
Cognitive Packet Networks: QoS and Performance
Erol Gelenbe, Ricardo Lent, Alfonso Montuori , and Zhiguang Xu

School of Electrical Engineering and Computer Science
University of Central Florida

Orlando, FL 32816�
erol,rlent,alfonso,zgxu � @cs.ucf.edu

Abstract— Reliability, security, scalability and QoS
(Quality-of-Service) have become key issues as we envi-
sion the future Internet. This paper presents the “Cogni-
tive Packet Network (CPN)” architecture in which intelligent
peer-to-peer routing is carried out with the help of “smart
packets” based on best-effort QoS goals. Since packetized
voice has stringent QoS requirements, we then discuss the
choice of a “goal” and “reward” function for this applica-
tion and present experiments we have conducted for “voice
over CPN”. Its performance is detailed via several measure-
ments, and the resulting QoS is compared with that of the
IP routing protocol under identical conditions showing the
gain resulting from the use of CPN.

Keywords: Quality of Service, Reinforcement Learn-
ing, Cognitive Packet Networks, Voice over IP.

I. INTRODUCTION

In recent papers [7], [9], [11], [12] we have proposed
a new network architecture called “Cognitive Packet Net-
works (CPN)”. CPN makes use of adaptive techniques to
seek out routes based on user defined QoS criteria. For in-
stance, packet loss and delay can be used as routing criteria
to improve overall reliability for the users of the network,
or delay and its variance can be used to find routes which
provide the QoS requested by voice packets.

A CPN carries three types of packets: smart packets,
dumb packets and acknowledgments (ACK). Smart or cog-
nitive packets route themselves, they learn to avoid link
and node failures and congestion and to avoid being lost.
They learn from their own observations about the network
and from the experience of other packets. They rely min-
imally on routers. Smart packets use reinforcement learn-
ing to discover routes, and the reinforcement learning “re-
ward” function incorporates the QoS requested by a partic-
ular user. This reward is the inverse of a QoS “goal” which
each user can provide before initiating a connection. When
a smart packet arrives to a destination, an acknowledgment
(ACK) packet is generated by the destination and the ACK
heads back to the source of the smart packet along the in-

The research was supported by U.S. Army Simulation and Training
Command, by Giganet Technologies Inc. and Schwartz Electro-Optics
Inc.

verse route. As it traverses successive routers, it updates
mailboxes in the CPN routers; when it reaches the source
node it provides source routing information for the dumb
packets. Dumb packets of a specific QoS class use suc-
cessful routes which have been selected in this manner by
the smart packets of the same class.

In this paper we first recall the principles underlying the
CPN design, and present the CPN test-bed we have imple-
mented.

Voice over the Internet is a very important application
that has stringent QoS requirements; thus it is a very good
example for illustrating the capabilities of CPN. We there-
fore present the manner in which CPN’s QoS based rout-
ing algorithm can be tailored to voice packets. We discuss
the “goal” and “reward” function that needs to be used in
this case, and then present experimental results we have
obtained in CPN for voice communications. Delay, jitter
and packet desequencing measurements are reported, and
our results are compared with measurements on the same
network infrastructure running conventional IP. The QoS
improvement offered by CPN over IP is very significant,
particularly when the network is heavily loaded.

II. SMART PACKETS

Learning algorithms and adaptation have been sug-
gested for telecommunication systems in the past [3].
However these ideas have seldom been exploited in net-
works because of the lack of a practical framework for
adaptive control in packet networks.

A node in the CPN acts as a storage area for packets
and mailboxes (MBs). It also stores the code used to route
smart packets. It has an input buffer for packets arriving
from the input links, a set of mailboxes, and a set of output
buffers which are associated with output links.

Smart packet routing is carried out using a reinforce-
ment learning (RL) algorithm [4] based on Random Neu-
ral Networks (RNN) [5], [8], [10]. The algorithm code is
stored in each router and its parameters are updated by the
router. For each successive smart packet, the router com-
putes the appropriate outgoing link based on the outcome
of this computation.

