N

i=1 λ−
i α0,iQi,N+1ρi [3]

+
∑N

i=1

∑N
j=1 µiρiρjP

−
ij Qj,N+1αi,j [6]

+
∑N

i=1

∑N
j=1 µiρiP

−
ij 1{xj>0} [8∗]

+
∑N

i=1

∑N
j=1 µiρiP

−
ij βi,j1{xj=0} [10]

+
∑N

i=1

∑N
j=1 µiρiP

−
ij (1 − βi,j)1{xj=0} [13]

(28)

Using [10] and [13] we have:

∑N
i=1

[

λ+
i + λ−

i β0,i

]

=

+
∑N

i=1 µiρidi [2]

+
∑N

i=1 λ−
i α0,iQi,N+1ρi [3]

+
∑N

i=1

∑N
j=1 µiρiρjP

−
ij Qj,N+1αi,j [6]

+
∑N

i=1

∑N
j=1 µiρiP

−
ij 1{xj>0} [8∗]

+
∑N

i=1

∑N
j=1 µiρiP

−
ij 1{xj=0} [13∗]

(29)

and [8∗] and [13∗] simplify again, and using (1) and (2), the terms [2], [3], [6] are written as:

∑N
i=1

[

λ+
i + λ−

i β0,i

]

=

+
∑N

i=1 µiρi[ 1 −
∑N

j=1(P
+
ij + P−

ij )] [2∗]

+
∑N

i=1 λ−
i α0,iρi[ 1 −

∑N
k=1 Qi,k] [3∗]

+
∑N

i=1

∑N
j=1 µiρiρjP

−
ij αi,j [ 1 −

∑N
k=1 Qi,k] [6∗]

+
∑N

i=1

∑N
j=1 µiρiP

−
ij [8 ∗ ∗]

(30)

This then simplifies to:

∑N
i=1

[

λ+
i + λ−

i β0,i

]

=

+
∑N

i=1 µiρi[ 1 −
∑N

j=1 P+
ij ] [2 ∗ ∗]

+
∑N

i=1 λ−
i α0,iρi[ 1 −

∑N
k=1 Qi,k] [3∗]

+
∑N

i=1

∑N
j=1 µiρiρjP

−
ij αi,j[ 1 −

∑N
k=1 Qj,k] [6∗]

(31)
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We can now group the negative terms on the right-hand-side with [ λ+
i + λ−

i β0,i ] on the
left-hand-side and write:

∑N
i=1 Λ+

i =

+
∑N

i=1 µiρi [2 ∗ ∗∗]

+
∑N

i=1 λ−
i α0,iρi [3 ∗ ∗]

+
∑N

i=1

∑N
j=1 µiρiρjP

−
ij αi,j [6 ∗ ∗]

(32)

Finally we use (4) to write:

∑N
i=1 Λ+

i =
∑N

i=1[µi + Λ−
i ]ρi

(33)

completing the proof. Q.E.D.
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