
DSP and Digital Filters (2016-8746) Introdu
tion: 1 � 1 / 16

DSP & Digital Filters

Mike Brookes



1: Introdu
tion

⊲ 1: Introdu
tion

Organization

Signals

Pro
essing

Syllabus

Sequen
es

Time S
aling

z-Transform

Region of

Convergen
e

z-Transform examples

Rational z-Transforms

Rational example

Inverse z-Transform

MATLAB routines

Summary

DSP and Digital Filters (2016-8746) Introdu
tion: 1 � 2 / 16



Organization

1: Introdu
tion

⊲ Organization

Signals

Pro
essing

Syllabus

Sequen
es

Time S
aling

z-Transform

Region of

Convergen
e

z-Transform examples

Rational z-Transforms

Rational example

Inverse z-Transform

MATLAB routines

Summary

DSP and Digital Filters (2016-8746) Introdu
tion: 1 � 3 / 16

• 18 le
tures: feel free to ask questions

• Textbooks:

◦ (a) Mitra �Digital Signal Pro
essing� ISBN:0071289461 ¿41 
overs

most of the 
ourse ex
ept for some of the multirate stu�

◦ (b) Harris �Multirate Signal Pro
essing� ISBN:0137009054 ¿49


overs multirate material in more detail but less rigour than

Mitra

• Le
ture slides available via Bla
kboard or on my website:

http://www.ee.i
.a
.uk/hp/sta�/dmb/
ourses/dspdf/dspdf.htm

◦ quite dense - ensure you understand ea
h line

◦ email me if you don't understand or don't agree with anything

• Prerequisites: 3rd year DSP - attend le
tures if dubious

• Exam + Formula Sheet (past exam papers + solutions on website)

• Problems: Mitra textbook 
ontains many problems at the end of ea
h


hapter and also MATLAB exer
ises
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• A signal is a numeri
al quantity that is a fun
tion of one or more

independent variables su
h as time or position.

• Real-world signals are analog and vary 
ontinuously and take


ontinuous values.

• Digital signals are sampled at dis
rete times and are quantized to a

�nite number of dis
rete values

• We will mostly 
onsider one-dimensionsal real-valued signals with

regular sample instants; ex
ept in a few pla
es, we will ignore the

quantization.

◦ Extension to multiple dimensions and 
omplex-valued signals

is straighforward in many 
ases.

Examples:
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� Aims to �improve� a signal in some way or extra
t some information

from it

� Examples:

� Modulation/demodulation

� Coding and de
oding

� Interferen
e reje
tion and noise suppression

� Signal dete
tion, feature extra
tion

� We are 
on
erned with linear, time-invariant pro
essing
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Main topi
s:

� Introdu
tion/Revision

� Transforms

� Dis
rete Time Systems

� Filter Design

� FIR Filter Design

� IIR Filter Design

� Multirate systems

� Multirate Fundamentals

� Multirate Filters

� Subband pro
essing
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We denote the nth

sample of a signal as x[n] where −∞ < n < +∞ and

the entire sequen
e as {x[n]} although we will often omit the bra
es.

Spe
ial sequen
es:

• Unit step: u[n] =

{

1 n ≥ 0

0 otherwise

• Unit impulse: δ[n] =

{

1 n = 0

0 otherwise

• Condition: δ


ondition

[n] =

{

1 
ondition is true

0 otherwise

(e.g. u[n] = δn≥0)

• Right-sided: x[n] = 0 for n < Nmin

• Left-sided: x[n] = 0 for n > Nmax

• Finite length: x[n] = 0 for n /∈ [Nmin, Nmax]
• Causal: x[n] = 0 for n < 0, Anti
ausal: x[n] = 0 for n > 0

• Finite Energy:

∑∞

n=−∞ |x[n]|
2
< ∞ (e.g. x[n] = n−1u[n− 1])

• Absolutely Summable:

∑∞

n=−∞ |x[n]| < ∞ ⇒ Finite energy
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For sampled signals, the nth

sample is at time t = nT = n
fs

where fs =
1
T

is the sample frequen
y.

We usually s
ale time so that fs = 1: divide all �real� frequen
ies and

angular frequen
ies by fs and divide all �real� times by T .

• To s
ale ba
k to real-world values: multiply all times by T and all

frequen
ies and angular frequen
ies by T−1 = fs.

• We use Ω for �real� angular frequen
ies and ω for normalized angular

frequen
y. The units of ω are �radians per sample�.

Energy of sampled signal, x[n], equals

∑

x2[n]
• Multiply by T to get energy of 
ontinuous signal,

∫

x2(t)dt, provided

there is no aliasing.

Power of {x[n]} is the average of x2[n] in �energy per sample�

• same value as the power of x(t) in �energy per se
ond� provided

there is no aliasing.

Warning: Several MATLAB routines s
ale time so that fs = 2 Hz. Weird,

non-standard and irritating.
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The z-transform 
onverts a sequen
e, {x[n]}, into a fun
tion, X(z), of an

arbitrary 
omplex-valued variable z.

Why do it?

• Complex fun
tions are easier to manipulate than sequen
es

• Useful operations on sequen
es 
orrespond to simple operations on

the z-transform:

◦ addition, multipli
ation, s
alar multipli
ation, time-shift,


onvolution

• De�nition: X(z) =
∑+∞

n=−∞ x[n]z−n
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The set of z for whi
h X(z) 
onverges is its Region of Convergen
e (ROC).

Complex analysis ⇒: the ROC of a power series (if it exists at all) is always

an annular region of the form 0 ≤ Rmin < |z| < Rmax ≤ ∞.

X(z) will always 
onverge absolutely inside the ROC and may 
onverge on

some, all, or none of the boundary.

◦ �
onverge absolutely� ⇔
∑+∞

n=−∞ |x[n]z−n| < ∞

• �nite length ⇔ Rmin = 0, Rmax = ∞
◦ ROC may in
luded either, both or none of 0 and ∞

• absolutely summable ⇔ X(z) 
onverges for |z| = 1.