A recurrent RNN. with as many “neurons” as there are
possible outgoing links, is used in the computation. The
weights of the RNN are updated so that decision outcomes
are reinforced or weakened depending on how they have
contributed to the success of the QoS goal. Earlier simula-
tions of CPN [11], and our current test-bed implementation
and experiments, have been used to validate this approach.

The RNN [5] is an analytically tractable spiked ran-
dom neural network model whose mathematical structure
is akin to that of queuing networks. It has “product form”
just like many useful queuing network models. The state��� of the �����	� neuron in the network represents the prob-
ability that the �
���	� neuron is excited. Each neuron � is
associated with a distinct outgoing link at a node. The � � ,
with ������� satisfy the following system of non-linear
equations: � ��������� ���	��� � ���"! ��#$� �%�'&)((1)

where

� � � ��� ��*,+ � +.- �+ � !0/ � (� # � ��� ��*,+ � +.- #+ � ! �1� ((2)

where
- �+ � is the rate at which neuron 2 sends “excitation

spikes” to neuron � when 2 is excited,
- #+ � is the rate at

which neuron 2 sends “inhibition spikes” to neuron � when2 is excited, and � ��� is the total firing rate from the neuron� . For an � neuron network, the network parameters are
these � by � “weight matrices” 3 � �54 - � � �6('27�98 and3 # �:4 - # � �9('27�98 which need to be “learned” from input
data. Various techniques for learning may be applied to the
RNN. These include Hebbian learning, backpropagation
learning [5], and Reinforcement Learning (RL) [8] which
we have used in CPN.

RL is used in CPN as follows. Each node stores a spe-
cific RNN for each active source-destination pair, and each
QoS class. The number of nodes of the RNN are specific
to the router, since (as indicated earlier) each RNN node
will represent the decision to choose a given output link
for a smart packet. Decisions are taken by selecting the
output link 2 for which the corresponding neuron is the
most excited, i.e. �;� � + for all � � �<(>=?=�(� .

Each QoS class for each source-destination pair has a
QoS Goal @ , which expresses a function to be minimized,
e.g., Transit Delay or Probability of Loss, or Jitter, or a
weighted combination, and so on. The reward A which is
used in the RL algorithm is simply the inverse of the goal:A � @ #�B . Successive measured values of A are denoted
by ADC , E � �<(9FG(H=?= ; These are first used to compute the
current value of the decision threshold:

I C ��J I C #�B ! � �K� J ��ALC'((3)

where J is some constant MON J NP� , typically close to� . Suppose we have now taken the E����	� decision which
corresponds to neuron 2 , and that we have measured theEQ�R�	� reward ADC . We first determine whether the most re-
cent value of the reward is larger than the previous value of
the threshold

I C #�B . If that is the case, then we increase very
significantly the excitatory weights going into the neuron
that was the previous winner (in order to reward it for its
new success), and make a small increase of the inhibitory
weights leading to other neurons. If the new reward is
not greater than the previous threshold), then we simply
increase moderately all excitatory weights leading to all
neurons, except for the previous winner, and increase sig-
nificantly the inhibitory weights leading to the previous
winning neuron (in order to punish it for not being very
successful this time).

Let us denote by � the firing rates of the neurons before
the update takes place:

 �S� T*
B �
- � � �6(UV�"! - # � �6(UV�'&)((4)

We first compute
I C #�B and then update the network

weights as follows for all neurons �XW� 2 :Y If
I C #�B ADC

–
- � � �6('2G�[Z - � � �6('27�"!0ADC ,

–
- # � �6(9\1�>Z - # � �6(9\1�S!]_^T #�` (a�cbd\eW

� 2 .Y Else
–
- � � �6(9\1�>Z - � � �6(9\1�S!] ^T #�` (9\�W

� 2 ,
–
- # � �6('2G�[Z - # � �6('27�"!0ADC .

Since the relative size of the weights of the RNN, rather
than the actual values, determine the state of the neural
network, we then re-normalize all the weights by carrying
out the following operations. First for each � we compute:

 gf� � T*
B �
- � � �6(UV�S! - # � �6(UV�'&)((5)

and then re-normalize the weights with:- � � �9('27�[Z - � � �6('2G�ahji�ki9lk ,- # � �6('2G�>Z - # � �6('27�mh icki9lk .

