G-Networks with Resets

Erol Gelenbe Jean-Michel Fourneau
School of EECS Laboratoire PRISM
University of Central Florida Université de Versailles Saint-Quentin
Orlando, FL 32816 45 Avenue des Etats-Unis
erol@cs.ucf.edu 78000 Versailles
France

jmf@prism.uvsq.fr

Abstract

G-networks are product form queuing networks which, in addition to ordinary customers,
contain unusual entities such as “negative customers” which eliminate normal customers and
“triggers” which move other customers from some queue to another. These models have
generated much intereset in the literature since the early 90’s. The present paper discusses
a novel model for a reliable system composed of N unreliable systems, which can hinder or
enhance each other’s reliability. Each of the N systems also tests other systems at random;
it is able to reset another system if it is itself in working condition and discovers that the
other system has failed, so that the global reliability of the system is enhanced. This paper
shows how an extension of G-networks that includes novel “reset” customers can be used to
model this behavior. We then show that a general G-network model with resets has product
form, and prove existence and uniqueness of its solution.

1 Introduction

G-networks [2, 3] were introduced in the early 90’s as a generalization of queuing networks.
Currently there are several hundred references devoted to the subject, and a recent survey paper
[12] cites many of these contributions. The link between these models and spiked Random Neural
Networks (RNN) has been developed in [7, 8].

Traditionally, queuing networks are tools for the analysis of systems of customers which
circulate among a finite set of servers, waiting for service and then obtaining service at each
of the servers. Such systems are either closed (and do not receive customers from the outside
world with customers cycling indefinitely in the system), or open (with customers arriving from
the outside world and then leaving when they are done with their work.

These models can also be used to represent system reliability as a generalization of the
machine repairman problem. In this case, arrivals are events which enhance the reliability of the
system, while services correspond to events which reduce system reliability, and queue length
represents how reliable the system is at a given instant of time. Thus when the queue length
is zero, this represents the state where the system has failed and is not operational until the
system is repaired (after an arrival occurs).

Queueing models models typically do not have provisions for some customers being used to
eliminate other customers, or to redirect other customers among the queues. In other words,



customers in traditional queuing networks cannot exert direct control on other customers. G-
network models overcome some of the limitations of conventional queueing network models
and still preserve the computationally attractive “product form” property of certain Markovian
queuing networks. Generalized or “Gelenbe” networks are product form queuing networks which,
in addition to ordinary customers, contain unusual customers such as “negative customers” which
eliminate normal customers, and “triggers” which move other customers from some queue to
another [5, 6]. Multiple class versions of these models are discussed in [9, 10], and in [11] many
additional results are provided. These queuing have generated much intereset in the literature
and many authors have devoted papers to various aspects and extensions of these models since
the early 90’s. A recent journal special issue [13] provides insight into some of the research issues
and developments in this area.

In this paper we present a novel extension of G-networks: we introduce “reset” customers
and show product form of the stationary solution of the network. Resets can travel from any
queue to any other queue, and can also arrive from outside the network. When they arrive at a
queue they have one of two effects:

o [f the queue is non-empty the reset has no effect and is immediately lost.

o If the queue is empty then the queue length is reset to a random queue length whose
distribution is identical to the stationary distribution at that queue.

Informally speaking, the “reset” cutsomer sets the queue length at the server where it arrives
to the value where “it should be”.

We prove that this model has product form solution under the usual assumptions (Poisson
arrivals, exponential survice times for ordinary customers, Markovian customer movement). Al-
though the balance equations for the model contain transitions which differ significantly from
those of an ordinary G-network without resets, our result shows that this product form is iden-
tical to that of an ordinary G-network with larger arrival rates of positive customers than the
corresponding model withour resets.

In Section Rely we will illustrate how this model can represent a system of N unreliable
subsystems which can rest each other when any one of them has failed.

