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1.
(a) Let G(z) be the transfer function of a causal system. Show that g[0]= vlim G(z) where g[n]

denotes the impulse response of that system.

3]

(b) Let A(z) be a real coefficient stable allpass transfer function with order greater than zero. Show
that |A(z)| <1 for ]z| >1.
[Hint: Since the poles occur in complex conjugate pairs you can prove the required result for the

1-d*z

transfer function and then generalize it].

Z -

[5]

(c) Let G(z) be a causal stable nonminimum phase transfer function.
(i)  Show that G(z)=H(z)A(z), where A(z) is a causal stable allpass transfer function and
H(z) is another causal stable transfer function that is minimum phase with

G| =] e )-
[3]
@ity If g[r] and A[n] denote the impulse responses of the transfer functions G(z) and H(z)

respectively, show using the results of parts (a) and (b) above that |g(0)| <|h(0)| .
[5]
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2.

(a) Show that the analog transfer function H(s)=— i b>0 has a bandpass magnitude

s?+bs+ Q27
response with [H(j0)|=|H(joc)=0 and |H(jQ,)|=1. Determine the frequencies Q, and Q,,
where Q, >Q,, at which the gain is 3dB below the maximum value of 0dB at Q. Show that
Q,Q, =Q2. The difference Q,—Q, is called the 3dB bandwidth of the bandpass transfer
function. Show that 6 =Q, -

[6]

(b) The bandpass transfer function of part (a) above can be expressed in the form
H(s) :%[A1 (s)—A,(s)] where A/(s) and A,(s) are stable analog allpass transfer functions of

D, (=)

the form 4,(s)= D)

,i=12 with D,(s) a polynomial of s . Determine A4,(s) and 4,(s) .
[6]
(c) The magnitude squared response of an analog Butterworth filter H(s) of N ™ order is given by
2 1
1+HQ0 P
Show that the poles of the Butterworth filter are of the form p, =Qe/"W*#=D2N j—12 N,
using the relationship [H (jQ)[* = H(s)H (-s), where s = jQ.

H (<)

Q2 constant

18]
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3.
(@)

(b)

This problem illustrates how aliasing can be suitably exploited in order to realize interesting
frequency response characteristics. An ideal causal analog lowpass filter with an impulse response

h,(¢) has a frequency response given by

Ha(;‘n):{l’ =i

0, otherwise.

Let H,(e’”) and H,(e’”) be the frequency responses of digital filters obtained by sampling
h(t) at t=nT, where T=37/2Q_ and T=7x/Q,, respectively. Assume that the transfer

functions are later normalized so that H,(e’%) = H,(e’°) =1.

(i)  Sketch the frequency responses H,(e’”), H,(e’®).
[5]

()  What type of filter is G(z) =H,(z) - H ,(2) (lowpass, highpass, etc.)?
[5]

N-] .
Consider the Finite Impulse Response filter transfer functions G, (z)=% >z and
i=0

N-1 3
G,(2) =}—ir- % (-1’2, N>1. Show that G,(z) is a lowpass filter and G,(z) is a highpass filter,

by using the following two approaches:
(1) Intuitive approach. In this approach you can describe the effect of filters G,(z) and G,(z)
on an input signal without necessarily using mathematical relationships.

5]

(i)  Mathematical approach. In this approach you must find the frequency response of the two
filters.

[5]
1-z"¥
1

N-1 |
For part (b) (ii) you may wish to use the relationship Sz e SEEL

i=0 1-z~
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4,
(a) Verify the cascade equivalences of Figure 1 below.

x{n] 2 »lnl x[n] v,[n] Y,ln]
— lM o Hz) —> = —» HEM) oM —
x[x] v[n] »in] x[n] v,[n] Yaln]
— 1L » HZY) —> = — H(2) o TL —>»

Figure 1
[10]

(b) Consider the multirate structure of Figure 2 below, where H(z),H,(z) and H,(z) are ideal

zero-phase real-coefficient lowpass, bandpass and highpass filters respectively, with frequency
responses as indicated in Figure 3. If the input is a real sequence with a discrete-time Fourier

transform X (e’?) as shown below, sketch the discrete-time Fourier transform of the outputs
Yolnl, y,[n] and y,[r].

