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DIGITAL SIGNAL PROCESSING AND DIGITAL FILTERS

Information for Candidates:

Notation

• All signals and filter coefficients are real-valued unless explicitly noted otherwise.

• Unless otherwise specified, upper and lower case letters are used for sequences and their z-transforms
respectively. The signal at a block diagram node V is v[n] and its z-transform is V (z).

• x[n] = [a, b, c, d, e, f ] means that x[0] = a, . . . x[5] = f and that x[n] = 0 outside this range.

• ℜ(z), ℑ(z), z∗, |z| and ∠z denote respectively the real part, imaginary part, complex conjugate,
magnitude and argument of a complex number z.

• Where necessary, the sample rate of a signal in a block diagram is indicated in the form “@ f ”.

Abbreviations

BIBO Bounded Input, Bounded Output IIR Infinite Impulse Response
CTFT Continuous-Time Fourier Transform LTI Linear Time-Invariant
DCT Discrete Cosine Transform MDCT Modified Discrete Cosine Transform
DFT Discrete Fourier Transform PSD Power Spectral Density

DTFT Discrete-Time Fourier Transform SNR Signal-to-Noise Ratio
FIR Finite Impulse Response

A datasheet is included at the end of the examination paper.
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1. a) The signals x[n] and y[n] are defined as

x[n] =

{
2−n n > 0
0 n≤ 0

, and y[n] =

{
0 n > 0
5−n n≤ 0

.

i) Determine the z-transform of x[n] and its region of convergence. [ 3 ]

ii) Determine the z-transform of y[n] and its region of convergence.[ 3 ]

You may assume without proof that ∑
∞
n=0 αn = 1

1−α
provided that |α|< 1.

b) Consider the convolution y[n] = h[n] ∗ x[n] = ∑
M
m=0 h[m]x[n−m] where h[n] is

the impulse response of an FIR filter of order M (i.e. n ∈ [0, M]) and x[n] is a
signal defined for n ∈ [−∞, ∞].

In the overlap-save method of convolution, y[n] is divided into blocks of length
K and a circular convolution of length K +M is used to calculate each block.
To calculate block b, the circular convolution evaluates

y[bK +n] =
M

∑
m=0

h[m]x[(n−m+M)mod(K+M)−M+bK]

for n ∈ [0,K−1]. The notation PmodQ denotes the remainder when P is divided
by Q and satisfies 0≤ PmodQ < Q.

i) Show that the expression given above is equivalent to the direct con-
volution given by y[bK +n] = ∑

M
m=0 h[m]x[bK +n−m]. [ 3 ]

ii) Suppose that a circular convolution of length R requires approxi-
mately 5R log2 R multiplications. If M = 200, estimate the number
of multiplications per output sample required by the overlap-save
method when K = 20, 1500 and 104 and compare these results with
the number of multiplications required for implementing the direct
convolution. [ 4 ]
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c) The filter H(z) is given by

H(z) =
1+ z−1

1− z−1 +0.8z−2 .

The pole-zero diagram and magnitude response (in dB) of H(z) are shown in
Figures 1.1 and 1.2 respectively.

i) Determine the transfer function F(z) = H(z2) and sketch its pole-
zero diagram and magnitude response in dB. It is not necessary to
determine exact values of the magnitude response. [ 4 ]

ii) Determine the transfer function G(z) =H(1.25z) and sketch its pole-
zero diagram and magnitude response in dB. It is not necessary to
determine exact values of the magnitude response. [ 4 ]

Figure 1.1 Figure 1.2

d) A bilinear transformation, s = α
z−1
z+1 , is used to convert a continuous-time filter

into a discrete-time filter.

i) Show that if α = Ω0
tan(0.5ω0)

then z = e jω0 ⇔ s = jΩ0. [ 3 ]

ii) A continuous-time highpass filter with a cutoff frequency of 1kHz is
given by H(s) = s

s+Ω0
where Ω0 = 2000π rad/s. Using the bilinear

transformation given above, determine the coefficients (to 3 decimal
places) of a discrete-time filter having an unnormalized cutoff fre-
quency of 1kHz. The sample frequency is 8kHz. [ 4 ]
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e) i) Explain why the average power of a discrete time signal (i.e. the
average energy per sample) is always decreased by upsampling but is
normally unchanged by downsampling. Give an example of a signal
for which the latter statement is untrue. [ 3 ]

ii) Figure 1.3 shows the power spectral density (PSD) of a real-valued
signal, x[n]; the horizontal portions of the PSD have values 1 or 4.
The signal y[m] is obtained by upampling x[n] by a factor of 3 as
shown. Draw a dimensioned sketch of the PSD of y[m] giving the
values of all horizontal portions of the graph and the values of all
frequencies at which there is a discontinuity in the PSD. [ 3 ]

Figure 1.3

f) Figure 1.4 shows the block diagram of a two-band analysis processor. The
inputs to the adder/subtractor blocks, ⊕, are additive unless labelled with a
minus sign in which case they are subtractive.

i) By using the Noble identities or otherwise, determine H0(z) and
H1(z) so that Figure 1.5 is equivalent to Figure 1.4. [ 3 ]

ii) Assuming that P0(z) and P1(z) are FIR filters with real-valued coef-
ficients, show that

∣∣H1
(
e jω
)∣∣ = ∣∣H0

(
e j(π−ω)

)∣∣ and explain the sig-
nificance of this relationship. [ 3 ]

Figure 1.4 Figure 1.5
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2. In the block diagram of Figure 2.1 the outputs of all adders and delay elements are on
the right and solid arrows indicate the direction of information flow. The real-valued
gain of each multiplier is written adjacent to its triangular symbol.

Figure 2.1

a) Show that [ 8 ]

G(z) =
Y (z)
X(z)

=
q+ pz−1 + z−2

1+ pz−1 +qz−2 .

b) Prove that
∣∣G(e jω)

∣∣= 1 for all ω . [ 6 ]

c) Figure 2.2 shows a graph of ∠G(e jω) when p =−1.2 and q = 0.8. The dotted
lines indicate the frequencies, ω = {a, b, c}, at which G(e jω) = {− j,−1,+ j}
respectively. Given that G(e jb) = −1, derive the general formula cosb = −p

q+1
and find the numerical value of b for the given values of p and q. [ 6 ]

Figure 2.2

d) The filter H(z) is defined as H(z) = 1
2 (1+G(z)).

i) Determine the value of H(e jω) for each of ω = {a, b, c} defined
above.
Hence, for p = −1.2 and q = 0.8, sketch a graph of

∣∣H(e jω)
∣∣ for

ω ∈ [0, π] using linear scales for both axes. [ 6 ]

ii) For p =−1.2 and q = 0.8, determine the poles and zeros of H(z) in
polar form and sketch a diagram of the complex plane that includes
the unit circle and the poles and zeros of H(z) (indicated by × and ◦
respectively). [ 4 ]
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3. a) A symmetric Hanning window of odd length M+1 is defined as

w[n] = 0.5+0.5cosωMn,

where ωM = 2π

(M+1) and −0.5M ≤ n≤ 0.5M.

i) Show that the DTFT of w[n] is given by

W (e jω) = 0.5
sin0.5(M+1)ω

sin0.5ω

+0.25
sin0.5(M+1)(ω−ωM)

sin0.5(ω−ωM)

+0.25
sin0.5(M+1)(ω +ωM)

sin0.5(ω +ωM)
.

You may assume without proof that ∑
0.5M
n=−0.5M e jαn = sin0.5(M+1)α

sin0.5α

provided that α 6= 0. [ 5 ]

ii) We define S(ω) to be the integrated spectrum

S(ω) =
1

2π

ˆ
ω

θ=0
W (e jθ )dθ .

Using the inverse DTFT formula or otherwise, show that S(π) = 0.5.
[ 3 ]

b) i) Show that, if G(z) is an ideal lowpss filters with

G(e jω) =

{
1 |ω| ≤ ω0

0 ω0 < |ω| ≤ π
, then g[n] =

sinω0n
πn

.

