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Most useful LTI systems 
an be des
ribed by

a di�eren
e equation:

y[n] =
∑M

r=0 b[r]x[n− r]−
∑N

r=1 a[r]y[n− r]

⇔
∑N

r=0 a[r]y[n− r] =
∑M

r=0 b[r]x[n− r] with a[0] = 1

⇔ a[n] ∗ y[n] = b[n] ∗ x[n]

⇔ Y (z) = B(z)
A(z)X(z)

⇔ Y (ejω) = B(ejω)
A(ejω)X(ejω)

(1) Always 
ausal.

(2) Order of system is max(M,N), the highest r with a[r] 6= 0 or b[r] 6= 0.

(3) We assume that a[0] = 1; if not, divide A(z) and B(z) by a[0].

(4) Filter is BIBO stable i� roots of A(z) all lie within the unit 
ir
le.

Note negative sign in �rst equation.

Authors in some SP �elds reverse the sign of the a[n]: BAD IDEA.
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A(z) = 1: Finite Impulse Response (FIR) �lter: Y (z) = B(z)X(z).

Impulse response is b[n] and is of length M + 1.

Frequen
y response is B(ejω) and is the DTFT of b[n].

Comprises M 
omplex sinusoids + 
onst:

b[0] + b[1]e−jω + · · ·+ b[M ]e−jMω

Small M⇒response 
ontains only low �quefren
ies�

Symmetri
al b[n]⇒H(ejω)e
jMω

2


onsists of

M
2 
osine waves [+ 
onst℄

M=4 M=14 M=24
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Rule of thumb: Fastest possible transition ∆ω ≥ 2π
M

(marked line)
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B(ejω) is determined by the zeros of zMB(z) =
∑M

r=0 b[M − r]zr

Real b[n] ⇒ 
onjugate zero pairs: z ⇒ z∗

Symmetri
: b[n] = b[M − n] ⇒ re
ipro
al zero pairs: z ⇒ z−1

Real + Symmetri
 b[n] ⇒ 
onjugate+re
ipro
al groups of four

or else pairs on the real axis

Real: Symmetri
: Real + Symmetri
:

[1, −1.28, 0.64] [1, −1.64 + 0.27j, 1] [1,−3.28, 4.7625, −3.28, 1]
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In all of the proofs below, we assume that z = z0 is a root of B(z) so that B(z0) =
∑M

r=0 b[r]z
−r
0 = 0

and then we prove that this implies that other values of z also satisfy B(z) = 0.

(1) Real b[n]

B(z∗0) =
∑M

r=0 b[r]
(

z∗0
)−r

=
∑M

r=0 b
∗[r]

(

z∗0
)−r

sin
e b[r] is real

=
(

∑M
r=0 b[r]z

−r
0

)∗

take 
omplex 
onjugate

= 0∗ = 0 sin
e B(z0) = 0

(2) Symmetri
: b[n] = b[M − n]

B(z−1
0 ) =

∑M
r=0 b[r]z

r
0

=
∑M

n=0 b[M − n]zM−n
0 substitute r = M − n

= zM0
∑M

n=0 b[M − n]z−n
0 take out zM0 fa
tor

= zM0
∑M

n=0 b[n]z
−n
0 sin
e b[M − n] = b[n]

= zM0 × 0 = 0 sin
e B(z0) = 0
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Fa
torize H(z) = B(z)
A(z)=

b[0]
∏

M
i=1(1−qiz

−1)
∏

N
i=1(1−piz−1)

Roots of A(z) and B(z) are the �poles� {pi} and �zeros� {qi} of H(z)

Also an additional N −M zeros at the origin (a�e
t phase only)

∣

∣H(ejω)
∣

∣ =
|b[0]||z−M |∏M

i=1|z−qi|

|z−N |
∏

N
i=1|z−pi|

for z = ejω

Example:

H(z) = 2+2.4z−1

1−0.96z−1+0.64z−2=
2(1+1.2z−1)

(1−(0.48−0.64j)z−1)(1−(0.48+0.64j)z−1)

At ω = 1.3:

∣

∣H(ejω)
∣

∣ = 2×1.76
1.62×0.39= 5.6

∠H(ejω) = (0.6 + 1.3)− (1.7 + 2.2) = −1.97
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0
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Given a �lter H(z) we 
an form a new one HR(z) = H(−z)