Finally, the probabilities � � are computed using the non-
linear iterations (1), (2). The largest of the � � ’s is again
chosen to select the new output link used to send the smart
packet forward. This procedure is repeated for each smart
packet for each QoS class and each source-destination pair.

III. THE CPN TEST-BED

In this section we describe the CPN protocol design and
the test-bed implementation. The software we have devel-
oped has been integrated into the Linux kernel 2.2.x. with

minimal changes in the existing networking code, and it
is independent of the physical transport layer. The Linux
kernel support for low cost PCs and a growing number of
platforms, and the freely availability of its source code,
makes Linux an attractive system for the development of a
project of this nature. The network interface is compatible
with the popular BSD4.3 socket layer in Linux. It pro-
vides a single application program interface (API) for the
programmer to access the CPN protocol.

CPN provides a connectionless service to the applica-
tion layer, and consists of a set of hosts interconnected by
links of some kind, where each host can operate both as
an end node of communication and/or as a router. The
addressing scheme utilizes a single number of 32 bits to
represent the CPN address of each node. All the nodes
have been configured to use CPN and IP packets at the
same time for comparison purposes. CPs are of variable
size and consist basically of three areas: a header, a Cog-
nitive map (CM) and a data portion. Each port of a CPN
node uses a 10 Mbps Ethernet link connected with another
CPN node. The physical connection between routers uses
a crossover twisted pair copper cable. We have tried out
various topologies where each CPN router can be con-
nected up to four other routers: Figure 1 depicts a topology
used in our initial implementation. The current test-bed is
shown in Figure 2.

Fig. 1. Initial test-bed

Fig. 2. The current test-bed topology

IV. VOICE PACKETS OVER CPN

Packet based voice transport in the Internet is a criti-
cal application which could dramatically increase the traf-
fic carried over IP networks [2]. However, providing de-

TMS320C6711
DSK

TMS320C6711
DSK

CPN
IP/CPN
Tunnel

IP/CPN
Tunnel

Computer Computer

Packeted
Voice

Delivered
Over UDP/IP

Packeted
Voice

Delivered
Over UDP/IP

Unpacketed
Frames of

Coded
Voice

Unpacketed
Frames of

Coded Voice

Compressed
Voice With

Wavelet
Transform

Compressed
Voice With

Wavelet
Transform

Analog Input:
Voice

Analog Input:
Voice

Analog Output:
Reconstructed Voice

Analog Output:
Reconstructed Voice

Fig. 3. Test-Bed Setup for Voice Transmission

sired QoS for voice over IP is a major challenge. The
QoS driven nature of CPN offers an opportunity to ex-
amine the manner in which network routing can actu-
ally serve the needs of voice transport over a packet net-
work, and in this paper we show how CPN routing can
be specifically adapted to address the needs of Real-Time
voice stream delivery, by incorporating the requirements
of RTCP (Real-Time Control Protocol) in the reward func-
tion used by the CPN “reinforcement learning” routing al-
gorithm.

Real-Time voice transport introduces tight constraints
on QoS with respect to delay, jitter, loss and/or error, due
to the limited tolerance of the human listener to both the
average delay and the fluctuation of delay [2]. The QoS
requirements can be divided into two categories: the end-
to-end average network delivery time must be small; the
end-to-end variation of the delivery time, as well as losses,
must be small. If there is no buffering at the receiver, the
overall delay is the sum of three components: the algorith-
mic delay of the codec, the processing delay of the codec
and the network delay. The overall delay should not ex-
ceed 200-250 ms, but a delay of 200 ms to 800 ms is condi-
tionally acceptable for a short portion of the conversation,
when such delays are rare and far apart. Due to fluctuations
of the network delay, buffering is needed at the receiver. If
the buffer delay is much greater than mean network delay,
the overall delay is dominated buffering period at the re-
ceiver and the algorithmic delay and processing delay of
the codec.

