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Multirate systems in
lude more than one sample rate

Why bother?:

• May need to 
hange the sample rate

e.g. Audio sample rates in
lude 32, 44.1, 48, 96 kHz

• Can relax analog or digital �lter requirements

e.g. Audio DAC in
reases sample rate so that the re
onstru
tion �lter


an have a more gradual 
uto�

• Redu
e 
omputational 
omplexity

FIR �lter length ∝ fs
∆f

where ∆f is width of transition band

Lower fs ⇒ shorter �lter + fewer samples ⇒
omputation ∝ f2
s
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Downsample y[m] = x[Km]

Upsample v[n] =

{

u
[

n
K

]

K | n

0 else

Example:

Downsample by 3 then upsample by 4

w[n]

0

x[m]

0

y[r]

0

• We use di�erent index variables (n, m, r) for di�erent sample rates

• Use di�erent 
olours for signals at di�erent rates (sometimes)

• Syn
hronization: all signals have a sample at n = 0.
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Su

essive downsamplers or up-

samplers 
an be 
ombined

Upsampling 
an be exa
tly inverted

Downsampling destroys information

permanently ⇒ uninvertible

Resampling 
an be inter
hanged

i� P and Q are 
oprime (surprising!)

Proof: Left side: y[n] = w
[

1

Q
n
]

= x
[

P
Q
n
]

if Q | n else y[n] = 0.

Right side: v[n] = u [Pn] = x
[

P
Q
n
]

if Q | Pn.

But {Q | Pn ⇒ Q | n} i� P and Q are 
oprime.

[Note: a | b means �a divides into b exa
tly�℄
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Resamplers 
ommute with addi-

tion and multipli
ation

Delays must be multiplied by the

resampling ratio

Noble identities:

Ex
hange resamplers and �lters

Corrollary

Example: H(z) = h[0] + h[1]z−1 + h[2]z−2 + · · ·
H(z3) = h[0] + h[1]z−3 + h[2]z−6 + · · ·
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De�ne hQ[n] to be the

impulse response of H(zQ).

Assume that h[r] is of length M + 1 so that hQ[n] is of length QM + 1.

We know that hQ[n] = 0 ex
ept when Q | n and that h[r] = hQ[Qr].

w[r] = v[Qr] =
∑QM

s=0
hQ[s]x[Qr − s]

=
∑M

m=0
hQ[Qm]x[Qr −Qm] =

∑M

m=0
h[m]x[Q(r −m)]

=
∑M

m=0
h[m]u[r −m] = y[r] ,

Upsampled Noble Identity:

We know that v[n] = 0 ex
ept when Q | n and that v[Qr] = x[r].

w[n] =
∑QM

s=0
hQ[s]v[n− s] =

∑M

m=0
hQ[Qm]v[n−Qm]

=
∑M

m=0
h[m]v[n−Qm]

If Q ∤ n, then v[n−Qm] = 0 ∀m so w[n] = 0 = y[n]

If Q | n = Qr, then w[Qr] =
∑M

m=0
h[m]v[Qr −Qm]

=
∑M

m=0
h[m]x[r −m] = u[r] = y[Qr] ,
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V (z) =
∑

n v[n]z
−n =

∑

n s.t. K|n u[
n
K
]z−n

=
∑

m u[m]z−Km = U(zK)

Spe
trum: V (ejω) = U(ejKω)

Spe
trum is horizontally shrunk and repli
ated K times.

Total energy un
hanged; power (= energy/sample) multiplied by

1

K

Upsampling normally followed by a LP �lter to remove images.

Example:

K = 3: three images of the original spe
trum in all.

Energy un
hanged:

1

2π

∫
∣

∣U(ejω)
∣

∣

2
dω = 1

2π

∫
∣

∣V (ejω)
∣

∣

2
dω

-2 0 2
0

0.5

1

ω
-2 0 2

0

0.5

1

ω
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De�ne cK [n] = δK|n[n] =
1

K

∑K−1

k=0
e

j2πkn

K

Now de�ne xK [n] =

{

x[n] K | n

0 K ∤ n
= cK [n]x[n]

XK(z) =
∑

n xK [n]z−n = 1

K

∑

n

∑K−1

k=0
e

j2πkn
K x[n]z−n

= 1

K

∑K−1

k=0

∑

n x[n]
(

e
−j2πk

K z
)−n

= 1

K

∑K−1

k=0
X(e

−j2πk

K z)

From previous slide:

XK(z) = Y (zK)

⇒ Y (z) = XK(z
1
K ) = 1

K

∑K−1

k=0
X(e

−j2πk
K z

1
K )

Frequen
y Spe
trum:

Y (ejω) = 1

K

∑K−1

k=0
X(e

j(ω−2πk)
K )

= 1

K

(

X(e
jω

K ) +X(e
jω

K
− 2π

K ) +X(e
jω

K
− 4π

K ) + · · ·
)

Average of K aliased versions, ea
h expanded in ω by a fa
tor of K.