Negate all odd powers of z, i.e. negate alternate a[n] and b[n]

Example: H(z) = 2+2.4z−1

1−0.96z−1+0.64z−2
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ω

Negate z: HR(z) =
2−2.4z−1

1+0.96z−1+0.64z−2 Negate odd 
oe�
ients
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Pole and zero positions are negated, response is �ipped and 
onjugated.
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Suppose that HR(z) = H(−z). Then HR(z) has the following two properties:

Pole and zero positions are negated

If z0 is a zero of H(z), then HR(−z0) = H(z0) = 0 so −z0 is a zero of HR(z). A similar argumnet

applies to poles.

The frequen
y response is �ipped and 
onjugated

The frequen
y response is given by HR(ejω) = H(−ejω) = H(e−jπ × ejω) = H(ej(ω−π)). This


orresponds to shifting the frequen
y reponse by π rad/samp (or, equivalently by −π rad/samp).

If it is true that all the 
oe�
ients in a[n] and b[n] are real-valued (normally the 
ase), then the

response of H(z) has 
onjugate symmetry, i.e. H(e−jω) = H∗(ejω). In this 
ase we 
an write

HR(ejω) = H(ej(ω−π)) = H∗(ej(π−ω)). This 
orresponds to a frequen
y response that has been

re�e
ted around ω = π
2

(a.k.a. ��ipped�) and then 
onjugated.

So, the transformation of the frequen
y 
an be viewed in one of two ways: (a) it has been shifted by

±π rad/samp or (b) it has been �ipped around ω = π
2

and then 
onjugated. The �rst interpretation

is always true (even for �lters with 
omplex-valued 
oe�
ients) while the se
ond interpretation is more

intuitive but is only true if the �lter 
oe�
ients are real-valued.
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Given a �lter H(z) we 
an form a new one HC(z) = H(z3)

Insert two zeros between ea
h a[n] and b[n] term

Example: H(z) = 2+2.4z−1

1−0.96z−1+0.64z−2
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Cube z: HC(z) =
2+2.4z−3

1−0.96z−3+0.64z−6 Insert 2 zeros between 
oefs
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C

Pole and zero positions are repli
ated, magnitude response repli
ated.
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Suppose that HC(z) = H(z3). Then HC(z) has the following two properties:

Pole and zero positions are repli
ated three times

If z0 is a zero of H(z), then HC( 3
√
z0) = H(z0) = 0 so any 
ube root of z0 is a zero of HC(z). A

similar argument applies to poles. Any z0 has three 
ube roots in the 
omplex plane whose magnitudes

all have the same value of

3
√

|z0| and whose arguments are ∠z0 +
{

0, 2π
3
, 4π

3

}

.

The frequen
y response is repli
ated three times

The frequen
y response is given by HC(ejω) = H(ej3ω). This 
orresponds to shrinking the response

horizontally by a fa
tor of 3. Also HC

(

ej(ω± 2π
3 )
)

= H
(

ej3(ω± 2π
3 )
)

= H
(

ej3ω±2π
)

= HC

(

ejω
)

meaning that there are three repli
ations of the frequen
y response spa
ed

2π
3

apart. Note that if you

only look at the positive frequen
ies, there are three repli
ations of the positive half of the reponse but

alternate 
opies are �ipped and 
onjugated (assuming the 
oe�
ients a[n] and b[n] are real-valued).

All of this 
arries over to raising z to any positive integer power; the number of repli
ations is equal to

the power 
on
erned.
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Given a �lter H(z) we 
an form a new one HS(z) = H( z
α
)

Multiply a[n] and b[n] by αn

Example: H(z) = 2+2.4z−1

1−0.96z−1+0.64z−2
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S
ale z: HS(z) = H( z
1.1 ) =

2+2.64z−1

1−1.056z−1+0.7744z−2
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Pole and zero positions are multiplied by α, α > 1 ⇒peaks sharpened.

