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Multirate Systems

11: Multirate Systems Multirate systems include more than one sample rate

> Multirate Systems
Building blocks

Resampling Cascades Why bOther?

Noble Identities

Noble Identities Proof e May need to change the sample rate

psample . .

z-transform e.g. Audio sample rates include 32, 44.1, 48, 96 kHz

Downsampled

z-transform . . . .

Downsampled e Can relax analog or digital filter requirements

Spectrum . . . .
Power Spectral e.g. Audio DAC increases sample rate so that the reconstruction filter
oo * can have a more gradual cutoff

Reconstruction .

Commutators e Reduce computational complexity

Summary . . . .

MATLAB routines FIR filter length o if where Af is width of transition band

Lower f, = shorter filter + fewer samples =-computation oc f?
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Downsample
Upsample

Example:

Dl L yfm] = o {Km)
u[m] 1K v[n] U[n] _ g[%} ll( | n
else

Downsample by 3 then upsample by 4

wln] x[m]

3:1

1:4

yir]

PSS T N
T 7T T

e We use different index variables (n, m, r) for different sample rates

e Use different colours for signals at different rates (sometimes)

e Synchronization: all signals have a sample at n = 0.
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Resampling Cascades
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Successive downsamplers or up-
samplers can be combined

Upsampling can be exactly inverted

Downsampling destroys information
permanently = uninvertible

Resampling can be interchanged
iff P and Q are coprime (surprising!)

@’n

[=

P:10:1—
1:P—1:0—
1:P—P:1—
Pl1—1:P—
P10 =

= —PO:1|—
= —1:PO——
=+

Lo P

Proof: Left side: y[n] = w {1 ] =x {gn} if Q| n else y[n] =0.

Right side: v[n] =u[Pn] ==z [gn] if Q| Pn.

But {Q | Pn = @ | n} iff P and @ are coprime.

[Note: a | b means “a divides into b exactly”]
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—1:QHHE?) -

Resamplers commute with addi- }}P:Q_ -
tion and multiplication

AP0 =
Delays must be multiplied by the 1214z |-
resampling ratio —z'"H1:0F
Noble identities: 191 HE)
Exchange resamplers and filters THo 10
Corrollary THo - =

Example: H(z) = h[0] + h[1]z71 + h[2]e72 + - -
H(z%) = h[0] + h[1]z73 + h[2)25 + -

1:0
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Define hg|n] to be the X[
impulse response of H(2%).

Assume that h[r] is of length M + 1 so that hg|n] is of length QM + 1.
We know that hg[n] = 0 except when Q) | n and that h|r| = hg[Qr].

wlr] = v[Qr] = 2 hols]z[Qr — s
=M hol@mlz[Qr — Qm) = SN hm2[Q(r — m)]

u[r] H(Z) y[”] —_ m H(ZQ) V[n] W[r]

Q:1 0:1

= Y=o hlmlulr — m] = y[r] ©
Upsampled Noble Identity: il iy LA ppyoth Ul R L T ppyot i gL
We know that v[n] = 0 except when @ | n and that v[Qr] = z[r].

wln] = =25 holslvin — 5] = 3, hel@mlv[n — Qml

= o hlmlvin — Qm]
If Q1 n, then v[n — Qm] =0Vm so wn] =0 = y[n|
If Q| n=Qr, then w|Qr| = Z%:o him|v|[Qr — Qm]

= Yo hlmla[r —m] = u[r] = y[Qr] ©
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Upsampled z-transform

11: Multirate Systems _ -_n __ nil.,—n

Multirate Systems V(Z) o Zn U[’II]Z o Zn s.t. K|’I’L U[ K]Z u[m] IK V[n]
Building blocks % K :
Resampling Cascades — ulmlz— m — U z

Noble Identities Zm [ ] ( )

Noble Identities Proof U(Z)
Upsampled
z-transform

Downsampled SpeCtl’um: V(erJ) — U(@ij)

z-transform

Dewnsampled Spectrum is horizontally shrunk and replicated K times.

Spectrum

Power Spectral Total energy unchanged; power (= energy/sample) multiplied by %
Density * Upsampling normally followed by a LP filter to remove images.