[ 4 ]

ii) By combining the ideal response from part b) i) with the Hanning
window from part a), use the window method to design a causal
lowpass filter, H(z), of order M with a cutoff frequency of ω0.

Give a formula for the impulse response, h[n], of the filter where
0≤ n≤M. [ 3 ]

iii) Show that H(e jω) = e−0.5 jωM (S(ω +ω0)−S(ω−ω0)) . [ 5 ]

[This question is continued on the next page]
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c) Figures 3.1 and 3.2 show W (e jω) and S(ω) for a Hanning window of length
M+1 = 41. The first few values of ω for which S(ω) either equals 0.5 or has
a turning point are listed in the following table:

ω 0.2565 0.3065 0.4003 0.4598 0.5490
S(ω) 0.5 0.5064 0.5 0.4981 0.5

.

For the case ω0 = 1, the magnitude response,
∣∣H(e jω)

∣∣, of the resultant lowpass
FIR filter from part b) is shown in Figure 3.3 plotted in dB. The ideal response,
G(e jω), is shown on the graph as a dashed line. Using appropriate values from
the table given above,

i) estimate the smallest positive ω (marked “a” in Figure 3.3) for which
H(e jω) = 0; [ 3 ]

ii) estimate the magnitude in dB (marked “b” in Figure 3.3) of the first
peak in the stopband; [ 3 ]

iii) estimate the peak passband gain in dB. [ 4 ]

Figure 3.1 Figure 3.2

Figure 3.3
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4. Figure 4.1 shows a system intended to apply a fractional-sample delay to its input signal,
x[n], where the delay is an integer multiple of 1

P samples.

Figure 4.1 Figure 4.2

a) i) Explain the purpose of the lowpass filter, H(z), in Figure 4.1. [ 2 ]

ii) The input signal, x[n], contains frequency components in the range
0≤ω ≤ 0.8π . Using the datasheet formula, M ≈ a

3.5∆ω
, estimate the

order required for H(z) to give a stopband attenuation of 60dB. [ 3 ]

iii) For a direct implementation of Figure 4.1, estimate as a function of
P the number of multiplications required per input sample, x[n].[ 3 ]

iv) If H(z) is a causal symmetric FIR filter of order M, determine the
delay of y[n] relative to x[n] as a function of M and d. [ 3 ]

b) i) The signal w[m] in Figure 4.1 is given by w[m] = ∑
M
s=0 h[s]u[m− s]

where h[s] is the impulse response of H(z).
If m = Pn+ p where 0 ≤ p < P, show that w[m] may be written in
the form w[m] = ∑

R
r=0 hp[r]x[n− r]. Determine the value of R and

give an expression for hp[r] in terms of h[s]. [ 6 ]

ii) Derive expressions for q and k in Figure 4.2 as functions of d in Fig-
ure 4.1 so that that the two figures are equivalent. You may assume
that y[n] = w[Pn−d] in Figure 4.1. [ 4 ]

c) Suppose now that, for each r, the coefficients hq[r] may be closely approxi-
mated using a polynomial of order T as hq[r]≈ ∑

T
t=0 ft [r]

( q
P

)t where the poly-
nomial argument, q

P , lies in the range 0≤ q
P < 1.

i) The Farrow filter shown in Figure 4.3 calculates its output, y[n], from
y[n+ k] = ∑

T
t=0
( q

P

)t vt [n] where each of the signals vt [n] is obtained
from x[n] by applying a filter, Gt(z), whose coefficients do not de-
pend on q. Derive an expression for the coefficients of Gt(z) so that
Figure 4.3 is approximately equivalent to Figure 4.2. [ 4 ]

ii) Suppose that P = 20, M = 199 and T = 4. For each of Figure 4.2
and Figure 4.3, estimate the number of multiplications required per
input sample, x[n]. [ 3 ]

iii) Explain why the implementation of Figure 4.3 may be preferable to
that of Figure 4.2 under some circumstances. [ 2 ]

Figure 4.3
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Datasheet:

Standard Sequences

• δ [n] = 1 for n = 0 and 0 otherwise.

• δcondition[n] = 1 whenever "condition" is true and 0 otherwise.

• u[n] = 1 for n≥ 0 and 0 otherwise.

Geometric Progression

• ∑
r
n=0 αnz−n = 1−αr+1z−r−1

1−αz−1 provided that αz−1 6= 1.

• ∑
∞
n=0 αnz−n = 1

1−αz−1 provided that
∣∣αz−1

∣∣< 1.

Forward and Inverse Transforms

z: X(z) = ∑
∞
−∞ x[n]z−n x[n] = 1

2π j

¸
X(z)zn−1dz

CTFT: X( jΩ) =
´

∞

−∞
x(t)e− jΩ tdt x(t) = 1

2π

´
∞

−∞
X( jΩ)e jΩ tdΩ

DTFT: X(e jω) = ∑
∞
−∞ x[n]e− jωn x[n] = 1

2π

´
π

−π
X(e jω)e jωndω

DFT: X [k] = ∑
N−1
0 x[n]e− j2π

kn
N x[n] = 1

N ∑
N−1
0 X [k]e j2π

kn
N

DCT: X [k] = ∑
N−1
n=0 x[n]cos 2π(2n+1)k

4N x[n] = X [0]
N + 2

N ∑
N−1
n=1 X [k]cos 2π(2n+1)k

4N

MDCT: X [k] = ∑
2N−1
n=0 x[n]cos 2π(2n+1+N)(2k+1)

8N y[n] = 1
N ∑

N−1
0 X [k]cos 2π(2n+1+N)(2k+1)

8N

Convolution

DTFT: v[n] = x[n]∗ y[n], ∑
∞
r=−∞ x[r]y[n− r] ⇔ V

(
e jω
)
= X

(
e jω
)

Y
(
e jω
)

v[n] = x[n]y[n] ⇔ V
(
e jω
)
= 1

2π
X
(
e jω
)
~Y

(
e jω
)
= 1

2π

´
π

−π
X
(
e jθ
)

Y
(
e j(ω−θ)

)
dθ

DFT: v[n] = x[n]~N y[n], ∑
N−1
r=0 x[r]y[(n− r) mod N ] ⇔ V [k] = X [k]Y [k]

v[n] = x[n]y[n] ⇔ V [k] = 1
N X [k]~N Y [k], 1

N ∑
N−1
r=0 X [r]Y [(k− r) mod N ]

Group Delay

The group delay of a filter, H(z), is τH(e jω) = −d∠H(e jω )
dω

= ℜ

(
−z

H(z)
dH(z)

dz

)∣∣∣
z=e jω

= ℜ

(
F (nh[n])
F (h[n])

)
where

F () denotes the DTFT.
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Order Estimation for FIR Filters

Three increasingly sophisticated formulae for estimating the minimum order of an FIR filter with unity
gain passbands:

1. M ≈ a
3.5∆ω

2. M ≈ a−8
2.2∆ω

3. M ≈ a−1.2−20log10 b
4.6∆ω

where a =stop band attenuation in dB, b = peak-to-peak passband ripple in dB and ∆ω = width of
smallest transition band in radians per sample.

z-plane Transformations

A lowpass filter, H(z), with cutoff frequency ω0 may be transformed into the filter H(ẑ) as follows:

Target H(ẑ) Substitute Parameters

Lowpass
ω̂ < ω̂1

z−1 = ẑ−1−λ

1−λ ẑ−1 λ =
sin
(

ω0−ω̂1
2

)
sin
(

ω0+ω̂1
2

)

Highpass
ω̂ > ω̂1

z−1 =− ẑ−1+λ

1+λ ẑ−1 λ =
cos
(

ω0+ω̂1
2

)
cos
(

ω0−ω̂1
2

)