Pole at z = p gives peak bandwidth ≈ 2 |log |p|| ≈ 2 (1− |p|)

For pole near unit 
ir
le, de
rease bandwidth by ≈ 2 logα
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Suppose that HS(z) = H
(

z
α

)

where α is a non-zero real number. Then HS(z) has the following two

properties:

Pole and zero positions are multiplied by α

If z0 is a zero of H(z), then HS(αz) = H(z0) = 0 so αz0 is a zero of HS(z). The argument of the

zero is un
hanged sin
e ∠αz0 = ∠z0. The magnitude of the zero is multiplied by α. A similar argument

applies to poles. If α > 1 then the pole positions will move 
loser to the unit 
ir
le. If α is large enough

to make any pole 
ross the unit 
ir
le then the �lter HS(z) will be unstable.

The bandwidth of any peaks in the response are de
reased by approximately 2 logα

If H(z) has a pole, p, that is near the unit 
ir
le, it results in a peak in the magnitude response at

ω = ∠p whose amplitude is proportional to

1
1−|p| and whose bandwidth is approximately equal to

−2 log |p| ≈ 2 (1− |p|) (whi
h is positive sin
e |p| < 1). The 
orresponding pole in HS(z) is at αp, so

its approximate bandwidth is now −2 log |αp| = −2 log |p|−2 logα. Thus the bandwidth has de
reased

by about 2 logα.

If α > 1 then logα is positive and the peak in HS(z) will have a higher amplitude and a smaller

bandwidth. If α < 1, then logα is negative and the peak will have a lower amplitude and a larger

bandwidth.
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1st order low pass �lter: extremely 
ommon

y[n] = (1− p)x[n] + py[n− 1]⇒ H(z) = 1−p
1−pz−1

Impulse response:

h[n] = (1− p)pn = (1− p)e−
n
τ

where τ = 1
− ln p

is the time 
onstant in samples.

Magnitude response:

∣

∣H(ejω)
∣

∣ = 1−p√
1−2p cosω+p2

Low-pass �lter with DC gain of unity.

3 dB frequen
y is ω3dB = cos−1
(

1− (1−p)2

2p

)

≈ 2 1−p
1+p

≈ 1
τ

Compare 
ontinuous time: HC(jω) =
1

1+jωτ

Indistinguishable for low ω but H(ejω) is periodi
, HC(jω) is not

-1 0 1
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-0.5

0

0.5

1

ℜ(z)

ℑ

p=0.80

0.01 0.1

-30

-20

-10

0

H(jω)

H
C
(jω)

1/τ 2π
ω  (rad/sample)
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To �nd the 3dB frequen
y we require |H(ejω3 )| =
√

1
2
⇔ |H(ejω0 )|2 = 1

2

.

(1−p)2

1−2p cosω3+p2
= 1

2

⇒ 2 (1− p)2 = 1− 2p cosω3 + p2

⇒ 2 (1− p)2 = (1− p)2 + 2p (1− cosω3)

⇒ cosω3 = 1− (1−p)2

2p

⇒ ω3 = cos−1
(

1− (1−p)2

2p

)

Expressing cosω = x as a Taylor series gives x ≈ 1 − ω2

2
⇒ ω ≈

√
2− 2x. So repla
ing x by the

expression in parentheses gives ω3 ≈
√

(1−p)2

p
= 1−p√

p

.

Writing d = 1 − p and assuming d is small, we 
an write

√
p = (1− d)

1
2 ≈ 1 − 1

2
d = 1

2
(1 + p).

Substituting this into the previous expression gives ω3 ≈ 2 1−p
1+p

.
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If H(z) = B(z)
A(z) with b[n] = a∗[M − n] then we have an allpass �lter:

⇒ H(ejω) =
∑

M
r=0 a∗[M−r]e−jωr

∑
M
r=0 a[r]e−jωr

= e−jωM
∑

M
s=0 a∗[s]ejωs

∑
M
r=0 a[r]e−jωr

[s = M − r℄

The two sums are 
omplex 
onjugates ⇒ they have the same magnitude

Hen
e

∣

∣H(ejω)
∣

∣ = 1∀ω ⇔ �allpass�

However phase is not 
onstant: ∠H(ejω) = −ωM − 2∠A(ejω)

1st order allpass: H(z) = −p+z−1

1−pz−1 = −p 1−p−1z−1

1−pz−1

Pole at p and zero at p−1

: �re�e
ted in unit 
ir
le�

Constant distan
e ratio:

∣

∣ejω − p
∣

∣ = |p|
∣

∣

∣
ejω − 1

p

∣

∣

∣
∀ω
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0
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ω
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∠
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ℑ

In an allpass �lter, the zeros are the poles re�e
ted in the unit 
ir
le.
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An allpass �lter is one in whi
h H(z) =
B(z)
A(z)

with b[n] = a∗[M − n]. Of 
ourse, if the 
oe�
ients

a[n] are all real, then the 
onjugation has no e�e
t and the numerator 
oe�
ients are identi
al to the

numerator 
oe�
ients but in reverse order.