• right-sided & |x[n]| < A×Bn ⇒ Rmax = ∞
◦ + 
ausal ⇒ X(∞) 
onverges

• left-sided & |x[n]| < A×B−n ⇒ Rmin = 0
◦ + anti
ausal ⇒ X(0) 
onverges
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Null Region of Convergen
e:

It is possible to de�ne a sequen
e, x[n], whose z-transform never 
onverges (i.e. the ROC is null). An

example is x[n] ≡ 1. The z-transfom is X(z) =
∑

z−n

and it is 
lear that this fails to 
onverge for

any real value of z.

Convergen
e for x[n] 
ausal:

If x[n] is 
ausal with |x[n]| < A × Bn

for some A and B, then |X(z)| =
∣

∣

∑

∞

n=0
x[n]z−n

∣

∣ ≤
∑

∞

n=0

∣

∣x[n]z−n
∣

∣

and so, for |z| = R ≥ B, |X(z)| ≤
∑

∞

n=0
ABnR−n = A

1−BR−1 < ∞.

Convergen
e for x[n] right-sided:

If x[n] is right-sided with |x[n]| < A × Bn

for some A and B and x[n] = 0 for n < N , then

y[n] = x[n−N ] is 
ausal with |y[n]| < A×Bn+N = ABN ×Bn
. Hen
e, from the previous result, we

known that Y (z) 
onverges for |z| ≥ B. The z-transform, X(z), is given by X(z) = zNY (z) so X(z)

will 
onverge for any B ≤ |z| < ∞ sin
e

∣

∣zN
∣

∣ < ∞ for |z| in this range.
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The sample at n = 0 is indi
ated by an open 
ir
le.

u[n] 1
1−z−1 1 < |z| ≤ ∞

x[n] 2z2 + 2 + z−1 0 < |z| < ∞

x[n− 3] z−3
(

2z2 + 2 + z−1
)

0 < |z| ≤ ∞

αnu[n]α=0.8
1

1−αz−1 α < |z| ≤ ∞

−αnu[−n− 1] 1
1−αz−1 0 ≤ |z| < α

nu[n] z−1

1−2z−1+z−2 1 < |z| ≤ ∞

sin(ωn)u[n]ω=0.5
z−1 sin(ω)

1−2z−1 cos(ω)+z−2 1 < |z| ≤ ∞

cos(ωn)u[n]ω=0.5
1−z−1 cos(ω)

1−2z−1 cos(ω)+z−2 1 < |z| ≤ ∞

Note: Examples 4 and 5 have the same z-transform but di�erent ROCs.

Geometri
 Progression:

∑r

n=q α
nz−n = αqz−q−αr+1z−r−1

1−αz−1
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Most z-transforms that we will meet are rational polynomials with real


oe�
ients, usually one polynomial in z−1

divided by another.

G(z) = g
∏

M
m=1(1−zmz−1)

∏
K
k=1(1−pkz−1)

= gzK−M
∏

M
m=1(z−zm)

∏
K
k−1(z−pk)

Completely de�ned by the poles, zeros and gain.

The absolute values of the poles de�ne the ROCs:

∃R + 1 di�erent ROCs

where R is the number of distin
t pole magnitudes.

Note: There are K −M zeros or M −K poles at z = 0 (easy to overlook)
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G(z) = 8−2z−1

4−4z−1−3z−2

Poles/Zeros: G(z) = 2z(z−0.25))
(z+0.5)(z−1.5)

⇒ Poles at z = {−0.5,+1.5)},

Zeros at z = {0,+0.25}

Partial Fra
tions: G(z) = 0.75
1+0.5z−1 + 1.25

1−1.5z−1

ROC

ROC

0.75
1+0.5z−1

1.25
1−1.5z−1 G(z)

a 0 ≤ |z| < 0.5

b 0.5 < |z| < 1.5


 1.5 < |z| ≤ ∞
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g[n] = 1
2πj

∮

G(z)zn−1dz where the integral is anti-
lo
kwise around a


ir
le within the ROC, z = Rejθ.

Proof:

1
2πj

∮

G(z)zn−1dz= 1
2πj

∮ (
∑∞

m=−∞ g[m]z−m
)

zn−1dz

(i)

=
∑∞

m=−∞ g[m] 1
2πj

∮

zn−m−1dz

(ii)

=
∑∞

m=−∞ g[m]δ[n−m]= g[n]

(i) depends on the 
ir
le with radius R lying within the ROC

(ii) Cau
hy's theorem:

1
2πj

∮

zk−1dz = δ[k] for z = Rejθ anti-
lo
kwise.

dz
dθ

= jRejθ⇒ 1
2πj

∮

zk−1dz = 1
2πj

∫ 2π

θ=0
Rk−1ej(k−1)θ × jRejθdθ

= Rk

2π

∫ 2π

θ=0
ejkθdθ

= Rkδ(k)= δ(k) [R0 = 1℄

In pra
ti
e use a 
ombination of partial fra
tions and table of z-transforms.
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tf2zp,zp2tf

b(z−1)

a(z−1) ↔ {zm, pk, g}

residuez

b(z−1)

a(z−1) →
∑

k
rk

1−pkz−1

tf2sos,sos2tf

b(z−1)

a(z−1) ↔
∏

l

b0,l+b1,lz
−1+b2,lz

−2

1+a1,lz−1+a2,lz−2

zp2sos,sos2zp {zm, pk, g} ↔
∏

l

b0,l+b1,lz
−1+b2,lz

−2

1+a∈1,lz−1+a2,lz−2

zp2ss,ss2zp {zm, pk, g} ↔

{

x′ = Ax+Bu

y = Cx+Du

tf2ss,ss2tf

b(z−1)

a(z−1) ↔

{

x′ = Ax+Bu

y = Cx+Du
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• Time s
aling: assume fs = 1 so −π < ω ≤ π

• z-transform: X(z) =
∑+∞

n=−∞ x[n]−n

• ROC: 0 ≤ Rmin < |z| < Rmax ≤ ∞
◦ Causal: ∞ ∈ ROC

◦ Absolutely summable: |z| = 1 ∈ ROC

• Inverse z-transform: g[n] = 1
2πj

∮

G(z)zn−1dz

◦ Not unique unless ROC is spe
i�ed

◦ Use partial fra
tions and/or a table

For further details see Mitra:1 & 6.
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Three di�erent Fourier Transforms:

• CTFT (Continuous-Time Fourier Transform): x(t) → X(jΩ)
• DTFT (Dis
rete-Time Fourier Transform): x[n] → X(ejω)
• DFT a.k.a. FFT (Dis
rete Fourier Transform): x[n] → X[k]

Forward Transform Inverse Transform

CTFT X(jΩ) =
∫∞
−∞ x(t)e−jΩtdt x(t) = 1

2π

∫∞
−∞ X(jΩ)ejΩtdΩ

DTFT X(ejω) =
∑∞

−∞ x[n]e−jωn x[n] = 1
2π

∫ π

−π
X(ejω)ejωndω

DFT X[k] =
∑N−1

0 x[n]e−j2π kn

N x[n] = 1
N

∑N−1
0 X[k]ej2π

kn

N

We use Ω for �real� and ω = ΩT for �normalized� angular frequen
y.

Nyquist frequen
y is at ΩNyq = 2π fs
2 = π

T

and ωNyq = π.

For �power signals� (energy ∝ duration), CTFT & DTFT are unbounded.

Fix this by normalizing:

X(jΩ) = limA→∞
1
2A

∫ A

−A
x(t)e−jΩtdt

X(ejω) = limA→∞
1

2A+1

∑A
−A x[n]e−jωn
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DTFT: X(ejω) =
∑∞

−∞ x[n]e−jωn

does not 
onverge for all x[n].

Consider the �nite sum: XK(ejω) =
∑K

−K x[n]e−jωn

Strong Convergen
e:

x[n] absolutely summable ⇒ X(ejω) 
onverges uniformly

∑∞
−∞ |x[n]| < ∞ ⇒ supω

∣

∣X(ejω)−XK(ejω)
∣

∣ −−−−→
K→∞

0

Weaker 
onvergen
e:

x[n] �nite energy ⇒ X(ejω) 
onverges in mean square

∑∞
−∞ |x[n]|

2
< ∞ ⇒ 1

2π

∫ π

−π

∣

∣X(ejω)−XK(ejω)
∣

∣

2
dω −−−−→

K→∞
0

Example: x[n] = sin 0.5πn
πn

0 0.1 0.2 0.3 0.4 0.5
-0.2

0

0.2

0.4

0.6

0.8

1

ω/2π    (rad/sample)

K
 j ω

K=5

0 0.1 0.2 0.3 0.4 0.5
-0.2

0

0.2

0.4

0.6

0.8

1

ω/2π    (rad/sample)

K
 j ω

K=20

0 0.1 0.2 0.3 0.4 0.5
-0.2

0

0.2

0.4

0.6

0.8

1

ω/2π    (rad/sample)

K
 j ω

K=50

Gibbs phenomenon:

Converges at ea
h ω as K → ∞ but peak error does not get smaller.
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(1) Strong Convergen
e: [these proofs are not examinable℄

We are given that

∑∞
−∞ |x[n]| < ∞ ⇒ ∀ǫ > 0, ∃N such that

∑

|n|>N |x[n]| < ǫ

For K ≥ N , supω
∣

∣X(ejω)−XK(ejω)
∣

∣= supω

∣

∣

∣

∑

|n|>K x[n]e−jωn
∣

∣

∣

≤ supω

(

∑

|n|>K

∣

∣x[n]e−jωn
∣

∣

)

=
∑

|n|>K |x[n]| < ǫ

(2) Weak Convergen
e:

We are given that

∑∞
−∞ |x[n]|2 < ∞ ⇒ ∀ǫ > 0, ∃N such that

∑

|n|>N |x[n]|2 < ǫ

De�ne y[K][n] =

{

0 |n| ≤ K

x[n] |n| > K

so that its DTFT is, Y [K](ejω) =
∑∞

−∞ y[K][n]e−jωn

We see that X(ejω)−XK(ejω) =
∑∞

−∞ x[n]e−jωn −
∑K

−K x[n]e−jωn

=
∑

|n|>K x[n]e−jωn =
∑∞

−∞ y[K][n]e−jωn = Y [K](ejω)

From Parseval's theorem,

∑∞
−∞

∣

∣y[K][n]
∣

∣

2
= 1

2π

∫ π

−π

∣

∣Y [K](ejω)
∣

∣

2
dω

= 1
2π

∫ π

−π

∣

∣X(ejω)−XK(ejω)
∣

∣

2
dω

Hen
e for K ≥ N ,

1
2π

∫ π

−π

∣

∣X(ejω)−XK(ejω)
∣

∣

2
dω =

∑∞
−∞

∣

∣y[K][n]
∣

∣

2
=

∑

|n|>N |x[n]|2 < ǫ
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DTFT: X(ejω) =
∑∞

−∞ x[n]e−jωn

• DTFT is periodi
 in ω: X(ej(ω+2mπ)) = X(ejω) for integer m.

• DTFT is the z-Transform evaluated at the point ejω:
X(z) =

∑∞
−∞ x[n]z−n

DTFT 
onverges i� the ROC in
ludes |z| = 1.
• DTFT is the same as the CTFT of a signal 
omprising impulses at

the sample times (Dira
 δ fun
tions) of appropriate heights:

xδ(t) =
∑

x[n]δ(t− nT )= x(t)×
∑∞

−∞ δ(t− nT )

Equivalent to multiplying a 
ontinuous x(t) by an impulse train.

Proof: X(ejω) =
∑∞

−∞ x[n]e−jωn

∑∞
n=−∞ x[n]

∫∞
−∞ δ(t− nT )e−jω t

T dt

(i)

=
∫∞
−∞

∑∞
n=−∞ x[n]δ(t− nT )e−jω t

T dt

(ii)

=
∫∞
−∞ xδ(t)e

−jΩtdt

(i) OK if

∑∞
−∞ |x[n]| < ∞. (ii) use ω = ΩT .
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DFT: X[k] =
∑N−1

0 x[n]e−j2π kn

N

DTFT: X(ejω) =
∑∞

−∞ x[n]e−jωn

Case 1: x[n] = 0 for n /∈ [0, N − 1]

DFT is the same as DTFT at ωk = 2π
N
k.

