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Filter: H(z) = igi; with input z[n| and output y[n]

y[n] = 3plo blklaln — k] — 3, alkly[n — K
Direct forms use coefficients alk] and b|k| directly

Direct Form 1:
e Direct implementation of difference equation
e Can view as B(z) followed by ﬁ

Direct Form II:
e Implements ﬁ followed by B(z)

e Saves on delays (= storage)
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Can convert any block diagram into an equivalent transposed form:

e Reverse direction of each interconnection
Reverse direction of each multiplier

[
e Change junctions to adders and vice-versa
[

Interchange the input and output signals

Example:

Direct form Il — Direct Form I,
Would normally be drawn with input on the left

Note: A valid block diagram must never have any feedback loops that don't

go through a delay (27! block).

|

<y[n
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State Space +

10: Digital Filter v|n| is a vector of delay element outputs x[n] bO] Ml
irect Forms (1) *

Eransp:sition Can write: v[n + 1] = Pv|n] + qx|n] +V1 g

A y[n] = r'vn] + sz[n] Z!

Coefficient Sensitivity ] b[l] _a[l]
Cascaded Biquads {P, q,r’, 3} is the state-space '—D—ﬁr}—ﬁ—'
ole-zero . .

2 representation of the filter structure. Y2

Pairing/Ordering

—1

Linear Phase Z
e e The transfer function is given by: b[2|>] @ _%2]
Allpass Filters T
attice Stage _ B(2») _ det(zI—P—|—qr )
Ex(ar?"';;( ) ' H(2) = 32y = —dacrpy ~ T8~ 1
Allpass Lattice The transposed form has P — P? and q < r = same H(z)
Lattice Filter
t::::: E::::: Example: Direct Form Il;
Numerator
IO _( —a[l] 1 _ ( bl1] = b[0]a[1]
MATLAB routin P = ( —CL[Q] 0 ) q= ( 62] B b[O]CL[Q]

r'=(1 0) s = b[0]

From which H(z) = b[g]zzjczl{][i]j:[g[]ﬂ
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[State-Space — Transfer Function]

[This is not examinable]

We start by proving a useful formula which shows how the determinant of a matrix, A, changes when
you add a rank-1 matrix, qu, onto it. The formula is known as the Matrix Determinant Lemma. For
any nonsingular matrix A and column vectors q and r, we can write

1 T 1+rTA=1q 0T \ 1 of 1 r’
0O A —AIq | o —q 1 0 A+qr?l /)

It is easy to verify this by multiplying out the matrices. We now take the determinant of both sides
making use of the result that the determinant of a block triangular matrix is the product of the
determinants of the blocks along the diagonal (assuming they are all square). This gives:

I'T
det (A) x (1+rT’A~1q) =det (A +qr’) = r’'A—1q = det(Atar’) 1

det(A)
Now we take the z-transform of the state space equations
v[n + 1] = Pvn| 4+ qz[n] A 2V =PV 4+ qgX
Z—1Transiorm
y[n] = rTv[n] + sz[n] Y =rTV 4 sX

The upper equation gives (z2I — P)V = qX from which V = (zI — P)_1 qX and by substituting this
det(zI—P+qu)

in the lower equation, we get % =T (zI-P) lq+s = deeei Py~ Ts— L

DSP and Digital Filters (2017-10122) Structures: 10 — note 1 of slide 4
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If all computations were exact, it would not make any difference which of
the equivalent structures was used. However ...

e C(Coefficient precision
Coefficients are stored to finite precision and so are not exact.
The filter actually implemented is therefore incorrect.

e Arithmetic precision
Arithmetic calculations are not exact.
o Worst case for arithmetic errors is when calculating the
difference between two similar values:
1.23456789 — 1.23455678 = 0.00001111: 9 s.f. — 4 s.f.
Arithmetic errors introduce noise that is then filtered by the transfer
function between the point of noise creation and the output.
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in coefficient values.

T Wilkinson's polynomial: (famous example)

f(x) = Hiozl (x —n) = 220 — 2102 + 20615218 — ...

has roots well separated on the real axis.
Multiplying the coefficient of 21 by 1.000001 moves the roots a lot.

+ “Speaking for myself | regard it as the most traumatic experience in
my career as a numerical analyst”, James Wilkinson 1984

5 5

0} ©0000000000000000000 1 o-®®®®®®o"ooooooooooooo

5 5

0 5 10 15 20 25 0 5 10 15 20 25

Moral: Avoid using direct form for filters orders over about 10.
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Avoid high order polynomials by factorizing into quadratic terms:

where K = max ([%W :

The term

H(1+bk 12

Ybp oz )

14+bg 12" by 22

H(1+ak 127 tag 2272)

2 1)

14+ar 12

We need to choose:

1‘|‘CLk, z

91T

1+bk,1z_

1 —2
+b 22

l4+ak 127 +ak 2272

—2
— is a biquad (bi-quadratic section).