2 G-Networks with Resets

Let us first present the assumptions underlying the model considered in the present paper.
This queueing network contains N queues, and each queue j has independent and identically
exponentially distributed service times with rates p; for j = 1 ,..., N. Each queue j receives
positive customers from outside the network according to a Poisson process of rate A;L. Positive
customers are the ordinary queuing network customers which receive service at the various
queues.

In addition to the usual customers, the network also contains “signals” which cover three
special types of customers:

e negative customers which destroy an existing customer,
e triggers which move a customer from some queue to another,

e resets — the new type of customer which was mentioned earlier, and which will be presented
in detail below.



When an ordinary customer leaves a queue at the end of a service epoch, it can either leave
the network, or go to some other queue as an ordinary customer, or it can go to some other
queue as a signal. These transitions between queues are described by the transition probability
matrices Pt = [PZ’]L] for a positive customer leaving a queue and joining another queue as a
positive customer, and P~ = [PZ;] for a positive customer leaving some queue to enter another
queue as a signal. Signals can also arrive from outside the network to some queue 7 in a Poisson
stream of rate A; .

Departures of customers from the network are represented by tha fact that the matrix

P = P*™ 4+ P~ is sub-stochastic, and the probability d; that a positive customer leaves
the network after receiving service at queue ¢ is given by:

d—l—Z[P++P (1)

The effect of signals is described as follows:

e When a signal arrives from some queue 7 to some queue j with probability P

1. If queue j is mon-empty, the signal triggers a customer to move instantaneously to
some other queue with probability ¢; ;j, and with probability [1 — «; ;] the signal has
no effect. With probability @, the customer which has been triggered moves to some
other queue k, or leaves the network with probability (); n+1. Note that for any 1,
we have:

N
Qiny1=1—) Qij. (2)

i=1

2. If queue j is empty, the signal will create a random batch of Y;; customers at queue
J with probability g; ;. With probability [1 — f; ;] the signal has no effect. The
distribution of Y;; is denoted by Pr[Y;; = z;] = 7(z;).

e In all cases, after a signal has acted upon the queue to which it arrives, it vanishes (i.e.,
signals do not queue or receive service).

Note that Item (2) above is the novel behavior of signals introduced in this paper, while Item
(1) corresponds to previously known behavior. Note also that Item (2) describes a behavior
which is dependent on the stationary solution of the network. Thus signals behave in a manner
as though they already “know” the stationary solution of the network.

When a signal arrives from outside the network to some queue j, we replace the probabilities

@ij, Bi,j by ao,j, Bo,j-

3 Global Balance Equations and Product Form Solution

Denote by (X1(t), ,Xn(t)) the queue length vector at time ¢ for the G-network with N
servers, and let 7 (Z ) denote the stationary probability, if it exists, that the network state is
Z = (z1, - ,ZN):

(L) = lim 100 Pri(Xi(t), ... , Xn (1)) = Z]. (3)



Let é; denote the N-vector which is 0 everywhere, except in position 2 where it has the value
1: ¢ =(0, ..,1, .. ,0). The Chapman-Kolmogorov equations in steady-state, i.e. the global
balance equations, can be written as:

m(#) T, [V + (i + A7 @0,) Lizi>0y + A7 1{mi:0}50,z’] =
Sict A (& — €)1 (a;50)
vy (T + &) d;
SN @0,iQi N1 (T + €)
et Yje1 Ay @0,iQigm(T + & — &) 1(a;50)
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Sty iy i (E + 6 + €) Py QN1
o e SRy i (F + 6 + € — €k) Pij Qj ki i1z, >0}
Y YN i (E + 6) Py (1 — i) 1z 01
Sty Siey pim(® + 6 — 2€5) By Bij1 ;50175 (%))
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3.1 Main Result

The traffic equations for the network describe the total rates A;’, A, (resp.) at which positive
customers and signals arrive to each queue i. Positive customers to a queue either arrive from
outside the network, or they arrive from other queues. In the latter case, they are either
positive customers which have been triggered (by signals) from other queues, or they are positive
customers which have completed service at some other queue. Signals, on the other hand, can
either arrive from outside the network, or they result from the change of a positive customer
leaving a queue to become a signal at another queue. The network’s traffic equations are defined
as follows:

N N
A = N+ Z ujijj”; + Z Aj Pjc0,;Qji
j=1 J=1
N N N
+ 2> 1P ProkaikQui + N o + Y nipi Py Bi (5)
j=1k=1 j=1
and:
N
A7 =X ag; + Z /ljpjpﬁajﬂ' (6)
=1
where: +
A;
Ry 7
P Ay "

Note that we can write (5) as:

N N N
AF =N wipiPl + DA piQji + A Boi + Y 1ipi P Bi g (8)
i=1 i=1 i=1



Theorem 1 Consider the G-network with:

Ti(m;) = (1—p)p) @Y, ;> 0 9)
7(0) = 0. (10)

If equations (5), (6), (7) have non-negative solutions such that p; < 1, fori =1, ... ,N, then
the stationary distribution for the model exists and has the product form:

N
7'('(53') = 1:[7%(5171) (11)

where the marginal probabilities of queue length are given by m;(x;) = (p;)* (1 — p;).

The proof is given in Section 5.

4 A Model of N Interacting Unreliable Subsystems

In order to illsustrate a possible area of application of G-networks with resets, consider a model
for the overall reliability of N interacting subsystems which can enhance or reduce each others’
level of reliability. The state of each subsystem i is represented by an integer X;. If at some
time X; = 0 this means that ¢ has failed, and the larger the value of X; the more reliable it is
(i.e., the further away it is from failure).

The reliability state of subsystem ¢ which we denote by X; is modified by internal and
external events:

e An exponentially distributed service time of parameter yu; is used to model internal events
in the subsystem:

— With probability P:; the internal event does not affect the subsystem’s reliability
(i.e., X; does not change),

— With probability (1 — PZ*,;) the internal event reduces its reliability and reduces X; by
one.

e Internal events which improve its reliability (i.e., repair) are represented by an arrival
process of normal customers of rate )\ZL to the queue 1.

e Subsystems can also enhance or reduce the reliability of each other. Thus:

— When an internal event occurs a subsystem j can enhance subsystem #’s reliability,
increasing X; by 1 with probability Pj’;, or reduce its reliability by reducing it by 1
with probability P} ,.

— Finally, a susbsytem j, when an internal event occurs, can also send a reset signal to

subsystem ¢ with probability sz When a reset signal is received by a subsystem,
one of two things happen:

* If subsystem i is operating normally (i.e., X; > 0), then 7 just ignores the reset
signal, or



* If subsystem 4 is in failed mode (i.e., X; = 0), then the reset signal moves
subsystem 4 into its normal functioning state by bringing it to it’s steady-state
distribution P[X; = z;] = pj*(1 — p;) where the steady-state probability p; that
subsystem i is functioning normally, is given by:

M+ 30 pilPf + P

- il
pi = 12
' i (12)

By appropriate restrictions and parameter choices, this model is a special case of the G-
network with resets.

First note that the u; representing service rates in the G-network model will represent the
rate of internal events in each susbsystem ¢, while the )\ZT" are the rates of “repairs” which improve
the railability in each susbsystem. Note further that A\, = 0 in the reliability model, and that
the P+ of the G-network model have the obvious interpretation (and identical notation) in the
rehablhty model.

The PR in the reliability model are derived from the P, ; in the G-network model. We first
need to set a;j =0, so that the trigger always has no effect when queue j is non-empty. Then
we set 8; ; = 1 so that the trigger arriving to a non-empty queue always has an effect. Finally
we set to 7j(z;) = p;-cj(l —p;) forallj=1, ... ,N.