The {ωk} are uniformly spa
ed from ω = 0 to ω = 2πN−1
N

.

DFT is the z-Transform evaluated at N equally spa
ed points

around the unit 
ir
le beginning at z = 1.

Case 2: x[n] is periodi
 with period N

DFT equals the normalized DTFT

X[k] = limK→∞
N

2K+1 ×XK(ejωk)

where XK(ejω) =
∑K

−K x[n]e−jωn
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We want to show that if x[n] = x[n+N ] (i.e. x[n] is periodi
 with period N) then

limK→∞
N

2K+1
×XK(ejωk ) , limK→∞

N
2K+1

×
∑K

−K x[n]e−jωkn = X[k]

where ωk = 2π
N

k. We assume that x[n] is bounded with |x[n]| < B.

We �rst note that the summand is periodi
:

x[n+N ]e−jωk(n+N) = x[n]e−jωkne−jk 2π

N
N = x[n]e−jωkne−j2πk = x[n]e−jωkn

.

We now de�ne M and R so that 2K + 1 = MN + R where 0 ≤ R < N (i.e. MN is the largest

multiple of N that is ≤ 2K + 1). We 
an now write

N
2K+1

×
∑K

−K x[n]e−jωkn = N
MN+R

×
∑K−R

−K
x[n]e−jωkn + N

MN+R
×

∑K
K−R+1 x[n]e

−jωn

The �rst sum 
ontains MN 
onse
utive terms of a periodi
 summand and so equals M times the sum

over one period. The se
ond sum 
ontains R bounded terms and so its magnitude is < RB < NB.

So

N
2K+1

×
∑K

−K x[n]e−jωkn = MN
MN+R

×
∑N−1

0 x[n]e−jωkn + P = 1

1+ R

MN

×X[k] + P
where |P | < N

MN+R
×NB ≤ N

MN+0
×NB = NB

M

.

As M → ∞, |P | → 0 and

1

1+ R

MN

→ 1 so the whole expression tends to X[k].



Symmetries

2: Three Di�erent

Fourier Transforms

Fourier Transforms

Convergen
e of

DTFT

DTFT Properties

DFT Properties

⊲ Symmetries

Parseval's Theorem

Convolution

Sampling Pro
ess

Zero-Padding

Phase Unwrapping

Un
ertainty prin
iple

Summary

MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 � 6 / 14

If x[n] has a spe
ial property then X(ejω)and X[k] will have 
orresponding

properties as shown in the table (and vi
e versa):

One domain Other domain

Dis
rete Periodi


Symmetri
 Symmetri


Antisymmetri
 Antisymmetri


Real Conjugate Symmetri


Imaginary Conjugate Antisymmetri


Real + Symmetri
 Real + Symmetri


Real + Antisymmetri
 Imaginary + Antisymmetri


Symmetri
: x[n] = x[−n]
X(ejω) = X(e−jω)
X[k] = X[(−k)

mod N
] = X[N − k] for k > 0

Conjugate Symmetri
: x[n] = x∗[−n]

Conjugate Antisymmetri
: x[n] = −x∗[−n]
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Fourier transforms preserve �energy�

CTFT

∫

|x(t)|2 dt = 1
2π

∫

|X(jΩ)|2 dΩ

DTFT

∑∞
−∞ |x[n]|2 = 1

2π

∫ π

−π

∣

∣X(ejω)
∣

∣

2
dω

DFT

∑N−1
0 |x[n]|2 = 1

N

∑N−1
0 |X[k]|2

More generally, they a
tually preserve 
omplex inner produ
ts:

∑N−1
0 x[n]y∗[n] = 1

N

∑N−1
0 X[k]Y ∗[k]

Unitary matrix viewpoint for DFT:

If we regard x and X as ve
tors, then X = Fx where F is

a symmetri
 matrix de�ned by fk+1,n+1 = e−j2π kn

N

.

The inverse DFT matrix is F
−1 = 1

N
F

H

equivalently, G = 1√
N
F is a unitary matrix with G

H
G = I.
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DTFT: Convolution → Produ
t

x[n] = g[n] ∗ h[n]=
∑∞

k=−∞ g[k]h[n− k]

⇒ X(ejω) = G(ejω)H(ejω)

DFT: Cir
ular 
onvolution→ Produ
t

x[n] = g[n]⊛N h[n]=
∑N−1

k=0 g[k]h[(n− k)

modN
]

⇒ X[k] = G[k]H[k]

DTFT: Produ
t→ Cir
ular Convolution ÷2π
y[n] = g[n]h[n]
⇒ Y (ejω) = 1

2πG(ejω)⊛π H(ejω) = 1
2π

∫ π

−π
G(ejθ)H(ej(ω−θ))dθ

DFT: Produ
t→ Cir
ular Convolution ÷N
y[n] = g[n]h[n]

⇒ Y [k] = 1
N
G[k]⊛N H[k]

g[n] : h[n] : g[n] ∗ h[n] : g[n]⊛3 h[n]
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Time Time Frequen
y

Analog

CTFT

−→

Low Pass

Filter

* →

CTFT

−→

Sample × →
DTFT

−→

Window × →

DTFT

−→

DFT

DFT

−→
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Zero padding means added extra zeros onto the end of x[n] before

performing the DFT.

Time x[n] Frequen
y |X[k]|

Windowed

Signal

With zero-

padding

• Zero-padding 
auses the DFT to evaluate the DTFT at more values

of ωk. Denser frequen
y samples.

• Width of the peaks remains 
onstant: determined by the length and

shape of the window.

• Smoother graph but in
reased frequen
y resolution is an illusion.
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Phase of a DTFT is only de�ned to within an integer multiple of 2π.

x[n] |X[k]|

∠X[k] ∠X[k] unwrapped

Phase unwrapping adds multiples of 2π onto ea
h ∠X[k] to make the

phase as 
ontinuous as possible.
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CTFT un
ertainty prin
iple:

( ∫
t2|x(t)|2dt∫
|x(t)|2dt

)
1

2

( ∫
ω2|X(jω)|2dω∫
|X(jω)|2dω

)
1

2

≥ 1
2

The �rst term measures the �width� of x(t) around t = 0.