(a) which poles to pair with which zeros in each biquad
(b) how to order the biquads

Direct Form Il
Transposed

x[n]

AT

z

bl,l —al,l
L p

—1
z

b1,2 —ai12

e

z

-1
z

bK,l —aK’l

bf,z —Aagp

y[n]
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Example: Elliptic lowpass filter I o
2 pole pairs and 2 zero pairs - -
need 2 biquads 05 .
. g
Noise introduced in one biquad is amplified T o 1

by all the subsequent ones:

e Make the peak gain of each biquad as small as possible
o Pair poles with nearest zeros to get lowest peak gain
begin with the pole nearest the unit circle
o Pairing with farthest zeros gives higher peak biquad gain

e Poles near the unit circle have the highest peaks and introduce most
noise so place them last in the chain

Nearest | 20 Farthest |

Gain (dB)

Gain (dB)

DSP and Digital Filters (2017-10122) Structures: 10 -8 / 19
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Implementation can take advantage of any symmetry in the coefficients.

Linear phase filters are always FIR and have symmetric (or, more rarely,
antisymmetric) coefficients.

H(z) = S0y hlm]z ™ MM = m] = hlm]
= [M] ¥ 4 020 Blm] (=7 2 M)

For M even, we only need % + 1 multiplies instead of M + 1.
We still need M additions and M delays.

[m even]

For M odd (no central coefficient), we only need - multiplies.

DSP and Digital Filters (2017-10122)
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Software Implementation:
All that matters is the total number of multiplies and adds

Hardware Implementation:
Delay elements (27 1) represent storage registers
The maximum clock speed is limited by the number of sequential
operations between registers

Example: Symmetric Linear Phase Filter

Direct form: Maximum sequential delay = 4a + m
Transpose form: Maximum sequential delay = a + m ©
a and m are the delays of adder and multiplier respectively

h[3] h[2] h[1] h[0]
o 1 =
1 e = yin]

DSP and Digital Filters (2017-10122) Structures: 10 — 10 / 19
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Allpass filters have mirror image numerator and denominator coefficients:
bn] = a|N — n| & B(z) =2NA(z71)
= |H (/)| = 1Vw

There are several efficient structures, e.g.

e First Order: H(z) = ﬂﬂﬁfz__ll

e Second Order: H(z) = 1“+[2;[+1§1]1i;[+2f;_22

Allpass filters have a gain magnitude of 1 even with coefficient errors.
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Suppose G is allpass: G(z) = Z_NAf‘éS_l)
V(Z) = X(Z) — kGZ_l‘/(z)
= V(2) = mpe=r X (2)

k+2" '@ X

Y(2)=kV(2)+Gz71V(z) = B Tepety (2)

Y(2) _ kA()+z2 N 71AGETYH a 2~V DT

X(2) — A(z) k2 N-TA(z-1) D(2)
Obtaining {d|n]} from {a[n|}:
(1 n=~0
dn|=4qa[n|+ka[N+1—n] 1<n<N
G n=N-+1
Obtaining {a[n]} from {d|n]}:
k=d[N +1 afn] =
Y(z) -

If G(z) is stable then X () Is stable if and only if |k| < 1 (see note)

DSP and Digital Filters (2017-10122)
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[Proof of Stability Criterion]

—1
We want to show that if G(z) is a stable allpass filter then };22 = 1k:kzz_1%((?)

k| < 1.

is stable if and only if

We make use of a property of allpass filters (proved in a note in lecture 5) that if G(z) is a stable allpass

filter, then |G(2)] % 1 according to whether |z § 1.

If z is a root of the denominator 1 4+ k2~ 1G(z), then

kz"1G(z) = -1

= |kl x 27 x|G(z)] = 1
]
= |k
G (2)]
It follows from the previously stated property of G(z) that |z| § 1 & % § 1 & |k § 1

DSP and Digital Filters (2017-10122) Structures: 10 — note 1 of slide 12
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Suppose N =3, £ = 0.5 and

A(z) =144zt — 6272+ 10277
A(z) = D(z2)
P I A A N B
A(z) 1 4 | —6 | 10
24 A(z7Y) 10 | —6 | 4 1
D(z) = A(2) + kz"*A(z7%) | 1 9 | =9 | 12 | 0.5
D(z) = A(z)
2V | 272 23]
D(z) 1 9 -9 12 | 0.5
k=d|N +1] 0.5
z74D(z7 1) 0.5 | 12 | -9 9 1
D(z) —kz"*D(z™%) 0.75 3 —4.5 | 7.5
A(z) = 2=k D) | g | g | 6 | 10 | 0

DSP and Digital Filters (2017-10122)
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z_MA(z_l)
A(2)

We can implement any allpass filter H(z) = as a

with M stages:

e Initialize Ay/(2) = A(2)
e Repeatform=M:-1:1

o  klm] = am|m]

O Am_1|n] = “m[”l—l’f_[zg]m[m—”] for0<n<m-1

AWL(Z)_k‘[m]ZimAWL(Zil)
1—k2[m]

equivalently A,,_1(z) =

A(z) is stable iff |k[m]| < 1 for all m (good stability test)

lattice filter

x[n] + H - —(F
—k[M] —k[M-1] —k[1]
k[M] k[M—1] k[1]
y[n] ! P z!