[10]
» Hy(2) —> Vol7]
x[n]
— |3 - O e e H,(2) > »[#]
® H.(2) L V,[7]
Figure 2
Ho(e*"“’) H](ef‘”)
A A
1 1] f-=-----
p @ > @
0 z/3 b2 0 7/3 27z/3 3
H,(e’™®) X(e™)
4L I'y
1 frmmmmmmmmmmmem e 1 p=m===n-
> O > @
0 z!3 27z/3 s 0 /3 27/3 2
Figure 3
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(a) Let G(z) be a causal transfer function. Show that g[0]= lim G(z) where g[n] denotes the
Z—>+00
impulse response of the transfer function G(z).

[5]
Answer
+o0 oo
G(z)= Zg[n]z'” = lim Zg[n]z'” = g[0]
n=0 ZF0 =0

(b) Let A(z) be areal coefficient allpass transfer function. Show that |A(z)| <1 for |z|>1.

[Hint: Since the poles occur in complex conjugate pairs you can prove the required result for the
#

transfer function

Z and then generalize it].

P
[5]
Answer
1-d*z
A T
1) z—d
1-d*z 1-42"
42 = ()4 (2) =222
z=d ;*_g4
* #* * * * #*
1—[A1(z)|2=1-A1(z)Ai“(z)=1—1“d z l;—dz* _(z-d)z"-d )—(*l—d*z)(l—dz )
z—d *_g z-d)z*-d")
e | —za* ~d 1| 4 zd” v -Da-laP)
(z—d)(z" -d") (z—d)(z"-d")

Hence, 1-|y(2)|* >0 if |2|> 1. Therefore, |4 (2)* <1 if || >1.

(c) Let G(z) be a causal stable nonminimum phase transfer function, and let H(z) denote another
causal stable transfer function that is minimum phase with |G(e*"”)£ = |H (ej‘”)' :
(i) Show that G(z)=H (2)A(z), where A(z) is a causal stable allpass transfer function.
[5]
Answer

Since G(z) is non-minimum phase but causal, it will have some zeros outside the unit circle. Let
z=a be one such zero. We can then write:

-1
G(2) = PE)1-az ) = P)1-az ) U2 - pzya - an L2 )
(1-az) (1-az)

-1
Note that Lod ) is a stable first order allpass function. If we carry out this operation for all
—dzZ
zeros of G(z) outside the unit circle we can write G(z) = H(z)A(z) where H(z) will have all

zeros inside the unit circle and will thus be a minimum phase function and A(z) will be a product
of first order allpass functions and hence and allpass function.
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If g[n] and A[n] denote their respective impulse responses, show using results of questions (a)
and (b) above that:
(i) [g(O)[<[a(0)]

(5]
Answer
g[0] =| lim G(z)|=| lim H(z)A(z){=| lim H(z)| lim A(z)|<| lim H(z) =|n[0]
Z—>+w0 Z—r+o0 Z—>+00 z—r+00 Z—r+00
because | lim A(z)|<1
Z—>+00
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2.

(a) Show that the analog transfer function H(s)= 5 o 3
s +bs+QO

response with |H(j0)[ = |H(joo)| =0 and ‘H(jQO)I =1. Determine the frequencies 1 and Q» at

,b>0 has a bandpass magnitude

which the gain is 3dB below the maximum value of 0dB at Qg . Show that ;Q, =Qg. The
difference Qy —Qqis called the 3dB bandwidth of the bandpass transfer function. Show that

b=0y -0
[6]
Answer
H(s)=~2—bs—2,b>0.Thus, H(jQ)=— Jotd ,b>0, hence
s +bs+Qy -Q +ij+Q0
2 »2Q2
|7 ()" = Now at Q=0, |[H(j0)|=0, at Q=+, |[H(joo)|=0 and at