It is like σ if |x(t)|
2

was a zero-mean probability distribution.

The se
ond term is similarly the �width� of X(jω) in frequen
y.

A signal 
annot be 
on
entrated in both time and frequen
y.

Proof Outline:

Assume

∫

|x(t)|
2
dt = 1⇒

∫

|X(jω)|
2
dω = 2π [Parseval℄

Set v(t) = dx
dt
⇒ V (jω) = jωX(jω) [by parts℄

Now

∫

txdx
dt
dt= 1

2 tx
2(t)

∣

∣

∞
t=−∞ −

∫

1
2x

2dt = 0− 1
2 [by parts℄

So

1
4 =

∣

∣

∫

txdx
dt
dt
∣

∣

2
≤

(∫

t2x2dt
)

(

∫
∣

∣

dx
dt

∣

∣

2
dt
)

[S
hwartz℄

=
(∫

t2x2dt
)

(

∫

|v(t)|2 dt
)

=
(∫

t2x2dt
)

(

1
2π

∫

|V (jω)|2 dω
)

=
(∫

t2x2dt
)

(

1
2π

∫

ω2 |X(jω)|
2
dω

)

No exa
t equivalent for DTFT/DFT but a similar e�e
t is true
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(1) Suppose v(t) = dx
dt

. Then integrating the CTFT de�nition by parts w.r.t. t gives

X(jΩ) =
∫∞
−∞ x(t)e−jΩtdt =

[

−1
jΩ

x(t)e−jΩt
]∞

−∞
+ 1

jΩ

∫∞
−∞

dx(t)
dt

e−jΩtdt = 0 + 1
jΩ

V (jΩ)

(2) Sin
e d
dt

(

1
2
x2

)

= x dx
dt

, we 
an apply integration by parts to get

∫∞
−∞ tx dx

dt
dt =

[

t× 1
2
x2

]∞

t=−∞
−

∫∞
−∞

dt
dt

× 1
2
x2dt = − 1

2

∫∞
−∞ x2dt = − 1

2
× 1 = − 1

2

It follows that

∣

∣

∣

∫∞
−∞ tx dx

dt
dt

∣

∣

∣

2
=

(

− 1
2

)2
= 1

4

whi
h we will use below.

(3) The Cau
hy-S
hwarz inequality is that in a 
omplex inner produ
t spa
e

|u · v|2 ≤ (u · u) (v · v). For the inner-produ
t spa
e of real-valued square-integrable fun
tions,

this be
omes

∣

∣

∣

∫∞
−∞ u(t)v(t)dt

∣

∣

∣

2
≤

∫∞
−∞ u2(t)dt×

∫∞
−∞ v2(t)dt. We apply this with u(t) = tx(t)

and v(t) =
dx(t)
dt

to get

1
4
=

∣

∣

∣

∫∞
−∞ tx dx

dt
dt

∣

∣

∣

2
≤

(∫

t2x2dt
)

(

∫

(

dx
dt

)2
dt

)

=
(∫

t2x2dt
) (∫

v2(t)dt
)

(4) From Parseval's theorem for the CTFT,

∫

v2(t)dt = 1
2π

∫

|V (jΩ|2 dΩ. From step (1), we 
an

substitute V (jΩ) = jΩX(jΩ) to obtain

∫

v2(t)dt = 1
2π

∫

Ω2 |X(jΩ|2 dΩ. Making this substitution

in (3) gives

1
4
≤

(∫

t2x2dt
) (∫

v2(t)dt
)

=
(∫

t2x2dt
)

(

1
2π

∫

ω2 |X(jΩ|2 dΩ
)
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� Three types: CTFT, DTFT, DFT

� DTFT = CTFT of 
ontinuous signal × impulse train

� DFT = DTFT of periodi
 or �nite support signal

⊲ DFT is a s
aled unitary transform

� DTFT: Convolution → Produ
t; Produ
t → Cir
ular Convolution

� DFT: Produ
t ↔ Cir
ular Convolution

� DFT: Zero Padding → Denser freq sampling but same resolution

� Phase is only de�ned to within a multiple of 2π.

� Whenever you integrate over frequen
y you need a s
ale fa
tor

�

1
2π for CTFT and DTFT or

1
N

for DFT

� e.g. Inverse transform, Parseval, frequen
y domain 
onvolution

For further details see Mitra: 3 & 5.



MATLAB routines

2: Three Di�erent

Fourier Transforms

Fourier Transforms

Convergen
e of

DTFT

DTFT Properties

DFT Properties

Symmetries

Parseval's Theorem

Convolution

Sampling Pro
ess

Zero-Padding

Phase Unwrapping

Un
ertainty prin
iple

Summary

⊲ MATLAB routines

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 � 14 / 14

�t, i�t DFT with optional zero-padding

�tshift swap the two halves of a ve
tor


onv 
onvolution or polynomial multipli
ation (not


ir
ular)

x[n]⊛y[n] real(i�t(�t(x).*�t(y)))

unwrap remove 2π jumps from phase spe
trum
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For pro
essing 1-D or 2-D signals (espe
ially 
oding), a 
ommon method is

to divide the signal into �frames� and then apply an invertible transform to

ea
h frame that 
ompresses the information into few 
oe�
ients.

The DFT has some problems when used for this purpose:

• N real x[n] ↔ N 
omplex X[k] : 2 real,

N
2 − 1 
onjugate pairs

→

• DFT ∝ the DTFT of a periodi
 signal formed by repli
ating x[n] .

⇒ Spurious frequen
y 
omponents from boundary dis
ontinuity.

N=20
f=0.08

→

The Dis
rete Cosine Transform (DCT) over
omes these problems.
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To form the Dis
rete Cosine Transform (DCT), repli
ate x[0 : N − 1] but in

reverse order and insert a zero between ea
h pair of samples:

→

0 12 23

y[r]

Take the DFT of length 4N real, symmetri
, odd-sample-only sequen
e.