Unlike the delay, silence periods due to delay fluctua-
tions can compromise seriously the intelligibility of the

speech and they must be carefully controlled. The gap
structure perceived by the listener will be not only be a
function of network load fluctuations but also of the net-
work policy or protocol at the receiver for dealing with
these gaps. The RTCP defines a procedure to measure the
network delay fluctuation, i.e. the “interarrival jitter”. It is
the mean deviation (smoothed absolute value) of the dif-
ference � in packet spacing at the receiver compared to
the sender for a pair of packets. That is: If � � is the RTCP
sender timestamp for packet � , and A � is the timestamp of
the same packet’s arrival at destination (measured in RTCP
timestamp units), then for two packets � and 2 , � is:

� � �6('2G� � � A + �RA � �a� � � + ��� � �
The interrarrival jitter is calculated continuously as each
data packet is received using � measured for successive
packet in order of arrival:

� �S� � � #�B ! ��� � � �"� �<(��� � � � � #�B �	�G���
Another important measurement for Real-Time applica-
tions is the probability of packet desequencing detected
at the receiver, since the receiving application should re-
ceive packets in the same order as they were sent. The
procedure we use to measure the number of desequenced
packets � is: 1. Set � � M at the receiver; 2. At the sender,
start sending packets with sequence numbers �<(9FG(
	G=?=?= ; 3.
At the receiver, call � B the sequence number of the first
arrived packet, � ` the sequence number of the second ar-
rived packet, etc. At the arrival of the j-th packet, incre-
ment �5Z � if �

+ N U J���4 � B (� ` (�=?=?=��
+
#�B 8 , else leave

� unchanged; 4. Each time packet loss is detected incre-
ment � by the number of lost packets. Note that in speech
transmission, packet losses as high as 50 percent can be
tolerated with marginal degradation if such losses occur
for very short time intervals (¡20 ms).

In order to fulfill the requirements of RTCP, we need
to incorporate the variance of packet delay in the Reward
function which is used in our Reinforcement Learning
routing algorithm. In CPN, each smart or dumb packet
measures the date at which it enters a node, and provides
this date information to the ACK packet which heads back
from the destination to the source of the corresponding
smart or dumb packet. In the sequel we will drop index-
ing of symbols used with respect to some specific desti-
nation; it is assumed that the quantities we discuss are all
indexeed separately for each separate destination. Further-
more, these quantities are specific to RTCP QoS class, so
that traffic from other QoS classes in the same Cognitive
Packet Network may not need them if they do not belong
to the RTCP QoS class.

When an ACK (say ����� �) in CPN reaches some node
on its way back to the source, it estimates the forward de-
lay ��� E J�� � from this node to the destination by simply tak-
ing the difference between the current time at the node and
the time at which the corresponding SP or DP visited the
same node, and dividing it by two. This rough estimate
is used by CPN to avoid the need for clock synchroniza-
tion between nodes. The node maintains a smoothed expo-
nential average of these estimated forward delays for each
active destination, and we denote it here by ���;E J�� � . To
approximate � � �6('27� defined in RTCP we have used:

� � Z����;E J�� � � ��� E J�� (
and jitter is approximated by

� � Z � � ! ��� � �
� � � � �	�G���G(
and deposited in the node’s (router) mailbox, to be used by
subsequent smart packets going to the same destination.
Now when a smart packet for the RTCP QoS class enters
a node, it uses information from the mailbox to computes
the reward A for the most recent routing decision:

A � Z �
���;E J�� � ! � �

and executes the CPN Reinforcement Learning routing al-
gorithm to select an outgoing link from the node.

A. Experimental Results

In Figure 3 we show the system configuration which has
been used while Figure 4 shows the CPN test-bed which
was used as part of the experiment. The test-bed shown in
Figure 4 can also be used as an IP network, by simply re-
placing the CPN protocol software in each of the routers,
by the IP protocol stack. Voice traffic originates at ma-
chine IP1 as IP packet traffic and its destination is machine
IP2. Voice IP traffic from IP1 enters the CPN test-bed at
machine CPN10, and leaves the CPN test-bed at machine
CPN5 to go to the destination IP2.