Bandpass
ω̂1 < ω̂ < ω̂2

z−1 =− (ρ−1)−2λρ ẑ−1+(ρ+1)ẑ−2

(ρ+1)−2λρ ẑ−1+(ρ−1)ẑ−2 λ =
cos
(

ω̂2+ω̂1
2

)
cos
(

ω̂2−ω̂1
2

) , ρ = cot
(

ω̂2−ω̂1
2

)
tan
(

ω0
2

)
Bandstop

ω̂1 ≮ ω̂ ≮ ω̂2

z−1 = (1−ρ)−2λ ẑ−1+(ρ+1)ẑ−2

(ρ+1)−2λ ẑ−1+(1−ρ)ẑ−2 λ =
cos
(

ω̂2+ω̂1
2

)
cos
(

ω̂2−ω̂1
2

) , ρ = tan
(

ω̂2−ω̂1
2

)
tan
(

ω0
2

)

Noble Identities

Multirate Spectra

Upsample: x[r] =

{
v
[

r
Q

]
ifQ | r

0 ifQ - r
⇒ X(z) =V (zQ)

Downsample: y[m] = v[Qm] ⇒ Y (z) = 1
Q ∑

Q−1
k=0 V

(
e
− j2πk

Q z
1
Q

)
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Multirate Commutators

Input Commutator Output Commutator
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DIGITAL SIGNAL PROCESSING AND DIGITAL FILTERS

********* Solutions *********

Information for Candidates:

Notation

• All signals and filter coefficients are real-valued unless explicitly noted otherwise.

• Unless otherwise specified, upper and lower case letters are used for sequences and their z-transforms
respectively. The signal at a block diagram node V is v[n] and its z-transform is V (z).

• x[n] = [a, b, c, d, e, f ] means that x[0] = a, . . . x[5] = f and that x[n] = 0 outside this range.

• ℜ(z), ℑ(z), z∗, |z| and ∠z denote respectively the real part, imaginary part, complex conjugate,
magnitude and argument of a complex number z.

• Where necessary, the sample rate of a signal in a block diagram is indicated in the form “@ f ”.

Abbreviations

BIBO Bounded Input, Bounded Output IIR Infinite Impulse Response
CTFT Continuous-Time Fourier Transform LTI Linear Time-Invariant
DCT Discrete Cosine Transform MDCT Modified Discrete Cosine Transform
DFT Discrete Fourier Transform PSD Power Spectral Density

DTFT Discrete-Time Fourier Transform SNR Signal-to-Noise Ratio
FIR Finite Impulse Response

A datasheet is included at the end of the examination paper.
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********* Questions and Solutions *********

1. a) The signals x[n] and y[n] are defined as

x[n] =

{
2−n n > 0
0 n≤ 0

, and y[n] =

{
0 n > 0
5−n n≤ 0

.

i) Determine the z-transform of x[n] and its region of convergence. [ 3 ]

X(z) =
∞

∑
n=1

2−nz−n = 2−1z−1
∞

∑
n=0

2−nz−n =
0.5z−1

1−0.5z−1 =
1

2z−1

provided that
∥∥2−1z−1

∥∥< 1⇔ |z|> 0.5.

Many people started the sum at n = 0 instead of n = 1. Several peo-
ple omitted the modulus sign and gave the ROC as z > 0.5; since z
is complex, this makes no sense (“>” must always have real argu-
ments).

ii) Determine the z-transform of y[n] and its region of convergence.[ 3 ]

Y (z) =
0

∑
n=−∞

5−nz−n =
∞

∑
m=0

5mzm =
1

1−5z

provided that ‖5z‖< 1⇔ |z|< 0.2.

Some negated the answer (perhaps because they were interchanging
the summation limits and drew an incorrect analogy with integrals).

You may assume without proof that ∑
∞
n=0 αn = 1

1−α
provided that |α|< 1.

b) Consider the convolution y[n] = h[n] ∗ x[n] = ∑
M
m=0 h[m]x[n−m] where h[n] is

the impulse response of an FIR filter of order M (i.e. n ∈ [0, M]) and x[n] is a
signal defined for n ∈ [−∞, ∞].

In the overlap-save method of convolution, y[n] is divided into blocks of length
K and a circular convolution of length K +M is used to calculate each block.
To calculate block b, the circular convolution evaluates

y[bK +n] =
M

∑
m=0

h[m]x[(n−m+M)mod(K+M)−M+bK]

for n ∈ [0,K−1]. The notation PmodQ denotes the remainder when P is divided
by Q and satisfies 0≤ PmodQ < Q.

i) Show that the expression given above is equivalent to the direct con-
volution given by y[bK +n] = ∑

M
m=0 h[m]x[bK +n−m]. [ 3 ]
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For m ∈ [0, M] and n ∈ [0, K − 1], the value of n−m+M lies in
the range 0−M +M = 0 to K − 1− 0 + M = K +M− 1 (where
the first expression takes the lowest value of n and the highest of m
and the second expression takes the opposite). It follows that, since
(n−m+M) ∈ [0, K +M− 1], the modulo operation has no effect
and (n−m+M) mod (K+M) = n−m+M. Thus we can write

y[bK +n] =
M

∑
m=0

h[m]x[(n−m+M) mod (K+M)−M+bK]

=
M

∑
m=0

h[m]x[(n−m+M)−M+bK]

=
M

∑
m=0

h[m]x[bK +n−m]

Not everyone’s handwriting makes a clear distinction between “m”
and “M”. Several people showed that (n−m+M) < K + M but
not that (n−m+M) ≥ 0; both these conditions must be true for
“ mod (K +M)” to have no effect.

ii) Suppose that a circular convolution of length R requires approxi-
mately 5R log2 R multiplications. If M = 200, estimate the number
of multiplications per output sample required by the overlap-save
method when K = 20, 1500 and 104 and compare these results with
the number of multiplications required for implementing the direct
convolution. [ 4 ]

The overlap-save method uses a circular convolution of length M+K
to calculate K values of y[n]. The number of multiplications per out-
put sample is therefore 5 M+K

K log2 (M+K). For M = 200 and K =
{20, 1500, 10000} this gives {428.0, 60.8, 67.9} per output sample
or {8560, 91220, 679130} per entire block. A direct convolution re-
quires M+1= 201 multiplications per output sample or {4020, 301500, 2010000}
per entire block, so the overlap save method is more efficient for
moderate K. For large K the number of multiplications is approx-
imately 5log2 K which increases slowly with K. Although not re-
quested in the exam, the optimum value of K is the root of M ln(M+K)=
K which, for M = 200, is K = 1486.

Many people calculated the number of multiplications per block of K
outputs rather than the number for each output sample as the ques-
tion asked. Several people doubled the number of multiplications
needed for the overlap-save mehod (possibly remembering that a
circular convolution requires two DFTs) even though the question
explicitly says how many multiplications are needed. Others dou-
bled the number needed for the direct convolution (perhaps includ-
ing the additions as well). Very few people comment on the slightly
surprising fact that the benefit decreases for very large K meaning
that there is an optimum value of K to use.
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c) The filter H(z) is given by

H(z) =
1+ z−1

1− z−1 +0.8z−2 .

The pole-zero diagram and magnitude response (in dB) of H(z) are shown in
Figures 1.1 and 1.2 respectively.

i) Determine the transfer function F(z) = H(z2) and sketch its pole-
zero diagram and magnitude response in dB. It is not necessary to
determine exact values of the magnitude response. [ 4 ]

The transfer function is F(z) = 1+z−2

1−z−2+0.8z−4 . The poles and zeros of
F(z) are the square root of the poles and zeros of H(z) since H(z0) =

0⇔ F(z
1
2
0 ) = 0. Therefore the zero at z = −1 becomes a zero pair

at ± j and the pole pair at 0.5±0.74 j becomes two pole pairs with
half the argument at ±0.835± 0.444 j (candidates are not required
to calculate the exact values).These poles move closer to the unit
circle and the peak bandwidths are correspondingly halved. The
two square roots of a complex number have the same magnitude but
are 180◦ apart. The magnitude response is shrunk horizontally by a
factor of 2 and replicated but is otherwise unchanged.