Result is real, symmetri
 and anti-periodi
: only need �rst N values

0
12

23

Y[k]

÷2
−→

Forward DCT: XC [k] =
∑N−1

n=0 x[n] cos 2π(2n+1)k
4N for k = 0 : N − 1

Inverse DCT: x[n] = 1
N
X[0] + 2

N

∑N−1
k=1 X[k] cos 2π(2n+1)k

4N
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This proof is not examinable.

We want to show that XC [k] =
∑N−1

n=0 x[n] cos
2π(2n+1)k

4N

is equivalent to repli
ating x[n] in reverse

order, inserting alternate zeros, taking DFT, dividing by 2 and keeping �rst N values:

Repli
ating + zero insertion gives y[r] =











0 r even

x
[

r−1
2

]

r odd, 1 ≤ r ≤ 2N − 1

x
[

4N−1−r
2

]

r odd, 2N + 1 ≤ r ≤ 4N − 1

YF [k] =
∑4N−1

r=0 y[r]W kr
4N

(i)

=
∑2N−1

n=0 y[2n+ 1]W
(2n+1)k
4N where W b

a = e−j 2πb

a

(ii)

=
∑N−1

n=0 y[2n+ 1]W
(2n+1)k
4N +

∑N−1
m=0 y[4N − 2m− 1]W

(4N−2m−1)k
4N

(iii)

=
∑N−1

n=0 x[n]W
(2n+1)k
4N +

∑N−1
m=0 x[m]W

−(2m+1)k
4N

= 2
∑N−1

n=0 x[n] cos
2π(2n+1)k

4N
= 2XC [k] (i) odd r only: r = 2n+ 1

(ii) reverse order for n ≥ N : m = 2N − 1− n

(iii) substitute y de�nition & W 4Nk
4N = e−j2π 4Nk

4N ≡ 1
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This proof is not examinable.

We want to show that x[n] = 1
N
X[0] + 2

N

∑N−1
k=1 X[k] cos

2π(2n+1)k
4N

Sin
e Y [k] = 2X[k] we 
an write y[r] = 1
4N

∑4N−1
k=0 Y [k]W−rk

4N = 1
2N

∑4N−1
k=0 X[k]W−rk

4N

So we 
an write,

x[n] = y[2n+ 1] = 1
2N

∑4N−1
k=0 X[k]W

−(2n+1)k
4N where W b

a = e−j 2πb

a

(i)

= 1
2N

∑2N−1
k=0 X[k]W

−(2n+1)k
4N − 1

2N

∑2N−1
l=0 X[l]W

−(2n+1)(l+2N)
4N

(ii)

= 1
N

∑2N−1
k=0 X[k]W

−(2n+1)k
4N

(iii)

= 1
N
X[0] + 1

N

∑N−1
k=1 X[k]W

−(2n+1)k
4N

+ 1
N
X[N ]W

−(2n+1)N
4N + 1

N

∑N−1
r=1 X[2N − r]W

−(2n+1)(2N−r)
4N

(iv)

= 1
N
X[0] + 1

N

∑N−1
k=1 X[k]W

−(2n+1)k
4N + 1

N

∑N−1
r=1 −X[r]W

(2n+1)r+2N
4N

= 1
N
X[0] + 2

N

∑N−1
k=1 X[k] cos

2π(2n+1)k
4N

Notes: (i) k = l+ 2N for k ≥ 2N and X[k + 2N ] = −X[k]

(ii)

(2n+1)(l+2N)
4N

=
(2n+1)l

4N
+ n+ 1

2

and ej2π(n+ 1

2
) = −1

(iii) k = 2N − r for k > N
(iv) X[N ] = 0 and X[2N − r] = −X[r]
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DFT basis fun
tions: x[n] = 1
N

∑N−1
k=0 X[k]ej2π

kn

N

DCT basis fun
tions: x[n] = 1
N
X[0] + 2

N

∑N−1
k=1 X[k] cos 2π(2n+1)k

4N
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DCT: XC [k] =
∑N−1

n=0 x[n] cos 2π(2n+1)k
4N

f = m
N

f 6= m
N

x[n]
N=20
f=0.10

N=20
f=0.08

|XF [k]|

|XC [k]|

DFT: Real→Complex; Freq range [0, 1]; Poorly lo
alized

unless f = m
N

; |XF [k]| ∝ k−1

for Nf < k ≪ N
2

DCT: Real→Real; Freq range [0, 0.5]; Well lo
alized ∀f ;

|XC [k]| ∝ k−2

for 2Nf < k < N
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De�nition: X[k] =
∑N−1

n=0 x[n] cos 2π(2n+1)k
4N

• Linear: αx[n] + βy[n]→ αX[k] + βY [k]

• �Convolution←→Multipli
ation� property of DFT does not hold /

• Symmetri
: X[−k] = X[k] sin
e cos−αk = cos+αk

• Anti-periodi
: X[k + 2N ] = −X[k] be
ause:

◦ 2π(2n+ 1)(k + 2N) = 2π(2n+ 1)k + 8πNn+ 4Nπ

◦ cos (θ + π) = − cos θ

⇒X[N ] = 0 sin
e X[N ] = X[−N ] = −X[−N + 2N ]

• Periodi
: X[k + 4N ] = −X[k + 2N ] = X[k]
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DCT: X[k] =
∑N−1

n=0 x[n] cos 2π(2n+1)k
4N

IDCT: x[n] = 1
N
X[0] + 2

N

∑N−1
k=1 X[k] cos 2π(2n+1)k

4N

rep

→

0 12 23

y[r]

DFT

→ 0
12

23

Y[k]

÷2
→

Energy: E =
∑N−1

n=0 |x[n]|
2 = 1

N
|X[0]|2 + 2

N

∑N−1
n=1 |X[n]|2

In diagram above: E → 2E→ 8NE→≈ 0.5NE

Orthogonal DCT (preserves energy:

∑

|x[n]|
2
=

∑

|X[n]|
2

)

ODCT: X[k] =







√

1
N

∑N−1
n=0 x[n] k = 0

√

2
N

∑N−1
n=0 x[n] cos 2π(2n+1)k

4N k 6= 0

IODCT: x[n] =
√

1
N
X[0] +

√

2
N

∑N−1
k=1 X[k] cos 2π(2n+1)k

4N

Note: MATLAB d
t() 
al
ulates the ODCT
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If 
onse
utive x[n] are positively 
orrelated, DCT 
on
entrates energy in a

few X[k] and de
orrelates them.