Speech is sampled at 8 kHz. The frame length of each
packet is 32 ms. The mean value of the bitrate is 12 kbit/s.
Voice is digitized by TI’s TLC320AD535 16bit data con-
verter on a TMS320C6711 board. The digitized voice is
compressed by means of a wavelet packet transform run-
ning on the FP C6711 Digital Signal Processor (DSP).
The code is written in C and compiled by the Code Com-
piler Studio optimization software included in the board’s
toolkit. The compressed voice is sent to the host com-
puter IP1 through the host port interface in real time. The
host computer packetizes the compressed voice with the
UDP/IP protocol and sends it to the CPN test-bed, where

a program called “Tunnelling” running on every CPN in-
terface/edge router does the IP/CPN conversion. At IP2 a
jitter buffer of about 200ms is used to avoid data overflow
and/or underflow. This buffer permits the reordering of
desequenced packets. A server application at IP2 then un-
packs speech packets and sends the compressed speech to
a DSP board, where it is reconstructed by means of the de-
coding algorithm and on-board Digital Analog Conversion
(DAC). Our experiments compare the QoS for voice traffic
over the CPN test-bed, with the same voice traffic carried
over an IP network route on exactly the same test-bed.

In the first experiment we send voice from host machine
IP1 to machine IP2, connected to the two edge routers
CPN10, CPN5, of the CPN network; “silence” is sent from
IP2 to IP1 to simulate a two-way conversation.From IP1 to
IP2 the voice appears to be transitting through an IP/UDP
network, while in fact it either goes through IP or it goes
through CPN. Two alternatives (IP and CPN) are com-
pared under identical traffic conditions are created in the
network:Y UDP/IP voice packets travel from IP1 to IP2 with IP
routing along the path 4 IP1, CPN10, CPN1, CPN3, CPN5,
IP2 8 .Y UDP voice packets travel from IP1 to CPN10, then are
forwarded by CPN QoS driven routing to CPN5, and then
become IP packets from CPN5 to IP2IP2.
and In both cases we introduce additional bi-directional
data traffic of varying intensity to observe the impact on
the voice traffic. In Figure 5 (dashed lines) we show how
the obstructing data traffic introduced in various network
links at different traffic rates. The obstructing traffic bit-
rates are set at values greater then 10Mbit/s so as to obtain
heavy load conditions. In Figure 6 the logarithmic value of
the percentage of lost packets is plotted. For IP routing (the
upper curve) we observe that the percentage of lost packets
grows exponentially as the number of saturated links in-
creases. For QoS driven CPN adaptive routing (the lower
two curves), we observe that the percentage of lost packets
remains small and quasi-constant. These logrithmic curves
provide a clear view of the significant differences in packet
loss between CPN and IP.

In another experiment, we saturate other links using data
traffic (cf. Figure 7), so that only one path remains unsatu-
rated. The percentage of lost packets (cd. Table I) remains
close to zero, while values of jitter and delay are slightly
greater than those from the previous experiment (see Fig-
ures 4 and 5), because CPN now has to select a route with
at least 4 hops. The percentage of desequenced packets is
under 5%, allowing for fast reordering of voice packets at
the receiver.

CPN can in principle allow both SPs and DPs to carry

Fig. 4. CPN Test-Bed topology and IP (dashed line) route

Fig. 5. The links marked by dashed lines are progressively sat-
urated

Fig. 6. Logarithmic value of the percentage of lost packets plot-
ted as a function of link load

Fig. 7. More links become saturated

Delay Jitter Desequencing

Fig. 3 9ms 25ms 3.3%
Fig. 5 (a) 14ms 34ms 3.8%
Fig. 5 (b) 14ms 36ms 4.0%
Fig. 5 (c) 13ms 32ms 4.3%
Fig. 5 (d) 16ms 36ms 4.1%

TABLE I
CPN QOS IS ROBUST TO INCREASES IN OBSTRUCTING

TRAFFIC

payload, but our standard CPN implementation only places
payload in DPs. Thus SPs “take risks” to search for routes
providing better QoS, and DPs take advantage of the re-
sults of SPs’ efforts. The next experiment shows the ad-
vantage of this latter approach by showing the performance
difference between the case where both SPs and DPs carry
payload, and the case where only DPs carry payload. In
the following figures the � -axis represents the inter-packet
arrival time of the flow of packets from node CPN10 to
node CPN5 (refer to Figure 4). There is also a flow of
obstructing traffic from CPN10 to CPN5 as illustrated in
Figure 5. In the lower curves of Figures 8 and 9, we see
that that if only DPs carry payload, both average delay,
its standard deviation (jitter), and the packet desequencing
probability remain (relatively) constant when input traffic
rate varies widely. In contrast, when both SPs and DPs are
allowed to carry payload (curves above), both delay, jitter
and the packet desequencing probability increase dramati-
cally with increasing input rate.