Downsampling is normally pre
eded by a LP �lter to prevent aliasing.
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Y (ejω) = 1

K

∑K−1

k=0
X(e

j(ω−2πk)
K )

Example 1:

K = 3

Not quite limited to ± π
K

Shaded region shows aliasing -2 0 2
0

0.5

1

ω
-2 0 2

0

0.5

1

ω

Energy de
reases:

1

2π

∫
∣

∣Y (ejω)
∣

∣

2
dω ≈ 1

K
× 1

2π

∫
∣

∣X(ejω)
∣

∣

2
dω

Example 2:

K = 3

Energy all in

π
K
≤ |ω| < 2 π

K

No aliasing: , -2 0 2
0

0.5

1

ω
-2 0 2

0

0.5

1

ω

No aliasing: If all energy is in r π
K
≤ |ω| < (r + 1) π

K

for some integer r

Normal 
ase (r = 0): If all energy in 0 ≤ |ω| ≤ π
K

Downsampling: Total energy multiplied by ≈ 1

K

(= 1

K

if no aliasing)

Average power ≈ un
hanged (= energy/sample)
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Example: Signal in ω ∈ ±0.4π + Tone � ω = ±0.1π + White noise

Power = Energy/sample = Average PSD

= 1

2π

∫ π

−π
PSD(ω)dω = 0.6

Component powers:

Signal = 0.3, Tone = 0.2, Noise = 0.1 -3 -2 -1 0 1 2 3
0

0.5

1

Frequency (rad/samp)

P
S

D
 , 
∫  =

 0
.5

 +
 0

.1
 =

 0
.6

original rate

Upsampling:

Same energy

per se
ond

⇒ Power is ÷K
-3 -2 -1 0 1 2 3

0

0.2

0.4

Frequency (rad/samp)

P
S

D
 , 
∫  =

 0
.1

3 
+

 0
.1

8 
=

 0
.3 upsample × 2

-3 -2 -1 0 1 2 3
0

0.1

0.2

0.3

Frequency (rad/samp)

P
S

D
 , 
∫  =

 0
.0

56
 +

 0
.1

4 
=

 0
.2 upsample × 3

Downsampling:

Average power

is un
hanged.

∃ aliasing in

the ÷3 
ase.

-3 -2 -1 0 1 2 3
0

0.2

0.4

0.6

Frequency (rad/samp)

P
S

D
 , 
∫  =

 0
.5

 +
 0

.1
 =

 0
.6

downsample ÷ 2

-3 -2 -1 0 1 2 3
0

0.2

0.4

0.6

Frequency (rad/samp)

P
S

D
 , 
∫  =

 0
.4

9 
+

 0
.1

1 
=

 0
.6 downsample ÷ 3
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The energy of a spe
trum is Ex =
∑+∞

−∞
|x[n]|2 and its power is Px = limN→∞

1

2N+1

∑+N
−N

|x[n]|2.

The energy, Ex, is the total energy in all samples while the power, Px, is the average energy per

sample. If the �nite signal xN [n] is de�ned as xN [n] =

{

x[n] |n| ≤ N

0 |n| > N

, then the power spe
tral

density (PSD) is given by Sxx

(

ejω
)

= limN→∞

1

2N+1

∣

∣XN

(

ejω
)
∣

∣

2

. From Parseval's theorem, Px is

the average value of Sxx

(

ejω
)

or, equivalently, Px = 1

2π

∫ π

−π
Sxx

(

ejω
)

dω.

The signal on the previous slide has three 
omponents: (i) a signal 
omponent with a power of 0.3

and a trapezoidal PSD with a width of ±0.4π, (ii) a tonal 
omponent with a power of 0.2 whose PSD


onsists of two delta fun
tions and (iii) a white noise 
omponent of power 0.1 whose PSD is 
onstant

at 0.1. The tonal 
omponent might arise from a time-domain waveform

√
0.4 cos (0.1πn+ φ) where φ

is arbitrary and does not a�e
t the PSD.

Upsampling by K inserts additional zero-valued samples and so does not a�e
t Ex but, sin
e there are

now K times as many samples, Px is divided by K. The original periodi
 PSD is shrunk horozontally by

a fa
tor of K whi
h means that there are now K images of the original PSD at spa
ings of ∆ω = 2π
K

.

So, for example, when K = 2, the 
entral trapezoidal 
omponent has a maximum height of 0.5 and

a width of ±0.2π and there is a se
ond, identi
al, trapezoidal 
omponent shifted by ∆ω = 2π
K

= π.