If A(z) has order M , we 
an express the relation between A(z) and B(z) algebrai
ally as

B(z) = z−M Ā(z−1) where the 
oe�
ients of Ā(z) are the 
onjugates of the 
oe�
ients of A(z).

If the roots of A(z) are pi, then we 
an express H(z) in fa
torized form as

H(z) =
M
∏

i=1

−p∗i + z−1

1− piz−1
=

M
∏

i=1

1− p∗i z

z − pi

We 
an therefore write

|H(z)|2 =
M
∏

i=1

(

1− p∗i z
)

(1− piz
∗)

(z − pi)
(

z∗ − p∗i
) =

M
∏

i=1

1− piz
∗ − p∗i z + pip

∗
i zz

∗

zz∗ − piz∗ − p∗i z + pip∗i

=
M
∏

i=1

(

1 +
1 + pip

∗
i zz

∗ − zz∗ − pip
∗
i

zz∗ − piz∗ − p∗i z + pip∗i

)

=
M
∏

i=1



1 +

(

1− |z|2
)(

1− |pi|2
)

|z − pi|2





If all the |pi| < 1, then ea
h term in the produ
t is T1 a

ording to whether |z| S 1.

It follows that, provided H(z) is stable, |H(z)| T 1 a

ording to whether |z| S 1.
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Group delay: τH(ejω) = −d∠H(ejω)
dω

= delay of the modulation envelope.

Tri
k to get at phase: lnH(ejω) = ln
∣

∣H(ejω)
∣

∣+ j∠H(ejω)

τH =
−d(ℑ(lnH(ejω)))

dω
= ℑ

(

−1
H(ejω)

dH(ejω)
dω

)

= ℜ
(

−z
H(z)

dH
dz

)
∣

∣

∣

z=ejω

H(ejω) =
∑∞

n=0 h[n]e
−jnω= F (h[n]) [F = DTFT℄

dH(ejω)
dω

=
∑∞

n=0 −jnh[n]e−jnω= −jF (nh[n])

τH = ℑ
(

−1
H(ejω)

dH(ejω)
dω

)

= ℑ
(

jF(nh[n])
F(h[n])

)

= ℜ
(

F(nh[n])
F(h[n])

)

Example: H(z) = 1
1−pz−1⇒ τH = −τ[1 −p]= −ℜ

(

−pe−jω

1−pe−jω

)

-1 0 1
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Average group delay (over ω) = (# poles � # zeros) within the unit 
ir
le

Zeros on the unit 
ir
le 
ount �½
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The group delay of a �lter H(z) at a frequen
y ω gives the time delay (in samples) of the envelope

of a modulated sine wave at a frequen
y ω. It is de�ned as τH(ejω) = − d∠H(ejω)
dω

. For example,

H(z) = z−k

de�nes a �lter that delays its input by k samples and we 
an 
al
ulate the group delay by

evaluating

τH(ejω) = −d∠H(ejω)

dω
= − d

dω

(

∠e−jkω
)

= − d

dω
(−kω) = k

whi
h tells us that this �lter has a 
onstant group delay of k samples that is independent of ω.

The average value of τH equals the total 
hange in −∠H(ejω) as ω goes from −π to +π divided by

2π. If you imagine an elasti
 string 
onne
ting a pole or zero to the point z = ejω , you 
an see that

as ω goes from −π to +π the string will wind on
e around the pole or zero if it is inside the unit 
ir
le

but not if it is outside. Thus, the total 
hange in ∠H(ejω) is equal to 2π times the the di�eren
e

between the number of poles and the number of zeros inside the unit 
ir
le. A zero that is exa
tly on

the unit 
ir
le 
ounts

1
2

sin
e there is a sudden dis
ontinuity of π in ∠H(ejω) as ω passes through the

zero position.