Example: Markov Pro
ess: x[n] = ρx[n− 1] +
√

1− ρ2u[n]

where u[n] is i.i.d. unit Gaussian.

Then

〈

x2[n]
〉

= 1 and 〈x[n]x[n− 1]〉 = ρ.

Covarian
e of ve
tor x is Si,j =
〈

xxH
〉

i,j
= ρ|i−j|

.

Suppose ODCT of x is Cx and DFT is Fx.

Covarian
e of Cx is

〈

CxxHCH
〉

= CSCH

(similarly FSFH

)

Diagonal elements give mean 
oe�
ient energy.

• Used in MPEG and JPEG (superseded by

JPEG2000 using wavelets)

• Used in spee
h re
ognition to de
orrelate

spe
tral 
oe�
ients: DCT of log spe
trum

Energy 
ompa
tion good for 
oding (low-valued 
oe�
ients 
an be set to 0)

De
orrelation good for 
oding and for probability modelling
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• Divide 
ontinuous signal

into frames

• Apply DCT to ea
h frame

• En
ode DCT

◦ e.g. keep only 30 X[k]

• Apply IDCT → y[n]

x[n]

X[k] k=30/220

y[n]

y[n]-x[n]

Problem: Coding may 
reate dis
ontinuities at frame boundaries

e.g. JPEG, MPEG use 8× 8 pixel blo
ks

8.3 kB (PNG) 1.6 kB (JPEG) 0.5 kB (JPEG)
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Modi�ed Dis
rete Cosine Transform (MDCT): overlapping frames 2N long

x[0 : 2N − 1]

MDCT

→ X0[0 : N − 1]

IMDCT

→ y0[0 : 2N − 1]

x[N : 3N − 1]

MDCT

→ X1[N : 2N − 1]

IMDCT

→ y1[N : 3N − 1]

x[2N : 4N − 1]

MDCT

→ X2[2N : 3N − 1]

IMDCT

→ y2[2N : 4N − 1]

y[n] = y0[n] + y1[n] + y2[n]

X
0
[k]

y
0
[n]

X
1
[k] 

y
1
[n] 

X
2
[k] 

y
2
[n] 

y[n]

y[n]-x[n] = error

x[n]

0 N

N

2N

2N

3N

3N

4N

4N

MDCT: 2N → N 
oe�
ients, IMDCT: N → 2N samples

Add yi[n] together to get y[n]. Only two non-zero terms far any n.

Errors 
an
el exa
tly: Time-domain alias 
an
ellation (TDAC)
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MDCT: X[k] =
∑2N−1

n=0 x[n] cos 2π(2n+1+N)(2k+1)
8N 0 ≤ k < N

IMDCT: y[n] = 1
N

∑N−1
k=0 X[k] cos 2π(2n+1+N)(2k+1)

8N 0 ≤ n < 2N

If x, X and y are 
olumn ve
tors, then X = Mx and y = 1
N
MTX = 1

N
MTMx

where M is an N × 2N matrix with mk,n = cos 2π(2n+1+N)(2k+1)
8N .

Quasi-Orthogonality: The 2N × 2Nmatrix,

1
N
MTM, is almost the identity:

1
N
MTM = 1

2

[

I− J 0

0 I+ J

]

with I =







1 · · · 0
...

. . .
...

0 · · · 1







, J =







0 · · · 1
... . .

. ...

1 · · · 0







When two 
onse
tive y frames are overlapped by N samples, the se
ond half of the �rst

frame has thus been multiplied by

1
2 (I+ J) and the �rst half of the se
ond frame by

1
2 (I− J). When these y frames are added together, the 
orresponding x samples have

been multiplied by

1
2 (I+ J) + 1

2 (I− J) = I giving perfe
t re
onstru
tion.

Normally the 2N -long x and y frames are windowed before the MDCT and again after the

IMDCT to avoid any dis
ontinuities; if the window is symmetri
 and satis�es

w2[i] + w2[i+N ] = 2 the perfe
t re
onstru
tion property is still true.
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T
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This proof is not examinable.

If we de�ne A = 1

N
MTM with mkn = cos

2π(2n+1+N)(2k+1)
8N

, we want to show that

A = 1
2

[

I+ J 0

0 I− J

]

. To avoid fra
tions, we write α = 2π
8N

so that mkn =

cos (α(2n+ 1 +N)(2k + 1)). Now we 
an say

arn =
1

N

N−1
∑

k=0

mkrmkn

=
1

N

N−1
∑

k=0

cos (α(2r + 1 +N)(2k + 1)) cos (α(2n+ 1 +N)(2k + 1))

=
1

2N

N−1
∑

k=0

cos (2α(r − n)(2k + 1)) +
1

2N

N−1
∑

k=0

cos (2α(r + n+ 1 +N)(2k + 1))

where, in the last line, we used the identity cos θ cosφ = 1
2
cos (θ − φ) + 1

2
cos (θ + φ).

We now 
onvert these terms to 
omplex exponentials to sum them as geometri
 progressions.
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1
2N

∑N−1
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Converting to a the real part (ℜ) of geometri
 progression (with α = 2π
8N

):

1

2N

N−1
∑

k=0

cos (2α(r − n)(2k + 1)) =
1

2N
ℜ

(

N−1
∑

k=0

exp (j2α(r − n)(2k + 1))

)

=
1

2N
ℜ

(

exp (j2α(r − n))

N−1
∑

k=0

exp (j4α(r − n)k)

)

=
1

2N
ℜ

(

exp (j2α(r − n))
1− exp (j4α(r − n)N)

1− exp (j4α(r − n))

)

=
1

2N
ℜ

(

1− exp (j4α(r − n)N)

exp (−j2α(r − n))− exp (j2α(r − n))

)

=
1

2N
ℜ

(

1− exp (j4α(r − n)N)

−2j sin (2α(r − n))

)

=
1

4N

sin (4α(r − n)N)

sin (2α(r − n))
=

1

4N

sin ((r − n)π)

sin
(

r−n
2N

π
)

The numerator is sine of a multiple of π and is therefore 0. Therefore the whole sum is zero unless

the denominator is zero or, equivalently, (r − n) is a multiple of 2N . Sin
e 0 ≤ r, n < 2N , this only

happens when r = n in whi
h 
ase the sum be
omes

1
2N

∑N−1
k=0 cos 0 = 1

2

.
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1
2N

∑N−1
k=0 cos (2α(r + n+ 1 +N)(2k + 1)) is the same as before with r−n repla
ed by r+n+1+N .