DSP and Digital Filters (2017-10122)
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Lattice Filter

upn] uy1[n] ui[n] up[n]
x[n] ¥ i/—I--\ ¥ *
k[ M] HM-1] K1]
k[M] k[M-1] k[1]
y[n] ! P —— z!
vuln] Vai[n] vi[n] vo[n]
. Vo (2 27T™A, (271
Label outputs u,,[n] and v,,[n] and define H,,(z) = UmEz; = Am(i) )
From earlier slide (slide 12):
U’m,—l(z) — 1 — Am—l(z) — Am—l(z)
Unm(2) 1+k[m]z—'H,,_1(2) Am—1(2)+k[m]z—mA,,_1(z—1) A (2)
Hence:
Un(z) _ Amn(2) Vi (2) _ Umn(2) Vin(z) z_mAm(z_l)
X(z) — A(2) and X(z) — X(2) X Un(z) A(z)

The numerator of \;?(22)) is of order m so you can create any numerator of order M by

summing appropriate multiples of V,,,(2):

M M e 2T™A (2t
wln] = Yon_g cmtm[n] = W(z) = L= Az) o

DSP and Digital Filters (2017-10122) Structures: 10 — 15 / 19



Lattice Example

upn] up1[n] u[n] uo[n]
x[n] ¥ t@\ i@\ T
—k{3] —k(2] —k[1]
k[3] k[2] k(1]
y[n] ! ! z !
v3[n] vo[n] vi[n] vo[n]

A(z) = A3(2) =1+0.2271 —0.23272 + 0.2273

[1, 0.2, —0.23]—0.2[0.2, —0.23, 0.2]

o k3 =02=as]]= —0.2(0 — [1, 0.256, —0.281]
o k2 — _0.981 :>CL1[] _ 1, O.256]-|—(1)fg.12[8—102.281, 0.256] _ [1’ 0357]
o k[1]=0.357T=ap[| =1

Vo(z) _ 1 Vi(z) _ 0.3574z "

X(z)  140.2271-0.2327240.22—3 X(z) = 140.2271-0.2327240.2273

Va(z) _ _ —0.28140.2562" "42—7 Va(z2) _ 0.2-0.2327"40.25" %4277

X(z) = 140.22=1-0.23272+40.22—3 X(z) = 140.22=1-0.2327240.22—3

Add together multiples of

Vim (2)

B(z)

to create an arbitrary TT035-T-095: 270353

DSP and Digital Filters (2017-10122)

Structures: 10 — 16 / 19



Lattice Example Numerator

Form a new output signal as w[n| = Z%:o Crn U 1]

N—"
= X
|
=
SEEEJS
|
==
BN»
H ==&
| <
= I A
2 Q=E=0
==
N\
S T 5
5 ey

M B(z i
W(z) = 2 im0 CmVim(2) = 1—|—O.2z—1—0.§3)z_2—|—0.2z—3X(z) 2
vs[n] [n] [ 1
Vo(2) _ 1 Vi(z) _ 0.3574+2""1
X(z)  140.22—1-0.23272+40.22—3 X(z)  140.2271-0.2327240.22—3
Vo(2) _  —0.28140.2562 ' 422 Vi(z) _ 0.2-0.232"'40.22" 24273
X(z) = 140.22=1-0.23272+40.22—3 X(z) — 140.22=1-0.2327240.22—3
b|0] 1 0357 —0.281 0.2 Co
b[1] 10 1 0.256 —0.23 C1
Wehavel yor [=1 0 o0 1 0.2 co
b[3] 0 0 0 1 C3
co 1 0.357 —0.281 0.2 )
Hence choose ¢, as | <1 | = 0 ! 0.256 —0.23 blL
c3 0 0 0 1 b|3]

DSP and Digital Filters (2017-10122)
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Filter block diagrams
o Direct forms
o Transposition
o State space representation

Precision issues: coefficient error, arithmetic error

o cascaded biquads

Allpass filters

o first and second order sections

L attice filters

o Arbitrary allpass response

o Arbitrary IIR response by summing intermediate outputs

For further details see Mitra: 8.
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residuez

b(z_l) ’r‘k
a(z—1) — Zk 1—prz—1

tf2s0s,sos2tf

b(z_l) bo,1+b1,12
<11

_1-|-b2,lz_

a(z—1) 1—}—a1,lz_1—|—a%,lz_2
b b1z "+by 2z~
zp2s0s,5052zp | {Zm, Pk, 9} < [, 104;1;;1,;;_1ia22,’;z_2
= Ax + Bu
Zp2ss,5527 ZmsPks G
P P {2 Pr: 9} y=Cx+ Du
=1 =A B
tf2ss,ss2tf bg—_i) YRS v bu
az y=Cx+ Du
poly poly(A) = det (2I—A)
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