When you multiply or divide 
omplex numbers, their phases add or subtra
t, so it follows that when

you multiply or divide transfer fun
tions their group delays will add or subtra
t. Thus, for example,

the group delay of an IIR �lter, H(z) =
B(z)
A(z)

, is given by τH = τB − τA. This means too that we


an determine the group delay of a fa
torized transfer fun
tion by summing the group delays of the

individual fa
tors.



[Group Delay from h[n] or H(z)℄

DSP and Digital Filters (2017-10159) Filters: 5 � note 2 of slide 11

The slide shows how to determine the group delay, τH , from either the impulse response, h[n], or

the transfer fun
tion, H(z). We start by using a tri
k that is very 
ommon: if you want to get at

the magnitude and phase of a 
omplex number separately, you 
an do so by taking its natural log:

ln
(

rejθ
)

= ln |r| + jθ or, in general, lnH = ln |H| + j∠H. By rearranging this equation, we get

∠H = ℑ (lnH) where ℑ( ) denotes taking the imaginary part of a 
omplex number. Using this, we 
an

write

τH =
−d
(

ℑ
(

lnH(ejω)
))

dω
= ℑ

(

−d
(

lnH(ejω)
)

dω

)

= ℑ
( −1

H(ejω)

dH(ejω)

dω

)

. (1)

By going ba
k to the de�nition of the DTFT, we �nd that H(ejω) = F (h[n]) and

dH(ejω)
dω

=
−jF (nh[n]) where F ( ) denotes the DTFT. Substituting these expressions into the above equation

gives us a formula for τH in terms of the impulse response h[n].

τH = ℜ
(

F (nh[n])

F (h[n])

)

(2)

In order to express τH in terms of z, we �rst note that if z = ejω then

dz
dω

= jz. By substituting

z = ejω into equation (1), we get

τH = ℑ
( −1

H(z)

dH(z)

dω

)

= ℑ
( −1

H(z)

dH(z)

dz

dz

dω

)

= ℑ
( −jz

H(z)

dH(z)

dz

)

= ℜ
( −z

H(z)

dH(z)

dz

)∣

∣

∣

∣

z=ejω
.
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As an example, suppose we want to determine the group delay of : H(z) = 1
1−pz−1 . As noted above,

if H(z) =
B(z)
A(z)

, then τH = τB − τA. In this 
ase τB = 0 so τH = −τ[1 −p].

Using equation (2) gives τH = −ℜ
(

F([0 −p])
F([1 −p])

)

sin
e nh[n] = [0 1]× [1 − p].

Applying the de�nition of the DTFT, we get

τH = −ℜ
( −pe−jω

1− pe−jω

)

= ℜ
(

p

ejω − p

)

=
ℜ
(

p
(

e−jω − p
))

(ejω − p) (e−jω − p)
=

p cosω − p2

1− 2p cosω + p2

As demonstrated above, the average value of τH is zero for this �lter be
ause there is one pole and one

zero inside the unit 
ir
le.
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Average group delay (over ω) = (# poles � # zeros) within the unit 
ir
le

• zeros on the unit 
ir
le 
ount �½

Re�e
ting an interior zero to the exterior

multiplies

∣

∣H(ejω)
∣

∣

by a 
onstant but

in
reases average group delay by 1 sample.
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A �lter with all zeros inside the unit 
ir
le is a minimum phase �lter:

• Lowest possible group delay for a given magnitude response

• Energy in h[n] is 
on
entrated towards n = 0
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This proof is not examinable

Suppose H(z) has a zero inside the unit 
ir
le at z = z0 so that we 
an write H(z) =
(

1− z0z−1
)

F (z).

If we �ip this zero outside the unit 
ir
le, we 
an write G(z) =
(

z−1 − z∗0
)

F (z) whi
h has the same

magnitude response as H(z).

Taking inverse z-transforms, we 
an write the 
orresponding time domain equations:

h[n] = f [n]− z0f [n− 1] and g[n] = f [n− 1]− z∗0f [n].