»’0% + (@2 -0%)?
Q=Q, |H ( jQO)] =1. Hence, H(s) has a band pass response. The 3-dB frequencies are given by

22
9.9 2 QZC 7.2 =l.ThLIS, (Q%—Qg)z =bZQ§ or Qﬁ*—(bz +2Q3)Q£ +Qg _—.O‘Hence’ if
202 + (@2 -n2y 2

Q) and Qj are the roots of this equation, then so are —Q;, — Q5 , and the product of the roots is
O - This implies ©;Q) =02 Also Q2 + 02 =52 +202 . Hence, (@ - ;)2 =b> which gives
the desired result Q) — Q) =b.

(b) The bandpass transfer function of question (a) above can be expressed in the form

1‘:’(5)=%[Al(3)—A2 (s)] where A4,(s) and A4,(s) are stable analog allpass transfer functions of

the form 4.(s) =B(_—S)~,:‘:l,2 with D(s) polynomial of s . Determine 4,(s) and 4,(s).

D.(s)
[6]

Answer

1 2bs 1 32+bs+Qg 52—b5+Q% 1 32—b3+Qg
Hs) =75 2 2|2 272 2 ] R Y )

25 +bs+Q0 2| +bS+Q0 s +bs+QO 2 s +bs+QO
A(s)=1

sz—bs+Q(2)
A0 i m——

s +bs+Q.0

(c) The magnitude squared response of an analog Butterworth filter H(s) of N™ order is given by

1ii Q)

m, Qc constant
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Show  that the poles of the Butterworth filter are of the form
pr =Qpe/FWFUDIZN § 15 N, using the relationship [H(jQ) = H(s)H (~s)

(8]
Answer

. | 1
Q) =

fe@ay™® 1e(sPian

The poles of this expression occur on a circle of radius Q. at equally spaced points. The
transfer function itself will be specified by just the poles in the negative real half-plane of

s.The /™ pole is specified by:

2 1 j@i-Dx o J@-z ' jQI-Dx
p;; =(-)N =¢ N and hence, (_IP:Z) —p N =P, IN .
£33 0 Q¢

N
—f% j@l-Hrz —jﬁ,— JjQI-DHx N jQI-Dx
Q. Q,
N jQI-Dz

p1=Qee 2Ne 2N =
71 =chj[ﬁ(N+2f—l)f2N}J =12,....N
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3.

(a) This problem illustrates how aliasing can be suitably exploited in order to realize interesting

frequency response characteristics. An ideal causal analog lowpass filter with an impulse response
h,(t) has a frequency response given by

<
S it
Let Hl(ej “) and Hz(ej “) be the frequency responses of digital filters obtained by sampling
hqa(t) at t=nT, where T=37/2Q, and T =x/CQ,, respectively. Assume that the transfer
functions are later normalized so that Hy (ejo) = Hy (e-‘fo) =,
(i) ~ Sketch the frequency responses Hy(e/?), Hy(e/?).

51

Answer
Hy(e/?)
H l(ef =5 ) A @
£
1
» @ > 2]
-7 0 T = 0 T

(i)  What type of filter is G(z) = Hy(z) — H{(z) (lowpass, highpass, etc.)?
[5]

Answer
G(z) has the form shown below and therefore, it is a highpass filter

G(e!?)
A

v
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N-1
(b) Consider the Finite Impulse Response filter transfer functions Gl(z):-;-‘(-Zz'I and

i=0
1 N-1 _
Gy(2) = W Z (=1)"z7" . Show that G)(z) is a lowpass filter and G,(z) is a highpass filter, by
i=0

using the following two approaches:
(1) Intuitive approach. In this approach you can describe the effect of filters Gj(z) and G, (z)
on an input signal without necessarily using mathematical relationships.

151

Answer

G,(z) is a lowpass filter because when we mix signal samples with positive weights we destroy
the abrupt changes of the signals, which are related to the high frequencies of the signal.

G (z) is a highpass filter because when we mix signal samples with some negative weights we
might enhance the abrupt changes of the signals, which are related to the high frequencies of the
signal.