5 Proof of Theorem 1

We proceed with the proof of the product theorem by showing that (11) satisfies the global
balance equations (4). In order to do so, we substitute (11) in (4), and divide both sides of the
resulting expression by (p;)* to obtain:

PO [)\f + (i + A7 €0,i) Lig;>0p + )\i_l{mizo}ﬁo,i] =
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which, using the expression for 7;(z;) simplifies to:
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PO [)\;F + (i + Ay @0,i) Lz >01 + A7 1{mi:o}ﬁo,z‘] =

or better still, to:
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Now notice from (5) and (15), that 37X Af 1,50y = pi( [1] +[4]
where the numbers in brackets correspond to the terms as numbered in equation (15).

also the relationship (7) which is p; =

PIARP LS I
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and cancelling the p; term on the left and right we have:

Pij Qj ki jl{z, >0}

we can replace (15) by:

(14)

P Q],kaz,] 1{xk >0}

(15)

+ 5] +[7 +[9] + [11])

Using
[2]
[3]
[6] (16)
[8]
[10]
[12]
[13]



PO [)\;F + A Zl{zl>0} + /\71{1,-:0}50,1'] =
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We can further simplify equation (17) by using (6), with the middle term on the left-hand-side
of (17) and [8] in (17), yielding:

Y [A;r + )‘i_l{wi:O}IBO,i] =

+ Y0, pipid; (2]
+ Zi]il /\fao,in‘,NHPi (3]
+ Zz 1 E] 1 KiPiPy _Qj,N—Hai,j [6] (18)
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Notice now that 175,50y = 1 — 1y5,—0}. Using it in the left-hand-side term, and in [10], we can
group terms in the left-hand-side, eliminate [12], and modify [10], yielding:

i1 [/\;r + Ai_ﬂO,i] =

+ TN, pipid; (2]

+ Eﬁ; /\f aO,iQi,N+1Pi (3]

+ EZ 1 Z] 1 1ipip; Py [6] (19)
+ zz 1 Z] 1 Hipi P, 1{wj>0} [8%]

+ 1 Z] 1 HipiP, ﬁz,jl{w] =0} [10]

+

Ez 1EJ 1 MiPi Z]( ﬁz,j)l{w =0} (13]

Now [10] and [13] simplify to yield:

pOR] [/\QL + A Bosi| =
+ S pipidi 2
+ EfL )\{ao,z‘Qz‘,NHPi [
+ Ez 129 1 1ipipi Py QjN105  [6
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while [8x] and [13x] simplify again, and using (1) and (2), the terms [2], [3], [6] can be re-written:

S N+ Boa =
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and will then simplify to:

S N+ o] =
+ Zi\il pipil 1 — Z;’V:I Pf'L ] 2 * #] (22)
+ 2%1 )\i_]f[)lo,ipi[ 1— k1 Qikl N [3+]
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We can now group the negative terms on the right-hand-side with | /\ZTF + A fo; | on the
left-hand-side and write:

A = v
+ iz Hipi [2  *x]
N - (23)
+ Eﬁ\?l /\i]\([?éo,i/)i [3 ]
+ Yt L= Hipipi Py [6 % %]
Then we use (6) to write:
Ei]il Az—"— = (24)

Y i + A ]ps
which completes the proof. Q.E.D.

6 Existence and Uniqueness of the Solution to the Traffic Equa-
tions

Unlike BCMP or Jackson networks [1], the traffic equations (5), (6) and (7) of the model we
consider are non-linear. Therefore issues of existence and uniqueness of their solutions have
to be examined and the product form theorem depends on the existence of a solution to these
traffic equations. If existence is established, then uniqueness follows easily for a simple reason.
We are dealing with the stationary solution of a system of Chapman-Kolmogorov equations,
which is known to be unique if it exists [4].

Define the following vectors:

A+ with elements (A,
Xt with elements A7
A~ with elements [A7],
X_

with elements [, ].

We denote by P*, P~ Q, the matrices with elements P*[i, 5], P [i,j] and Q[i, 5], respec-
tively. Let us also introduce the matrices U with elements U = P7[i,jloy;, and V with
elements V' = P~[i,]0; ;.

Also define the following N — vectors:

u = (Alaogi, - ,AyQo,nN),
= (A;ﬂo,l, aA]:TﬂO,N)a

and note that matrices P~, PT, Q, U, V, and vectors u, v, X"’, X~ are known quantities which
are given when the G-network is specified.