Perfect
Reconstruction

Commutators Exa m p I e:

Summary

MATLAB routines K = 3: three images of the original spectrum in all.
Energy unchanged: 5- [ ’U(ej“)fdw = ’V(ej“)fdw

1:K————

1 1
305 > 05
0 2 0 2 0 2 2
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Downsampled z-transform

11: Multirate Systems 1 K—1 J27kn

Multirate Systems Deﬁne CK [n] — 5K|n [n] — i74 k=0 e K x[n] K1 y[m] 1K xx[n]
Building blocks - -
Resampling Cascades

Noble Identities NOW deflne TR [n] — x[n] | n

Noble Identities Proof
Upsampled O K 1/ n

z-transform j2mkn

[>Downsamp|ec| XK(Z) :anK[n] — KZ Zk 0_6 K x[n]z‘”

z-transform

= cx[nlz(n]

u n — ]
Soactramy = = 52_01 >, x(n] (e%’c z) = = 5201 X(eTF z)

Power Spectral
Density +

Perfect . . 1 K-—1 L
Reconstruction From pl’eVIOUS Sllde: X(Z) K Zk: 4X<€ S )
Commutators —=K: 1

Xic(2) = Y (=)

MATLAB routines 1 K—1

Frequency Spectrum: |
V(€M) = % Lo X7
—  (X(e%) + X (R %)+ X (e %)+ )
Average of K aliased versions, each expanded in w by a factor of K.
Downsampling is normally preceded by a LP filter to prevent aliasing.
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; — j(w—27k)

Y(elv) = % 5:01 X(ej ) X[n] [ ylm
Example 1:

K=3 1 T :

Not quite limited to =

Shaded region shows aliasing AU [ L

Energy decreases: 5- [ ’Y(ejw)fdw ~ XL ’X(ej“)ﬁdw
Example 2:

K — 3 ! 1

Enel’gy a” |n % S |w| < 2% X 05 > 05

No aliasing: © o : /_\ 0 /_\

w w

No aliasing: If all energy is in r% < |w| < (r + 1) % for some integer r
Normal case (7 = 0): If all energy in 0 < |w| < &

Downsampling: Total energy multiplied by =~ % (= % if no aliasing)
(

Average power = unchanged (= energy/sample)
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Power Spectral Density
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Example: Signal in w € £0.47 4+ Tone @ w = £0.17 + White noise

Power = Energy/sample = Average PSD

= 5= |7 _PSD(w
Component powers:
Signal = 0.3, Tone = 0.2, Noise = 0.1

Upsampling:

Same energy
per second
= Power is - K

Downsampling:

Average power
is unchanged.
3 aliasing in
the +3 case.

0.13+0.18=0.3

o
[N

=0.6
o
o

0.5+0.1

PSD, |

PSD, |

I
»

o

I
IS

o
N

o

Jdw = 0.6

upsample x 2

T

AAN

T 1T 1

-2 -1 0 1 2

-3 3
Frequency (rad/samp)
downsample + 2
A i N
-3 -2 -1 0 1 2 3

Frequency (rad/samp)

=0.2

0.056 + 0.14

o
[

=0.6

0.49 + 0.11

PSD, |

PSD, |

o
w

o
)

o

o©
o)

o
IS

o
N

o

original rate
©
c 1
1
b
:J_ 4L 4L
© 0.5
o
1
o
o oft i I i _\ i il
& 3 2 a 0 1 2 3

Frequency (rad/samp)

upsample x 3

A

'

L T1T 1

Frequency (rad/samp)

downsample + 3

N i X

=

.\ﬂ:

-3 -2

-1 0 1 2 3
Frequency (rad/samp)
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[Power Spectral Density (1)]

N T
The energy, E., is the total energy in all samples while the power, P, is the average energy per

z[n] |n| <N
0 n| > N

density (PSD) is given by S;x (ej“’) = limpn o0 ﬁ }XN (ej“’) ‘2. From Parseval's theorem, P, is

The energy of a spectrum is E, = > *%° lz[n]|? and its power is Pr = limy ;oo ﬁ SN 1z [n]|?.

sample. If the finite signal zx[n] is defined as zn[n| = , then the power spectral

the average value of S, (ejw) or, equivalently, P, = % ffw Sex (ejw) dw.

The signal on the previous slide has three components: (i) a signal component with a power of 0.3
and a trapezoidal PSD with a width of +0.47, (ii) a tonal component with a power of 0.2 whose PSD
consists of two delta functions and (iii) a white noise component of power 0.1 whose PSD is constant
at 0.1. The tonal component might arise from a time-domain waveform /0.4 cos (0.17mn + ¢) where ¢
is arbitrary and does not affect the PSD.