A sketched graph needs a scale on each axis; many people omitted
these. Many people put the zeros at ±1 instead of ± j. Quite a few
had the gain only falling to ≈ 10dB at ω = π

2 rather than to −∞dB
as is correct. A few people had the second half of the response flipped
horizontally making it an exact repetition of the first half, i.e. the re-
sponse jumped from −∞dB to 8dB at ω = π

2 . Several people added
two new poles at the reciprocal positions of the original ones. A few
people flipped the response so that it went to−∞dB at ω = 0 instead
of at ω = π

2 .

ii) Determine the transfer function G(z) =H(1.25z) and sketch its pole-
zero diagram and magnitude response in dB. It is not necessary to
determine exact values of the magnitude response. [ 4 ]

The coefficients of H(z) are multiplied by 1.25−n = {1, 0.8, 0.64} so
the transfer function is G(z) = 1+0.8z−1

1−0.8z−1+0.512z−2 . The poles and zeros
of F(z) are the poles and zeros of H(z) but multiplied by 1

1.25 =
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0.8 since H(z0) = 0⇔ G
( z0

1.25

)
= 0. Therefore they have the same

arguments as before but are moved inwards towards the origin. Since
the pole pair is further from the unit circle, the magnitude response
peak is lower and has a larger bandwidth.

Most got this right. Often there were no labelled values on the axes
of the sketched magnitude response; even a sketched graph needs
axis scales. Some found the new pole/zero positions by finding the
roots of the transformed equations rather than by transforming the
pole/zero positions of H(z) which is much easier.

Figure 1.1 Figure 1.2

d) A bilinear transformation, s = α
z−1
z+1 , is used to convert a continuous-time filter

into a discrete-time filter.

i) Show that if α = Ω0
tan(0.5ω0)

then z = e jω0 ⇔ s = jΩ0. [ 3 ]

We will calculate s× z+1
z−1 and show that it equals α .

s× z+1
z−1

= jΩ0×
e jω0 +1
e jω0−1

= jΩ0×
e j0.5ω0

(
e0.5 jω0 + e−0.5 jω0

)
e j0.5ω0 (e0.5 jω0− e−0.5 jω0)

= jΩ0×
e0.5 jω0 + e−0.5 jω0

e0.5 jω0− e−0.5 jω0

= jΩ0×
2cos(0.5ω0)

2 j sin(0.5ω0)
=

Ω0

tan(0.5ω0)
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Most people got this correct although sometimes after a lot of alge-
bra.

ii) A continuous-time highpass filter with a cutoff frequency of 1kHz is
given by H(s) = s

s+Ω0
where Ω0 = 2000π rad/s. Using the bilinear

transformation given above, determine the coefficients (to 3 decimal
places) of a discrete-time filter having an unnormalized cutoff fre-
quency of 1kHz. The sample frequency is 8kHz. [ 4 ]

The normalized cutoff frequency of the discrete-time filter is ω0 =
Ω0
fs
= 2000π

8000 = π

4 = 0.785.The filter is

H(z) = α
z−1
z+1

÷
(

α
z−1
z+1

+Ω0

)
(α (z−1)+Ω0 (z+1))

= α (z−1)÷ (α (z−1)+Ω0 (z+1))

=
z−1(

Ω0
α
+1
)

z+
(

Ω0
α
−1
)

=
1− z−1(

Ω0
α
+1
)
+
(

Ω0
α
−1
)

z−1

Since α = Ω0
tan(0.5ω0)

= 6283.2
0.41421 = 15168.95, Ω0

α
= tan(0.5ω0) = 0.414.

Thus the filter is

H(z)=
1− z−1(

Ω0
α
+1
)
+
(

Ω0
α
−1
)

z−1
=

1− z−1

1.414−0.586z−1 =
0.707−0.707z−1

1−0.414z−1

Some people had their calculators set to “degrees” when calculating
tan
(

π

8

)
which results in a big error. Even though Ω0 is given in

the question as 2000π , quite a few people recalculated it to have
a different value, often π

4 ; this resulted in entirely the wrong value
for α . Although the question asked for the coefficients to 3 decimal
places, many people left them in symbolic form.
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e) i) Explain why the average power of a discrete time signal (i.e. the
average energy per sample) is always decreased by upsampling but is
normally unchanged by downsampling. Give an example of a signal
for which the latter statement is untrue. [ 3 ]

Upsampling by Q inserts Q− 1 zero-valued samples between each
of the original samples. Thus in any given time interval, the energy
stays the same but the number of samples is multiplied by Q. It
follows that the power of the signal has been reduced by a factor of
Q.

Downsampling by Q removes Q− 1 out of every Q samples but the
average energy of the remaining smples will be unchanged. There-
fore, if the average energy of the samples that are removed is the
same as the average energy of the retained samples, the signal power
will be unchanged.

If we define a signal x[n] =

{
0 neven
1 nodd

then the average power of

x[n] is 0.5. However, if we downsample by 2 then the resultant signal
is always 0 and its average power is 0.

Some chose white noise as their example signal; however the power
of white noise is unchanged by downsampling. For the example sig-
nal, you need one in which the average power of the odd and even
samples is different (assuming Q = 2). Several said that this was
related to aliasing which is only half right: aliasing is a necessary
but insufficient condition for the average power to change because it
depends on the relative phases of the aliasing components.

ii) Figure 1.3 shows the power spectral density (PSD) of a real-valued
signal, x[n]; the horizontal portions of the PSD have values 1 or 4.
The signal y[m] is obtained by upampling x[n] by a factor of 3 as
shown. Draw a dimensioned sketch of the PSD of y[m] giving the
values of all horizontal portions of the graph and the values of all
frequencies at which there is a discontinuity in the PSD. [ 3 ]

Figure 1.3

The upsampled PSD is shrunk horizontally by a factor of 3 and repli-
cated at intervals of 2π

3 . The total power, which equals 1
2π

´
Sxx(e jω)dω ,
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has been reduced by a factor of 3 for the reason given n part i).
The discontinuities are at ω = {0.2, 0.4, 2π

3 − 0.4, 2π

3 − 0.2, 2π

3 +
0.2, 2π

3 +0.4}which equal ω = {0.2, 0.4, 1.694, 1.894, 2.294, 2.494}.
The horizontal levels are 0.333 and 1.333.

Several people either omitted the second peak altogether or else
placed it at ω = π

3 +[0.2, 0.4]. If you upsample by K, the images of
±ω0 are at n 2π

K ±
ω0
K (i.e. ω = 0 maps to multiples of 2π

K ). Quite a lot
of people had the first peak from ω = [0.2, 0.5] instead of [0.2, 0.4]
for some reason.

f) Figure 1.4 shows the block diagram of a two-band analysis processor. The
inputs to the adder/subtractor blocks, ⊕, are additive unless labelled with a
minus sign in which case they are subtractive.

i) By using the Noble identities or otherwise, determine H0(z) and
H1(z) so that Figure 1.5 is equivalent to Figure 1.4. [ 3 ]

Using the Noble identities we can swap the downsamplers with the
filters which then become P0(z2) and P1(z2). We can then swap the
downsamplers with the adder network (since sample-rate changes
commute with addition/subtraction) to obtain an equivalent diagram:

.

This is equivalent to Figure 1.5 with H0(z) = P0(z2)+ z−1P1(z2) and
H1(z) = P0(z2)− z−1P1(z2).