V. CONCLUSIONS

CPN is a new packet network paradigm which addresses
some of the needs of peer-to-peer networking. CPN trans-
fers the control of QoS based best-effort routing to the
connections, which use smart packets for route discov-
ery. Routing tables are replaced by reinforcement algo-
rithm based routing functions. A CPN carries three distinct

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
60

80

100

120

140

160

180

200

Period of transmission (ms)

A
ve

ra
ge

 p
ac

ke
t d

el
ay

 (
m

s)

Average Packet Delay vs. Period of transmission (with traf
fic)

Both SPs and DPs carry payload
Only DPs carry payload

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
60

80

100

120

140

160

180

Period of transmission (ms)

S
ta

nd
ar

d
de

vi
at

io
n

of
 p

ac
ke

t d
el

ay
s

Standard deviation of packet delays vs. Period of transmis
sion (with traffic)

Both SPs and DPs carry payload
Only DPs carry payload

Fig. 8. Delay (left) and Jitter (right) measurements for Voice
over CPN. Only DPs carry payload (curves below), and both
DPs and SPs carry payload (curves above)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

Period of transmission (ms)

P
ro

ba
bi

lit
y

of
 p

ac
ke

t d
es

eq
ue

nc
in

g

Packet desequencing at the receiver side vs. Period of tran
smission (with traffic)

Both SPs and DPs carry payload
Only DPs carry payload

Fig. 9. Probability that a packet arrives out of sequence at the
receiver: Only DPs carry payload (curve below), and both
DPs and SPs carry payload (curve above)

types of packets: smart or cognitive packets which search
for routes based on a QoS driven reinforcement learning
algorithm, ACK packets which bring back route informa-
tion and measurement data from successful smart packets,
and Dumb packets which do source routing.

In this paper we have summarized the basic principles
of CPN. We have presented the Reinforcement Learning
(RL) algorithm which taylors smart packet routing to the
QoS needs of each peer-to-peer connection. We have then
described the design and implementation of our current
test-bed network which uses ordinary PC-based worksta-
tions as routers. CPN software has been implemented in
a Linux environment and is portable to a wide range of
platforms. We have shown how the QoS driven routing al-
gorithm used in our novel Cognitive Packet Network can
be specifically designed to address the needs of store-and-
forward routed packetized voice and also to optimize end-
to-end delay for web traffic.

Our ongoing work includes the deployment of a large
test-bed, and the inclusion of wireless links and an ad-hoc
mobile extension to CPN [12], and the design of single-
card routers leading to low cost router design.

REFERENCES

[1] R. Viswanathan and K.S. Narendra “Comparison of expedient
and optimal reinforcement schemes for learning systems”, J. Cy-
bernetics, Vol. 2, pp 21-37, 1972.

[2] D. Minoli, E. Minoli, “Delivering Voice over IP Network”, John
Wiley & Sons, New York, 1998.

[3] K.S. Narendra and P. Mars, “The use of learning algorithms in
telephone traffic routing - a methodology”, Automatica, Vol. 19,
pp. 495-502, 1983.

[4] R.S. Sutton “Learning to predict the methods of temporal differ-
ence”, Machine Learning, Vol. 3, pp. 9-44, 1988.

[5] E. Gelenbe (1993) “Learning in the recurrent random neural net-
work”, Neural Computation, Vol. 5, No. 1, pp. 154-164, 1993.

[6] E. Gelenbe, Zhi-Hong Mao, Y. Da-Li (1999) “Function approx-
imation with spiked random networks” IEEE Trans. on Neural
Networks, Vol. 10, No. 1, pp. 3–9, 1999.