Using (7), equation (6) can be written as:

+_ M
A, =) oy leA Y Py, (25)
while (8) becomes:
A >\++ZA+# +J — J,+2A+ QJZ+>\ ﬂoZ+ZA+ +JA_ P;;Bi - (26)
j=1 J = Ky

Let F be an N x N matrix with all elements equal to zero, except the ones on the diagonal:

Hj
F;; = —, (27)
I i+ A

Fj = 0,i # j.

We can now write equations (25) and (26) in matrix notation:

A= = u+4AHFU, (28)
AT = Xt 4+u4+ATFPY + AT(I-F)Q+AFFV, or
A* = Xt o4+ KATF(PY+V)+AT(I - F)Q, (29)

where equation (29) results in the formal solution:
A =T +0)I— (F(Pt+V)+ (I-F)Q .. (30)
We are now ready to state the following existence theorem.

Theorem 2 If P= P™ + P~ and Q are transition probability matrices of transient Markov
chains, then the traffic equations (5) and (6) always have a solution.

PROOF: For the proof, we turn to equation (30) and consider the series:

neo [(F(PT+V)+(I-F)QI"

Note that V' < P~. This series is always convergent because it is the convex sum of two
transient sub-stochastic matrices Q and PT + V.

But: [ I-[F(PT+V)+(I-F)Q]] ! = Y2, [F(PT+V)+ (- F)Q]", so that:

At = (Xt +0) i [F(PT+V)+ - F)Q]" (31)
n=0
Using (28) this yields:
A= —u= (T +v) i [F(PT+V)+(I—F)Q|"FU. (32)
n=0

-

Define the vector y = A~ — u. We can now write (32) as the fixed-point equation y = G(y)
where:

Gly) = (At +v) f: [F(PT+V)+(I- F)Q|"FU, (33)
n=0

10



with the dependence on y in the right-hand-side comes from the fact that the matrix F' contains
the term A; in each row j.

Notice that G is continuous. Notice further that the mapping G : [0,G(0)] — [0,G(0)],
where the bold-face 0 reminds us that it denotes a vector. As a consequence by Brouwer’s
Fized-Point Theorem y = G(y) has a fixed point; call it y*. This fixed-point will in turn yield
the solution of (6), (5) using (32) and (30) and the fact that F' depends on y:

—

K- =y +u, A= +o)I-[Fly")(PT+V)+(I-F(y))Q ] (34)

which completes the existence proof for the traffic equations. Q.E.D.

The above Theorem states that the traffic equations always have a solution. On the other
hand, the product form (11) will only exist if the resulting network is stable. The stability
condition is summarized below and the proof is identical to that of a similar result in [4].

Theorem 3 Let z* be a solution of z = G(z) obtained by setting F as in (27). Let A~ (z*), A+(z*)
be the corresponding traffic values, and let the p;(z*), i = 1, ... , N be obtained from (7). Then
the G-network with resets has a steady-state solution if all of the p;(z*) satisfy 0 < pi(z*) <1
foralli =1, ... ,N. Otherwise it does not have a steady-state solution.

7 Conclusions

In this paper we have extended the class of queueing networks with product form solutions by
introducing the concept of “reset” customers which can be used to rest the state of a queues
in a network to their steady-state distribution whenever these queues may have become empty.
We show that the product form solution is preserved when such customers are introduced in
the framework of G-networks. Thus the class of product form networks now includes queueing
networks with negative customers and triggers, as well as resets.

We have provided a proof of the product form result. Then we have illustrated this class of
models by considering a set of interconnected unreliable systems which can rest each other in
order to enhance their overall reliability.

Finally we have proved existence of the solution to the non-linear traffic equations which
result from this model. The uniqueness of the solutions are tied to the fact that the stationary
solutions of these models, if they exist, will necessarily be unique since they are solutions to
Chpman-Kolmogorov equations. Future work will consider extensions of these results to models
with multiple classes of customers.
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