Several people negated the expression for H1(z) for some reason.
Quite a few changed the exponent in the wrong direction and wrote
H0(z) = P0(z

1
2 )+ z−1P1(z

1
2 ); in the Noble identities, the higher ex-

ponent is always on the side with the higher sample rate. Some just
ignored the adder network and said H0(z) = P0(z2) and H1(z) =
z−1P1(z2). Some tried to solve the probalem by expressing U0(z)
in terms of X(z) which invlolves a lot of algebra and many opportu-
nities for mistakes.

ii) Assuming that P0(z) and P1(z) are FIR filters with real-valued coef-
ficients, show that

∣∣H1
(
e jω
)∣∣ = ∣∣H0

(
e j(π−ω)

)∣∣ and explain the sig-
nificance of this relationship. [ 3 ]
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We can see that H1(z)=P0(z2)−z−1P1(z2)=P0((−z)2)+−(−z)P1((−z)2)=
H0(−z).

It follows that H1
(
e jω
)
=H0

(
−e jω

)
=H0

(
e j(ω−π)

)
=H∗0

(
e j(π−ω)

)
where the final equivalence uses the fact that all the coefficients of
H0(z) are real-valued. It follows that

∣∣H1
(
e jω
)∣∣ = ∣∣H0

(
e j(π−ω)

)∣∣.
Thus the magnitude response of H1(z) is the same as that of H0(z)
but reflected around ω = π

2 .

Some completely ignored the modulus signs (but the relationship
without these is false since H1

(
e jω
)
= H∗0

(
e j(π−ω)

)
).

Figure 1.4 Figure 1.5
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2. In the block diagram of Figure 2.1 the outputs of all adders and delay elements are on
the right and solid arrows indicate the direction of information flow. The real-valued
gain of each multiplier is written adjacent to its triangular symbol.

Figure 2.1

a) Show that [ 8 ]

G(z) =
Y (z)
X(z)

=
q+ pz−1 + z−2

1+ pz−1 +qz−2 .

From the diagram, we can write

U = z−1 (X− (pU +q(X +V ))) = z−1 ((1−q)X− pU−qV )

⇒ (1−q)X− (z+ p)U−qV = 0

V = z−1U

Y = V + pU +q(X +V ) = qX + pU +(1+q)V.

We now need to eliminate U and V from these equations. Substituting for V
gives

0 = (1−q)X− (z+ p)U−qz−1U

⇒ U =
1−q

z+ p+qz−1 X

Y = qX + pU +(1+q)z−1U

= qX +

(
p+ z−1 +qz−1

)
(1−q)

z+ p+qz−1 X

=
qz+ pq+q2z−1 + p+ z−1 +qz−1− pq−qz−1−q2z−1

z+ p+qz−1 X

=
qz+ p+ z−1

z+ p+qz−1 X =
q+ pz−1 + z−2

1+ pz−1 +qz−2 X

Mostly done OK. Some people got confused between their own handwritten
symbols for “U” and “V ”.

b) Prove that
∣∣G(e jω)

∣∣= 1 for all ω . [ 6 ]
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If z = e jω , then z−1 = z∗ and |z|= 1. We can write

|G(z)| =

∣∣q+ pz−1 + z−2
∣∣

|z−2 (z2 + pz+q)|

=

∣∣∣q+ pz∗+(z∗)2
∣∣∣

|z−2| |z2 + pz+q|

=

∣∣(z2 + pz+q
)∗∣∣

1×|z2 + pz+q|

=

∣∣z2 + pz+q
∣∣

|z2 + pz+q|
= 1.

where the second line relies on z−1 = z∗ and the third line on the fact that p and
q are real-valued .

Some multiplied the fraction by its complex conjugate which gives the correct
result after quite a lot of algebra. Others substituted z = cosω + j sinω early
on which also results in a lot of algebra (especially if you then multiply the
numerator and denominator by their complex conjugates). Many people did
not explicitly state where they were relying on p and q being real and/or that
z−1 = z∗ which is only true for z on the unit circle. One or two people said∣∣z2 + pz+q

∣∣= ∣∣z2
∣∣+ |pz|+ |q|which is only a valid step if all the terms involved

are real and positive (not true in this case). One or two people just said that∣∣G(e jω)
∣∣ = 1 must be true because the numerator and denminator coefficients

were reflected copies of each other; this is not a proof.

c) Figure 2.2 shows a graph of ∠G(e jω) when p =−1.2 and q = 0.8. The dotted
lines indicate the frequencies, ω = {a, b, c}, at which G(e jω) = {− j,−1,+ j}
respectively. Given that G(e jb) = −1, derive the general formula cosb = −p

q+1
and find the numerical value of b for the given values of p and q. [ 6 ]

If z = e jb, then z+ z−1 = 2cosb (used in line 5 below). From G(z) = −1, we
can write

G(z) =−1 =
qz2 + pz+1
z2 + pz+q

−
(
z2 + pz+q

)
= qz2 + pz+1

(q+1)z2 +(1+q)+2pz = 0

(q+1)z+(q+1)z−1 +2p = 0

2(q+1)cosb+2p = 0

cosb =
−p

q+1
.

For the given values of p and q,

b = cos−1 −p
q+1

= cos−1 0.667

= 0.8411
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Several people tried to solve ∠G(e jb) = π; this leads to a nasty trigonometrical
equation which very few successfully solved..

Figure 2.2

d) The filter H(z) is defined as H(z) = 1
2 (1+G(z)).

i) Determine the value of H(e jω) for each of ω = {a, b, c} defined
above.
Hence, for p = −1.2 and q = 0.8, sketch a graph of

∣∣H(e jω)
∣∣ for

ω ∈ [0, π] using linear scales for both axes. [ 6 ]

For ω = {a, b, c} we know that G(e jω) = {− j,−1,+ j} and so
H(e jω)= 1

2 {1− j, 1−1, 1+ j}= {0.5−0.5 j, 0, 0.5+0.5 j}. From
this,

∣∣H(e jω)
∣∣ = {0.707, 0, 0.707}. In addition, for ω = {0, π},

z = ±1 and G(z) = q±p+1
1±p+q = 1 and so H(z) = 1

2 (1+G(z)) = 1 as
well. We also have G(e j0) = G(e jπ) = 1 which means that H(e j0) =
H(e jπ) = 1 Thus we have a notch filter

Surprisingly, many people correctly calculated H(e jb) = 0 but then
plotted its gain as some other value, e.g. 0.5, on the graph. Also,
many people did not have the correct gain of 1 at ω = 0 and ω = π .

ii) For p =−1.2 and q = 0.8, determine the poles and zeros of H(z) in
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polar form and sketch a diagram of the complex plane that includes
the unit circle and the poles and zeros of H(z) (indicated by × and ◦
respectively). [ 4 ]

We have

H(z) =
1
2
(1+G(z)) =

1
2

(
1+

qz2 + pz+1
z2 + pz+q

)
=

(q+1)z2 +2pz+(q+1)
2(z2 + pz+q)

Thus the poles are the roots of z2+ pz+q = 0, i.e. z = −p±
√

p2−4q
2 =

0.6± j
√

0.44 = 0.6± 0.6633 j = 0.8944∠± 0.8355 = 0.8944∠±
47.9◦

The zeros are the roots of (q+1)z2 + 2pz+ (q+1) = 0, i.e. z =
−p±
√

p2−(q+1)2

q+1 = 1.2± j
√

1.8
1.8 = 1.2±1.342

1.8 = 0.667±0.745 j = 1∠±0.841=
1∠±48.2◦.

The pole-zero diagram is therefore

Many people did not place the zeros exactly on the unit circle; if the
gain is zero at ω0 then there must be a zero at e jω0 .
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3. a) A symmetric Hanning window of odd length M+1 is defined as

w[n] = 0.5+0.5cosωMn,

where ωM = 2π

(M+1) and −0.5M ≤ n≤ 0.5M.

i) Show that the DTFT of w[n] is given by

W (e jω) = 0.5
sin0.5(M+1)ω

sin0.5ω

+0.25
sin0.5(M+1)(ω−ωM)

sin0.5(ω−ωM)

+0.25
sin0.5(M+1)(ω +ωM)

sin0.5(ω +ωM)
.