[7] E. Gelenbe, E. Seref, Z. Xu “Towards networks with intelligent
packets”, Proc. IEEE-ICTAI Conference on Tools for Artificial In-
telligence, Chicago, November 9-11, 1999.

[8] U. Halici, “Reinforcement learning with internal expectation for
the random neural network” Eur. J. of Opns. Res., Vol. 126, no.
2, pp. 288-307, 2000.

[9] E. Gelenbe, R. Lent, Z. Xu “Towards networks with cognitive
packets,” Proc. IEEE MASCOTS Conference, ISBN 0-7695-0728-
X, pp. 3-12, San Francisco, CA, Aug. 29-Sep. 1, 2000.

[10] E. Gelenbe, E. Şeref, Z. Xu, “Simulation with learning agents”,
Proceedings of the IEEE, Vol. 89 (2), pp. 148–157, Feb. 2001.

[11] E. Gelenbe, R. Lent, Z. Xu Measurement and performance of
Cognitive Packet Networks, J. Comp. Networks, Vol. 37, 691–
701, 2001.

[12] E. Gelenbe and R. Lent “Mobile Ad-Hoc Cognitive Packet Net-
works”, Proc. IEEE ASWN, Paris, July 2-4, 2002.

Brief Biographies of the Authors:

Erol Gelenbe is the University Chair Professor of Elec-
trical Engineering and Computer Science, and Director of
the School of EECS at the University of Central Florida.
He is a Fellow of the IEEE and of ACM. Author of over
100 papers in the leading journals of Computer Science,
Electrical Enngineering, and Applied Probability, his cur-
rent work covers programmable network design, advanced
simulation methods as well as queueing theory. His re-
search is funded by NSF, the U.S. Army and by several
companies. Erol is the co-author or author of four books
published by Academic Press, J. Wiley and Elsevier, and
some of these books have also been published in French,
Japanese and Korean. He has been awarded several sci-
entific prizes and international distinctions including the
Parlar Award of Turkey (1994), the “Grand Prix France
Telecom” of the French Academy of Science, the Hon-
orary Doctorate of the University of Rome “Tor Vergata”
(1996), and the “Chevalier” and “Officier” Medals of the
National Order of Merit of France (1992, 2001).

Ricardo Lent, was born in Chiclayo, Peru. He received
the B.S. degree and the ”Ingeniero Electronico” title from

Universidad Ricardo Palma, Lima, Peru, in 1992, and the
M.S. degree in Electrical Engineering from the Universi-
dad Nacional de Ingenieria, Lima, Peru in 1997. From
1992 to 1999 he made major contributions toward the es-
tablishment of the first Internet network in Peru. He has
also been a Lecturer at the Universidad Nacional de Inge-
nieria and at the Universidad Nacional Pedro Ruiz Gallo
in Peru. He has co-authored several papers in IEEE and
other international conferences and is also co-author of a
paper in the journal Performance Evaluation. He is cur-
rently pursuing a doctoral degree in Computer Science at
the University of Central Florida, Orlando, FL.

Alfonso Montuori received both his Dott. Ing. and
Ph.D. degrees from the Politecnico di Torino, Turin, Italy
where he is currently a researcher as well as a lecturer in
the Department of Electronics Engineering. His interests
include packetized audio transmission, specialized micro-
processor design, and computer networks. During 2001 he
was a post-doctoral researcher at the University of Central
Florida.

Zhiguang Xu received the undergraduate degree in
Computer Engineering from Beijing University of Posts
and Telecommunications, China and the M.S. degree in
Computer Science from University of Central Florida. He
received the Ph.D. degree in Computer Science at the Uni-
versity of Central Florida in the Fall of 2001. He was with
Nortel Networks for four years before coming to UCF. His
research covers neural-network applications in modelling
and simulation and in the design of novel packet switch-
ing architectures. He has co-authored several papers which
have appeared in the journals Proceedings of the IEEE and
Performance Evaluation, and at conferences such as IEEE
Conference on Tools for Artificial Intelligence in 1999, In-
ternational Symposium on Computer and Information Sci-
ences in 1999, and IEEE MASCOTS Workshop 2000. He is
currently on the faculty of the Computer Science Depart-
ment, Valdosta State University, Valdosta, Georgia.