Now, de�ning f [−1] , 0, we sum the energy in the �rst K + 1 samples of the impulse response:

K
∑

k=0

|h[k]|2 =
K
∑

k=0

|f [k]− z0f [k − 1]|2 =
K
∑

k=0

(f [k]− z0f [k − 1]) (f [k]− z0f [k − 1])∗

=
K
∑

k=0

|f [k]|2 − z0f [k − 1]f∗[k]− z∗0f
∗[k − 1]f [k] + |z0|2 |f [k − 1]|2

=
K
∑

k=0

|z0|2 |f [k]|2 − z0f [k − 1]f∗[k]− z∗0f
∗[k − 1]f [k] + |f [k − 1]|2

+
K
∑

k=0

(

1− |z0|2
)(

|f [k]|2 − |f [k − 1]|2
)
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So, repeating the previous line,

K
∑

k=0

|h[k]|2 =
K
∑

k=0

|z0|2 |f [k]|2 − z0f [k − 1]f∗[k]− z∗0f
∗[k − 1]f [k] + |f [k − 1]|2

+
K
∑

k=0

(

1− |z0|2
)(

|f [k]|2 − |f [k − 1]|2
)

=
K
∑

k=0

(f [k − 1]− z∗0f [k]) (f [k − 1]− z∗0f [k])
∗ +

(

1− |z0|2
)

K
∑

k=0

(

|f [k]|2 − |f [k − 1]|2
)

=
K
∑

k=0

|g[k]|2 +
(

1− |z0|2
)(

|f [K]|2 − |f [−1]|2
)

=

K
∑

k=0

|g[k]|2 +
(

1− |z0|2
)

|f [K]|2 ≥
K
∑

k=0

|g[k]|2

sin
e |z0| < 1 implies that

(

1− |z0|2
)

> 0. Thus �ipping a zero from inside the unit 
ir
le to outside

never in
reases the energy in the �rst K + 1 samples of the impulse response (for any K). Hen
e the

minimum phase response is the one with the most energy in the �rst K + 1 samples for any K.
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The phase of a linear phase �lter is: ∠H(ejω) = θ0 − αω

Equivalently 
onstant group delay: τH = −d∠H(ejω)
dω

= α

A �lter has linear phase i� h[n] is symmetri
 or antisymmetri
:

h[n] = h[M − n] ∀n or else h[n] = −h[M − n] ∀n
M 
an be even (⇒ ∃ mid point) or odd (⇒ ∄ mid point)

Proof ⇐:

2H(ejω) =
∑M

0 h[n]e−jωn +
∑M

0 h[M − n]e−jω(M−n)

= e−jωM
2

∑M
0 h[n]e−jω(n−M

2 ) + h[M − n]ejω(n−
M
2 )

h[n] symmetri
:

2H(ejω) = 2e−jωM
2

∑M

0 h[n] cos
(

n− M
2

)

ω

h[n] anti-symmetri
:

2H(ejω) = −2je−jωM
2

∑M

0 h[n] sin
(

n− M
2

)

ω

= 2e−j(π
2 +ωM

2 )
∑M

0 h[n] sin
(

n− M
2

)

ω
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• Useful �lters have di�eren
e equations:

◦ Freq response determined by pole/zero positions

◦ N −M zeros at origin (or M −N poles)

◦ Geometri
 
onstru
tion of |H(ejω)|
⊲ Pole bandwidth ≈ 2 |log |p|| ≈ 2 (1− |p|)

◦ Stable if poles have |p| < 1

• Allpass �lter: a[n] = b[M − n]
◦ Re�e
ting a zero in unit 
ir
le leaves |H(ejω)| un
hanged

• Group delay: τH
(

ejω
)

= −d∠H(ejω)
dω

samples

◦ Symmetri
al h[n] ⇔ τH
(

ejω
)

= M
2 ∀ω

◦ Average τH over ω = (# poles � # zeros) within the unit 
ir
le

• Minimum phase if zeros have |q| ≤ 1
◦ Lowest possible group delay for given |H(ejω)|

• Linear phase = Constant group Delay = symmetri
/antisymmetri
 h[n]

For further details see Mitra: 6, 7.
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�lter �lter a signal

impz Impulse response

residuez partial fra
tion expansion

grpdelay Group Delay

freqz Cal
ulate �lter frequen
y response
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