You may assume without proof that ∑
0.5M
n=−0.5M e jαn = sin0.5(M+1)α

sin0.5α

provided that α 6= 0. [ 5 ]

From the DTFT formula in the datasheet. we have

W (e jω) =
0.5M

∑
n=−0.5M

w[n]e− jnω

=
0.5M

∑
n=−0.5M

(0.5+0.5cosωMn)e− jnω

=
0.5M

∑
n=−0.5M

(
0.5+0.25e jωMn +0.25e− jωMn)e− jnω

=
0.5M

∑
n=−0.5M

0.5e− jnω +0.25e− j(ω−ωM)n +0.25e− j(ω+ωM)n

The summation formula given in the question can now be applied
to each of these terms to obtain the desired result. The first term,
for example, has α = −ω so that the sum is 0.5 sin−0.5(M+1)ω

sin−0.5ω
=

0.5−sin0.5(M+1)ω
−sin0.5ω

= 0.5 sin0.5(M+1)ω
sin0.5ω

. Note that the minus sign in the
exponent of the summand cancels out and so has no effect.

Most people did this OK. A few people did not think to express the
cosωMn term as a sum of exponentials and, instead, expressed the
e− jnω factor as cosnω − j sinnω . In most instances, manipulating
exponentials is much easier than manipulating trigonometric func-
tions. A few people did not notice that the formula for ∑

0.5M
n=−0.5M e jαn

was given in the question and tried, often unsuccessfully, to sum the
geometric progression from first principles. The sum can be con-
verted to a more familiar form by taking out a factor:

0.5M

∑
n=−0.5M

e jαn = e−0.5 jαM
M

∑
n=0

e jαn = e−0.5 jαM

(
1− e jα(M+1)

1− e jα

)

= e−0.5 jαM

(
e0.5 jα(M+1)

(
e−0.5 jα(M+1)− e0.5 jα(M+1)

)
e0.5 jα(e−0.5 jα − e0.5 jα)

)

=
e−0.5 jα(M+1)− e0.5 jα(M+1)

e−0.5 jα − e0.5 jα

=
−2 j sin0.5(M+1)α

−2 j sin0.5α
=

sin0.5(M+1)α

sin0.5α
.
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ii) We define S(ω) to be the integrated spectrum

S(ω) =
1

2π

ˆ
ω

θ=0
W (e jθ )dθ .

Using the inverse DTFT formula or otherwise, show that S(π) = 0.5.
[ 3 ]

Since W (e jω) is even [because (a) w[n] is real and even or alter-
natively (b) the expression given in part (i) is the sum of three even
terms], we can write

S(π) =
1

2π

ˆ
π

θ=0
W (e jθ )dθ

=
1
2
× 1

2π

ˆ
π

ω=−π

W (e jω)dω

=
1
2
× 1

2π

ˆ
π

ω=−π

W (e jω)e jω0dω

=
1
2
×w[0] =

1
2
×1 = 0.5

where we use the fact that W (e jω) is even in line 2 and the inverse
DTFT formula for w[n] = 1

2π

´
π

−π
W (e jω)e jωndω with n = 0 in line

4.

Many found this difficult and did not realize that it is possible to
eliminate the factor e jωn in the IDTFT formula by setting n = 0.

b) i) Show that, if G(z) is an ideal lowpss filters with

G(e jω) =

{
1 |ω| ≤ ω0

0 ω0 < |ω| ≤ π
, then g[n] =

sinω0n
πn

.

[ 4 ]

From the inverse DTFT formula

g[n] =
1

2π

ˆ
π

−π

G(e jω)e jωndω

=
1

2π

ˆ
ω0

−ω0

e jωndω

=
1

2π jn

[
e jωn]ω0

−ω0

=
1

2π jn

(
e jω0n− e− jω0n)

=
1

2π jn
×2 j sinω0n =

sinω0n
πn

.

Almost everyone did this OK.
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ii) By combining the ideal response from part b) i) with the Hanning
window from part a), use the window method to design a causal
lowpass filter, H(z), of order M with a cutoff frequency of ω0.

Give a formula for the impulse response, h[n], of the filter where
0≤ n≤M. [ 3 ]

We multiply (in the time domain) the ideal impulse response by the
window to obtain the FIR impulse response as h[n] = g

[
n− M

2

]
w
[
n− M

2

]
where the time-shift of M

2 samples is needed to make a causal filter.
As an explicit formula, this is

h[n] =
sinω0

(
n− M

2

)
π
(
n− M

2

) ×
(

0.5+0.5cosωM

(
n−M

2

))
for 0≤ n≤M.

Surprisingly a few people tried to do a convolution in the frequency
domain instead of the much easier multiplication in the time domain.
To do the time-shifting, you need to replace all three occurences of
n by n− M

2 ; a few people only replaced one or two of them. Some
people omitted the time shifting altogether giving a non-causal filter.

iii) Show that H(e jω) = e−0.5 jωM (S(ω +ω0)−S(ω−ω0)) . [ 5 ]

From the convolution section of the datasheet, the DTFT of h[n+
M
2 ] = g [n]w [n] is

e0.5 jωMH(e jω) =
1

2π

ˆ
π

θ=−π

G(e jθ )W (e j(ω−θ))dθ

=
1

2π

ˆ
ω0

θ=−ω0

W (e j(ω−θ))dθ

=
−1
2π

ˆ
ω−ω0

φ=ω+ω0

W (e jφ )dφ

= − [S(φ)]ω−ω0
ω+ω0

= S(ω +ω0)−S(ω−ω0)

where in the second line we restrict the integral to the support of
G(e jω) and in the third line we substitute θ = ω − φ ; performing
this substitution multiplies the integral by dθ

dφ
=−1.

Since convolution is commutative, you can also write the convolution
as the integral of W (e jθ )G(e j(ω−θ)); however, if you do this, is is
somewhat more complicated to determine the integration limits that
impose the support of G(e jω) to be [−ω0, ω0].

[This question is continued on the next page]
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c) Figures 3.1 and 3.2 show W (e jω) and S(ω) for a Hanning window of length
M+1 = 41. The first few values of ω for which S(ω) either equals 0.5 or has
a turning point are listed in the following table:

ω 0.2565 0.3065 0.4003 0.4598 0.5490
S(ω) 0.5 0.5064 0.5 0.4981 0.5

.

For the case ω0 = 1, the magnitude response,
∣∣H(e jω)

∣∣, of the resultant lowpass
FIR filter from part b) is shown in Figure 3.3 plotted in dB. The ideal response,
G(e jω), is shown on the graph as a dashed line. Using appropriate values from
the table given above,

i) estimate the smallest positive ω (marked “a” in Figure 3.3) for which
H(e jω) = 0; [ 3 ]

From Figure 3.3, the answer is in the region of ω ≈ 1.2. Thus ω +
ω0 ≈ 2.2 and, from 3.2, S(ω +ω0) ≈ 0.5. We therefore need to find
the smallest ω for which S(ω−ω0) = S(ω +ω0)−H(e jω) = 0.5−
0= 0.5. From the table, this happes when ω−ω0 = 0.2565 i.e. when
ω = 1.2565. Although not requested in the exam, the figure below
shows the integration range φ =(ω−ω0, ω +ω0) when ω = 1.2565
:

.

This value of ω gives H(e jω) = 0; the range of integration includes
a small part of the main lobe which exactly cancels out the negative
integral of the rest of the range.

Many people did not answer part (c) at all. Most of those who tried
it however, got this part correct although a few took the value of ω

when W (e jω) = 0(i.e. ω = 1.3065).

ii) estimate the magnitude in dB (marked “b” in Figure 3.3) of the first
peak in the stopband; [ 3 ]

As in the previous part, we can assume that S(ω +ω0) ≈ 0.5 which
means that H(e jω) = 0.5−S(ω−ω0). First peak in

∥∥H(e jω)
∥∥ in the

stopband will therefore be at the peak of S(ω−ω0) when ω−ω0 =
0.3065, i.e. ω = 1.3065. At this frequency, we have H(e jω) = 0.5−
0.5064 = −0.0064; note that the peaks in Figure 3.3 correspond
to values of H(e jω) that are alternately negative and positive. It
follows that

∣∣H(e jω)
∣∣ = 20log10 0.0064 = −43.9dB. Although not

requested in the exam, the figure below shows the integration range
φ = (ω−ω0, ω +ω0) when ω = 1.3065 :
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.