When K is an even number, one of the images will be 
entred on ω = π and so will wrap around from

+π to −π. The power of ea
h image is multiplied by K−2

but, sin
e there are K images, the total

power is multiplied by K−1

. For the white noise, the images all overlap (and add in power), so the

white noise PSD amplitude is multiplied by K−1

. Finally, the amplitudes of the delta fun
tions are

multiplied by K−2

so that the total power of all K images is multiplied by K−1

.
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Downsampling by K deletes samples but leaves the average power of the remaining ones un
hanged.

Thus the total power of the downsampled spe
tra remains at 0.6. The downsampled PSD is the average

of K shifted versions of the original PSD that have been expanded horizontally by a fa
tor of K. The

white noise 
omponent is the average of K identi
al expanded but attenuated versions of itself and so

its PSD amplitude remains at 0.1. The power of a tonal 
omponents is un
hanged and so its amplitude

is also un
hanged.

When downsampling by a fa
tor of K = 3, the original width of the trapezoidal 
omponent expands

from ±0.4π to ±1.2π whi
h ex
eeds the ±π range of the graph. Thus, as ω approa
hes π, the PSD

of the signal 
omponent is de
reasing with ω but has not rea
hed 0 at ω = π. This portion of the

trapezium wraps around to ω = −π and gives rise to the little triangle of additional noise in the range

−π < ω < −0.8π where it adds onto the white noise 
omponent. In a similar way, the portion of the

trapezium that over�ows the left edge of the graph gives rise to additional noise at the right of the

graph in the range 0.8π < ω < π.

Summary of Spe
tral Density Changes: Width × Height (×Images)

Energy and Power Energy Spe
tral Density Power Spe
tral Density

Spe
tral Densities Up: 1 : K Down: K : 1 Up: 1 : K Down: K : 1

Alias-free blo
k K−1 × 1 (×K) K ×K−2 K−1 ×K−1 (×K) K ×K−1

Tone: δ(ω − ω0) 1×K−1 (×K) 1×K−1 1×K−2 (×K) 1× 1

White Noise 1× 1 1×K−1 1×K−1 1× 1

Integral

∫

dω ×1 ≈ ×K−1 ×K−1 ≈ ×1
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x[n] 
defghijklmn

u[m] 
 f i l

p[n] -
--f--i--l

v[m] b e h k

q[n] -b
-ef-hi-kl

w[m] a d g j

y[n] ab
defghijkl

Input sequen
e x[n] is split into three streams at

1

3

the sample rate:

u[m] = x[3m], v[m] = x[3m− 1], w[m] = x[3m− 2]

Following upsampling, the streams are aligned by the delays and then added

to give:

y[n] = x[n− 2]

Perfe
t Re
onstru
tion: output is a delayed s
aled repli
a of the input
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x[n] 
defghijklmn

u[m] 
 f i l

v[m] b e h k

w[m] a d g j

v[m+ 1

3
] e h k l

w[m+ 2

3
] d g j m

y[n] ab
defghijkl

The 
ombination of delays and downsamplers 
an be regarded as a


ommutator that distributes values in sequen
e to u, w and v.

Fra
tional delays, z−
1
3

and z−
2
3

are needed to syn
hronize the streams.

The output 
ommutator takes values from the streams in sequen
e.

For 
larity, we omit the fra
tional delays and regard ea
h terminal, ◦, as

holding its value until needed. Initial 
ommutator position has zero delay.

The 
ommutator dire
tion is against the dire
tion of the z−1

delays.
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• Multirate Building Blo
ks

◦ Upsample: X(z)
1:K
→ X(zK)

Invertible, Inserts K − 1 zeros between samples

Shrinks and repli
ates spe
trum

Follow by LP �lter to remove images

◦ Downsample: X(z)
K:1
→ 1

K

∑K−1

k=0
X(e

−j2πk

K z
1
K )

Destroys information and energy, keeps every Kth

sample

Expands and aliasses the spe
trum

Spe
trum is the average of K aliased expanded versions

Pre
ede by LP �lter to prevent aliases

• Equivalen
es

◦ Noble Identities: H(z)←→ H(zK)
◦ Inter
hange P : 1 and 1 : Q i� Pand Q 
oprime

• Commutators

◦ Combine delays and down/up sampling

For further details see Mitra: 13.



MATLAB routines

11: Multirate Systems

Multirate Systems

Building blo
ks

Resampling Cas
ades

Noble Identities

Noble Identities Proof

Upsampled

z-transform

Downsampled

z-transform

Downsampled

Spe
trum

Power Spe
tral

Density +

Perfe
t

Re
onstru
tion

Commutators

Summary

⊲ MATLAB routines

DSP and Digital Filters (2017-9045) Multirate: 11 � 14 / 14

resample 
hange sampling rate
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