Upsampling by K inserts additional zero-valued samples and so does not affect £, but, since there are
now K times as many samples, P, is divided by K. The original periodic PSD is shrunk horozontally by
a factor of K which means that there are now K images of the original PSD at spacings of Aw = 2Z.
So, for example, when K = 2, the central trapezoidal component has a maximum height of 0.5 and
a width of £0.27 and there is a second, identical, trapezoidal component shifted by Aw = 2% = .
When K is an even number, one of the images will be centred on w = 7 and so will wrap around from
+7 to —m. The power of each image is multiplied by K ~2 but, since there are K images, the total
power is multiplied by K—1. For the white noise, the images all overlap (and add in power), so the
white noise PSD amplitude is multiplied by K—!. Finally, the amplitudes of the delta functions are
multiplied by K2 so that the total power of all K images is multiplied by K 1.

DSP and Digital Filters (2017-9045) Multirate: 11 — note 1 of slide 10



[Power Spectral Density (2)]

Downsampling by K deletes samples but leaves the average power of the remaining ones unchanged.
Thus the total power of the downsampled spectra remains at 0.6. The downsampled PSD is the average
of K shifted versions of the original PSD that have been expanded horizontally by a factor of K. The
white noise component is the average of K identical expanded but attenuated versions of itself and so
its PSD amplitude remains at 0.1. The power of a tonal components is unchanged and so its amplitude
is also unchanged.

When downsampling by a factor of K = 3, the original width of the trapezoidal component expands
from +0.47 to £1.27 which exceeds the 7 range of the graph. Thus, as w approaches 7, the PSD
of the signal component is decreasing with w but has not reached 0 at w = 7. This portion of the
trapezium wraps around to w = —7 and gives rise to the little triangle of additional noise in the range
—7 < w < —0.87 where it adds onto the white noise component. In a similar way, the portion of the
trapezium that overflows the left edge of the graph gives rise to additional noise at the right of the
graph in the range 0.87 < w < 7.

Summary of Spectral Density Changes: Width x Height (xImages)

Energy and Power Energy Spectral Density Power Spectral Density
Spectral Densities Up: 1: K Down: K : 1 Up: 1: K Down: K : 1
Alias-free block K=l x 1(xK) K x K—2 K=l x K71 (xK) K x K1
Tone: 6(w — wp) 1 x K71 (xK) 1x K1 1x K=2 (xK) 1x1

White Noise 1x1 1x K1 1x K1 1x1
Integral [ dw x 1 ~ x K1 x K1 ~ x1
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Perfect Reconstruction
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x
U
D
v
q
w
Y

S35333F

b e

cdefghijklmn
c £ i 1
-c--f--i--1
h k
-bc-ef-hi-kl

a d g J
abcdefghi jkl

Xl faypdmliys]
o 1
3 P {}g[n]
o1 o1
3 Pl é"[n] il

Input sequence z[n] is split into three streams at 3 the sample rate:

ulm] = x|3m|, vm] = z[3m — 1], wm| = z[3m — 2]

Following upsampling, the streams are aligned by the delays and then added

to give:

yln] = x[n — 2]

Perfect Reconstruction: output is a delayed scaled replica of the input
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3:1

1:3

3:1

1:3

3:1

1:3

=
q[n]
é yin]

1

(%
w

[m +
m +

|

cdefghijklmn
c £ i 1
b e h k
a d g ]

e h k 1

d g j m

abcdefghijkl

The combination of delays and downsamplers can be regarded as a
commutator that distributes values in sequence to u, w and v.
Fractional delays, 273 and z7 3 are needed to synchronize the streams.
The output commutator takes values from the streams in sequence.

For clarity, we omit the fractional delays and regard each terminal, o, as
holding its value until needed. Initial commutator position has zero delay.

x[n]

o

o

u[m] 727,
717 v[m] 7153, yln]
723 wlm] *

ulm]

O

yln]

x[n] Fc

N

The commutator direction is against the direction of the 2! delays.
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Summary

11: Multirate Systems e Multirate Building Blocks
Multirate Systems 1:- K
iuildingl.bloc(!(s ; o Upsample: X(Z) 5 X(ZK)
esampling ascadades .
Noble Identities Invertible, Inserts K — 1 zeros between samples

Noble Identities Proof
Upsampled
z-transform
Downsampled
z-transform

Shrinks and replicates spectrum
Follow by LP filter to remove images

govnsampled o Downsample: X(z) Bl ” kK:_Ol X(e _Jiﬁkz%)

power Spectral Destroys information and energy, keeps every K™ sample
Perfect Expands and aliasses the spectrum

Commutators Spectrum is the average of K aliased expanded versions
,\D,,:T"'L",:;a',‘;utines Precede by LP filter to prevent aliases

e Equivalences
o Noble Identities: H(z) +— H(2*)
o Interchange P : 1 and 1: Q iff Pand () coprime

e Commutators
o Combine delays and down/up sampling

For further details see Mitra: 13.
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MATLAB routines
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