This value of ω gives the most negative value of H(e jω) because the
range of integration excludes the main lobe entirely but includes the
negative lobe that follows it.

Most of those who tried this got it correct,

iii) estimate the peak passband gain in dB. [ 4 ]

Since S(ω) is an odd function, we can write H(e jω) = S(ω +ω0)+
S(ω0−ω) when ω < ω0. If we still assume that S(ω +ω0) ≈ 0.5,
we have the peak gain when ω0−ω = 0.3065 i.e. when ω = 0.6935.
At this frequency, H(e jω) = 0.5+ 0.5064 = 1.0064 = +0.055dB.
Although not requested in the exam, the figure below shows the inte-
gration range φ = (ω−ω0, ω +ω0) when ω = 0.6935 :

.

This value of ω gives the most positive value of H(e jω) because the
range of integration includes all of the the main lobe but excludes
the negative lobe that precedes it.

Mostly OK (for those who attempted it). Not everyone realized how
to calculate S(ω−ω0) when ω < ω0.

Figure 3.1 Figure 3.2
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Figure 3.3
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4. Figure 4.1 shows a system intended to apply a fractional-sample delay to its input signal,
x[n], where the delay is an integer multiple of 1

P samples.

Figure 4.1 Figure 4.2

a) i) Explain the purpose of the lowpass filter, H(z), in Figure 4.1. [ 2 ]

The filter removes frequency components above π

P from the signal. It
is needed because the upsampler, 1 : P, introduces P− 1 images of
the baseband whch must be removed before downsampling, P : 1, to
prevent aliasing.

Mostly correct although the explanations given by some people were
too brief e.g. “Remove aliasing”.

ii) The input signal, x[n], contains frequency components in the range
0≤ω ≤ 0.8π . Using the datasheet formula, M ≈ a

3.5∆ω
, estimate the

order required for H(z) to give a stopband attenuation of 60dB. [ 3 ]

The passband edge for x[n] is given as 0.8π . After upsampling, this
becomes 0.8π

P and the edge of the first image is at 2π−0.8π

P = 1.2π

P .
Thus the transition bandwidth for the filter is ∆ω = 0.4π

P . Substitut-
ing this into the formula, M ≈ 60P

3.5×0.4π
= 13.6P.

Many people used a transition bandwidth of 0.4π instead of 0.4π

P .
Some used the passband width instead of 0.8π

P or, even worse, 0.8π .

iii) For a direct implementation of Figure 4.1, estimate as a function of
P the number of multiplications required per input sample, x[n].[ 3 ]

The number of multiplications per sample of v[m] is M+1= 13.6P+
1. The number per input sample, x[n], is therefore (13.6P+1)P =
13.6P2 +P.

Some people gave M+1
P instead of (M+1)×P.

iv) If H(z) is a causal symmetric FIR filter of order M, determine the
delay of y[n] relative to x[n] as a function of M and d. [ 3 ]

If H(z) is a symmetric causal filter of order M, it will introduce a
delay of M

2 samples and the z−d delay will introduce a further d
samples giving M+2d

2 samples delay in all at the high sample rate.
Thus, at the input sampling rate, we have a delay of M+2d

2P samples.

Many gave the delay of the symmetric filter as M or M + 1 instead
of M

2 . To see why it must be M
2 , consider a filter zero except for
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its central coefficient, h
[M

2

]
being 1; this clearly has a delay of M

2 .
Many people did not divide by P to convert the delay to the output
sample rate.

b) i) The signal w[m] in Figure 4.1 is given by w[m] = ∑
M
s=0 h[s]u[m− s]

where h[s] is the impulse response of H(z).
If m = Pn+ p where 0 ≤ p < P, show that w[m] may be written in
the form w[m] = ∑

R
r=0 hp[r]x[n− r]. Determine the value of R and

give an expression for hp[r] in terms of h[s]. [ 6 ]

We have

w[m] =
M

∑
s=0

h[s]u[m− s]

=
M

∑
s=0

h[s]u[Pn+ p− s].

However, we know that

u[Pn+ p− s] =

{
x[n+ p−s

P ] P | (p− s)
0 otherwise

.

Hence, u[Pn+ p− s] is zero unless s is of the form s = Pr + p (to
ensure that p− s is a multiple of P). The summation must cover
the range 0 ≤ s = Pr + p ≤ M so r must cover the range 0 ≤ r ≤⌈M+1−P

P

⌉
where the last inequality arise from the condition that max(Pr+ p)=

Pmax(r)+(P−1)≥M. We can therefore write

w[m] =
M

∑
s=0

h[s]u[Pn+ p− s]

=
R

∑
r=0

h[Pr+ p]u[Pn+ p−Pr− p]

=
R

∑
r=0

h[Pr+ p]u[Pn−Pr]

=
R

∑
r=0

h[Pr+ p]x[n− r]

=
R

∑
r=0

hp[r]x[n− r]

where hp[r] = h[Pr+ p] if 0 ≤ Pr+ p ≤M and 0 otherwise. In line
2 above, we restrict the summation to the values of u[] that are non-
zero, i.e. those whose index is a multiple of P. The summation limit
is R =

⌈M+1−P
P

⌉
where d. . .e denotes the ceiling function (i.e. the

smallest integer greater than or equal to its argument). This is the
polyphase decomposition of h[s]. The value of R can also be deduced
from the total number of polyphase coefficients P(R+1) which must
be at least as big as the number of coefficients, M+1, in the original
filter.
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Quite a lot of people recognised this as a polyphase decomposi-
tion; they mostly gave the right expression for hp[r] = h[Pr + p]
but often said R = M+1

P − 1 which only makes sense if M + 1 is
a multiple of P. In the same vein, many people wrote things like
u[Pn+ p− s] = x[Pn+p−s

P ] which is only true if the index of x[] is
an integer. It was quite rare for anyone to give a valid proof that
w[m] = ∑

R
r=0 hp[r]x[n− r].

ii) Derive expressions for q and k in Figure 4.2 as functions of d in Fig-
ure 4.1 so that that the two figures are equivalent. You may assume
that y[n] = w[Pn−d] in Figure 4.1. [ 4 ]

From Figure 4.1, using the expression given in the question, we can
write

y[n] = w[Pn−d] = w[P`+q]

where q = (−d) mod P and Pn−d = P`+q ⇒ `= n− d+q
P . We

now have an expression of the form y[n] = w[P`+q] which allows us
to use the result given in part i) and write

y[n] = w[P`+q] =
R

∑
r=0

hq[r]x[`− r]

=
R

∑
r=0

hq[r]x[n−
d +q

P
− r].

From Figure 4.2 we can write

y[n+ k] =
R

∑
r=0

hq[r]x[n− r]

⇒ y[n] =
R

∑
r=0

hq[r]x[n− k− r]

Equating this with the expression based on Figure 4.2, we must have
k = d+q

P which, since 0 ≤ q < P, is equivalent to k =
⌈ d

P

⌉
where

d· · ·e denotes the smallest integer that is greater than or equal to
its argument (the “ceiling” function). Thus q = (−d) mod P and
k = d+q

P =
⌈ d

P

⌉
.