(i) Mathematical approach. In this approach you must find the frequency response of the two

filters.
151

Nl | -N

For part (b) (i1) you may wish to use the relationship Z z = T
i=0 l-z"

Answer

o )—Lhil L 11-7N N2 N2 N2

W=l ® =g _,1 N VZ _/2__1/2

i=0

Gl(ef@)=iz_Nf2 a2 —Z_Nf2| =ie_.jm(N_1);2 2jsinwN /2
N

N ;12 12 _-1/2 2jsinw/2

_l|sinwN/2
N| sinw/2

The above function is the well know sinc function which decays as the frequency tends to 7 .

far

Z=e

Gie/)

S ~1\N
1 —3si b l={=2 ")
G2(Z) = Z (—Z ) e
N N 1-(-zh
N even:

—(»— N ~-N/2 N/2 _-NI/2
Gz(:Z)=Ll G _{ = Z-1f2 - 1/2 2—122 =
Gz(ef“’)=~l_e*f@(N—1}f’2 2}'Sim:e)N;’2:>

N 2cos@/2

; l|smaN/2
E‘Jw‘=—_
|Gl( ) N|cosw/2

N odd:
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1 H_(Z-I)N 1 Z—N!Z ZNJ’Z_'_Z—N/Z

Gy(z)=— =— =
N 14571 N Z—UZ 213’2_'_2—1;'2

o JO(N-1)/2 2cosmN /2
2cosw/2

' 1
Gr(e!?y=—
2(e’™) 5

1jcosaN/ 2’
N|coswm/2

In both cases the denominator decreases as frequency approaches 7z, therefore, the entire
response increases and therefore, we have highpass filters.

“’h(ej ?)
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4.
(a) Verify the cascade equivalence of Figure 1 below.

x[n] vi[n] nln] x[n] vy[n] ,[n]
— M > H(z) —> = — H(") M I M —
x[n] wln] L |nln x[n] vy[n] yaln]
— 1L > HEZY) —> = — | H(2) » TL —>
Figure 1
[10]
Answer

[n] yy(n] v,ln] ¥oln]
Wy M w | s H{z"‘,———'!l—M_—’

= M-1
_ 1 Myrk
For the left-hand side figure, we have V,(z)=— ZX(ZHMWk » Y@= ZH(Z)X(Z Wn):

o

M-1

kM vy, 1/ Mk

For the right-hand side figure,we have V,(z)= H(z )X(z), Yz(z}-—ZH(zW Xz MW, M)

k=0

LG 1Mk
=5 ZH(Z)X(z WX). Hence, Y (z) = Yo(2).
=0
[n] v,[n] y,ln]
Xalf v'{nl. H(z" L HEz) = 1L |5

) .
For the left-hand side figure, we have V,(z)= X(zl‘), Y, (@)= H(zL)X(z ). For the right-hand

(b) Consider the multirate structure of Figure 2 below, where H,(z),H,(z) and H,(z) are ideal

zero-phase real-coefficient lowpass, bandpass and highpass filters respectively, with frequency
responses as indicated in Figure 3. If the input is a real sequence with a discrete-time Fourier

transform X (e’”) as shown below, sketch the discrete-time Fourier transform of the outputs
Vo), ,(¢) and y,(¢)

Y

Hy(z) Yoln]

x[n]
— 13 13 99— H () > 1l

h, 4

H,(z) L V,[n]

Figure 2
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Hy(e™)

H,(e™)
A A
1 ————————
p @ » @
0 /3 7 0 7!3 2rit3 i 4
2(12(6[(:1) .X(C’fm)
A A
» w y » [0
0 /3 2273 Mg i3 27/} %
Answer

After decimation by 3 we obtain the signal W (ej “Y . Afier interpolation by 3 of the signal
W (ej %y we obtain the signal U (ej #Y . The three outputs are shown bel

Ue™)
W(e™) t/
n 3
Yg(ev‘“’ ) Y (c"") Y;(c"" )
1 1
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