Many people assumed that d was always a multiple of P which rather
defeats the point of the circuit; this is a much less reasonable as-
sumption than assuming that M+1 is a multiple of P.

c) Suppose now that, for each r, the coefficients hq[r] may be closely approxi-
mated using a polynomial of order T as hq[r]≈ ∑

T
t=0 ft [r]

( q
P

)t where the poly-
nomial argument, q

P , lies in the range 0≤ q
P < 1.
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i) The Farrow filter shown in Figure 4.3 calculates its output, y[n], from
y[n+ k] = ∑

T
t=0
( q

P

)t vt [n] where each of the signals vt [n] is obtained
from x[n] by applying a filter, Gt(z), whose coefficients do not de-
pend on q. Derive an expression for the coefficients of Gt(z) so that
Figure 4.3 is approximately equivalent to Figure 4.2. [ 4 ]

Figure 4.2 calculates y[n+ k] = ∑
R
r=0 hq[r]x[n− r] so we can write

y[n+ k] =
R

∑
r=0

hq[r]x[n− r]

=
R

∑
r=0

T

∑
t=0

ft [r]
( q

P

)t
x[n− r]

=
T

∑
t=0

( q
P

)t R

∑
r=0

ft [r]x[n− r]

,
T

∑
t=0

( q
P

)t
vt [n]

where vt [n], ∑
R
r=0 ft [r]x[n− r]. In line 2, we substituted the expres-

sion for hq[r] given in the question.

It follows that, for each t in the range 0 ≤ t ≤ T , the coefficients of
Gt(z) are given by gt [n] = ft [n] for 0≤ r ≤ R.

Very few people gave a valid derivation of gt [n].

ii) Suppose that P = 20, M = 199 and T = 4. For each of Figure 4.2
and Figure 4.3, estimate the number of multiplications required per
input sample, x[n]. [ 3 ]

For Figure 4.2, we require R+ 1 = M+1
P = 10 multiplications per

input sample. For Figure 4.3, we have T + 1 = 5 filters of length
R+1 = 10 and in addition, we have T = 4 mutiplications per input
sample to evaluate the polynomial using the multipiers at the bottom
of the diagram. This gives a total of 54 multiplications per input
sample which is much more than Figure 4.2 which only requires R+
1 = 10.

Most people got the correct answer for Figure 4.2 but many used the
wrong length for the filters Gt(z) (assuming it was P or even M+1).

iii) Explain why the implementation of Figure 4.3 may be preferable to
that of Figure 4.2 under some circumstances. [ 2 ]

For a fixed fractional delay, Figure 4.2 is clearly preferable since it
entails far fewer multiplications. However Figure 4.3 has the ad-
vantage that the fractional part of the delay, q/P can be varied on
a sample-by-sample basis without needing to change any filter co-
efficients. Also, q is not restricted to being an integer and so the
delay can be varied continuously. The number of coefficients that
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must be stored is (T + 1)(R+ 1) whereas for the implementation of
Figure 4.2, we must store P(R+1). Thus if P > T +1, we have fewer
coefficients to store.

Only a few people gave the correct answer to this part. Several said
that Figure 4.3 required less computation whereas in fact it requires
much more (by a factor of around T +1).

Figure 4.3

Datasheet:

Standard Sequences

• δ [n] = 1 for n = 0 and 0 otherwise.

• δcondition[n] = 1 whenever "condition" is true and 0 otherwise.

• u[n] = 1 for n≥ 0 and 0 otherwise.

Geometric Progression

• ∑
r
n=0 αnz−n = 1−αr+1z−r−1

1−αz−1 provided that αz−1 6= 1.

• ∑
∞
n=0 αnz−n = 1

1−αz−1 provided that
∣∣αz−1

∣∣< 1.

Forward and Inverse Transforms
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z: X(z) = ∑
∞
−∞ x[n]z−n x[n] = 1

2π j

¸
X(z)zn−1dz

CTFT: X( jΩ) =
´

∞

−∞
x(t)e− jΩ tdt x(t) = 1

2π

´
∞

−∞
X( jΩ)e jΩ tdΩ

DTFT: X(e jω) = ∑
∞
−∞ x[n]e− jωn x[n] = 1

2π

´
π

−π
X(e jω)e jωndω

DFT: X [k] = ∑
N−1
0 x[n]e− j2π

kn
N x[n] = 1

N ∑
N−1
0 X [k]e j2π

kn
N

DCT: X [k] = ∑
N−1
n=0 x[n]cos 2π(2n+1)k

4N x[n] = X [0]
N + 2

N ∑
N−1
n=1 X [k]cos 2π(2n+1)k

4N

MDCT: X [k] = ∑
2N−1
n=0 x[n]cos 2π(2n+1+N)(2k+1)

8N y[n] = 1
N ∑

N−1
0 X [k]cos 2π(2n+1+N)(2k+1)

8N

Convolution

DTFT: v[n] = x[n]∗ y[n], ∑
∞
r=−∞ x[r]y[n− r] ⇔ V

(
e jω
)
= X

(
e jω
)

Y
(
e jω
)

v[n] = x[n]y[n] ⇔ V
(
e jω
)
= 1

2π
X
(
e jω
)
~Y

(
e jω
)
= 1

2π

´
π

−π
X
(
e jθ
)

Y
(
e j(ω−θ)

)
dθ

DFT: v[n] = x[n]~N y[n], ∑
N−1
r=0 x[r]y[(n− r) mod N ] ⇔ V [k] = X [k]Y [k]

v[n] = x[n]y[n] ⇔ V [k] = 1
N X [k]~N Y [k], 1

N ∑
N−1
r=0 X [r]Y [(k− r) mod N ]

Group Delay

The group delay of a filter, H(z), is τH(e jω) = −d∠H(e jω )
dω

= ℜ

(
−z

H(z)
dH(z)

dz

)∣∣∣
z=e jω

= ℜ

(
F (nh[n])
F (h[n])

)
where

F () denotes the DTFT.

Order Estimation for FIR Filters

Three increasingly sophisticated formulae for estimating the minimum order of an FIR filter with unity
gain passbands:

1. M ≈ a
3.5∆ω

2. M ≈ a−8
2.2∆ω

3. M ≈ a−1.2−20log10 b
4.6∆ω

where a =stop band attenuation in dB, b = peak-to-peak passband ripple in dB and ∆ω = width of
smallest transition band in radians per sample.

z-plane Transformations

A lowpass filter, H(z), with cutoff frequency ω0 may be transformed into the filter H(ẑ) as follows:
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Target H(ẑ) Substitute Parameters

Lowpass
ω̂ < ω̂1

z−1 = ẑ−1−λ

1−λ ẑ−1 λ =
sin
(

ω0−ω̂1
2

)
sin
(

ω0+ω̂1
2

)

Highpass
ω̂ > ω̂1

z−1 =− ẑ−1+λ

1+λ ẑ−1 λ =
cos
(

ω0+ω̂1
2

)
cos
(

ω0−ω̂1
2

)

Bandpass
ω̂1 < ω̂ < ω̂2

z−1 =− (ρ−1)−2λρ ẑ−1+(ρ+1)ẑ−2

(ρ+1)−2λρ ẑ−1+(ρ−1)ẑ−2 λ =
cos
(

ω̂2+ω̂1
2

)
cos
(

ω̂2−ω̂1
2

) , ρ = cot
(

ω̂2−ω̂1
2

)
tan
(

ω0
2

)
Bandstop

ω̂1 ≮ ω̂ ≮ ω̂2

z−1 = (1−ρ)−2λ ẑ−1+(ρ+1)ẑ−2

(ρ+1)−2λ ẑ−1+(1−ρ)ẑ−2 λ =
cos
(

ω̂2+ω̂1
2

)
cos
(

ω̂2−ω̂1
2

) , ρ = tan
(

ω̂2−ω̂1
2

)
tan
(

ω0
2

)

Noble Identities

Multirate Spectra

Upsample: x[r] =

{
v
[

r
Q

]
ifQ | r

0 ifQ - r
⇒ X(z) =V (zQ)

Downsample: y[m] = v[Qm] ⇒ Y (z) = 1
Q ∑

Q−1
k=0 V

(
e
− j2πk

Q z
1
Q

)

Multirate Commutators

Input Commutator Output Commutator
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