We 
an therefore write

1

2N

N−1
∑

k=0

cos (2α(r + n+ 1 +N)(2k + 1)) =
1

4N

sin ((r + n+ 1 +N)π)

sin
(

r+n+1+N
2N

π
)

The numerator is again the sine of a multiple of π and is therefore 0. Therefore the whole sum is zero

unless (r + n+ 1 +N) is a multiple of 2N . This only happens when r + n = N − 1 or 3N − 1 sin
e

0 ≤ r, n < 2N . The 
onstraint r+n = N−1 
orresponds to the anti-diagonal of the top left quadrant

of the A matrix, while r+n = 3N − 1 
orresponds to the anti-diagonal of the bottom right quadrant.

Writing r + n + 1 + N = x, we 
an use L'H�pital's rule to evaluate

1
4N

sin(xπ)

sin( x

2N
π)

at x = {2N, 4N}.

Di�erentiating numerator and denominator gives

1
2

cos(xπ)

cos( x

2N
π)

whi
h 
omes to

{

− 1
2
, 1

2

}

respe
tively at

x = {2N, 4N}.
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MDCT: X[k] =
∑2N−1

n=0 x[n] cos 2π(2n+1+N)(2k+1)
8N 0 ≤ k < N

IMDCT: y[n] = 1
N

∑N−1
k=0 X[k] cos 2π(2n+1+N)(2k+1)

8N 0 ≤ n < 2N

In ve
tor notation: X = Mx and y = 1
N
MTX = 1

N
MTMx

The rows of M form the

MDCT basis elements.

Example (N = 4):

M =








0.56 0.20 −0.20 −0.56 −0.83 −0.98 −0.98 −0.83
−0.98 −0.56 0.56 0.98 0.20 −0.83 −0.83 0.20
0.20 0.83 −0.83 −0.20 0.98 −0.56 −0.56 0.98
0.83 −0.98 0.98 −0.83 0.56 −0.20 −0.20 0.56









The basis frequen
ies are {0.5, 1.5, 2.5, 3.5} times the fundamental.
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DCT: Dis
rete Cosine Transform

• Equivalent to a DFT of time-shifted double-length

[

x ←−x
]

• Often s
aled to make an orthogonal transform (ODCT)

• Better than DFT for energy 
ompa
tion and de
orrelation ,

◦ Energy Compa
tion: Most energy is in only a few 
oe�
ients

◦ De
orrelation: The 
oe�
ients are un
orrelated with ea
h other

• Ni
e 
onvolution property of DFT is lost /

MDCT: Modi�ed Dis
rete Cosine Transform

• Lapped transform: 2N → N → 2N
• Aliasing errors 
an
el out when overlapping output frames are added

• Similar to DCT for energy 
ompa
tion and de
orrelation ,

• Overlapping windowed frames 
an avoid edge dis
ontinuities ,

• Used in audio 
oding: MP3, WMA, AC-3, AAC, Vorbis, ATRAC

For further details see Mitra: 5.
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d
t, id
t ODCT with optional zero-padding
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Linear Time-invariant (LTI) systems have two properties:

Linear: H (αu[n] + βv[n]) = αH (u[n]) + βH (v[n])

Time Invariant: y[n] = H (x[n]) ⇒ y[n− r] = H (x[n− r])∀r

The behaviour of an LTI system is 
ompletely de�ned by its impulse

response: h[n] = H (δ[n])

Proof:

We 
an always write x[n] =
∑

∞

r=−∞
x[r]δ[n− r]

Hen
e H (x[n]) = H
(
∑

∞

r=−∞
x[r]δ[n− r]

)

=
∑

∞

r=−∞
x[r]H (δ[n− r])

=
∑

∞

r=−∞
x[r]h[n− r]

= x[n] ∗ h[n]
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Convolution: x[n] ∗ v[n] =
∑

∞

r=−∞
x[r]v[n− r]

Convolution obeys normal arithmeti
 rules for multipli
ation:

Commutative: x[n] ∗ v[n] = v[n] ∗ x[n]

Proof:

∑

r x[r]v[n− r]

(i)

=
∑

p x[n− p]v[p]

(i) substitute p = n− r

Asso
iative: x[n] ∗ (v[n] ∗ w[n]) = (x[n] ∗ v[n]) ∗ w[n]
⇒ x[n] ∗ v[n] ∗ w[n] is unambiguous

Proof:

∑

r,s x[n− r]v[r − s]w[s]
(i)

=
∑

p,q x[p]v[q − p]w[n− q]

(i) substitute p = n− r, q = n− s

Distributive over +:

x[n] ∗ (αv[n] + βw[n]) = (x[n] ∗ αv[n]) + (x[n] ∗ βw[n])

Proof:

∑

r x[n− r] (αv[r] + βw[r]) =
α
∑

r x[n− r]v[r] + β
∑

r x[n− r]w[r]

Identity: x[n] ∗ δ[n] = x[n]

Proof:

∑

r δ[r]x[n− r]

(i)

= x[n] (i) all terms zero ex
ept r = 0.
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BIBO Stability: Bounded Input, x[n] ⇒ Bounded Output, y[n]

The following are equivalent:

(1) An LTI system is BIBO stable

(2) h[n] is absolutely summable, i.e.

∑

∞

n=−∞
|h[n]| < ∞

(3) H(z) region of absolute 
onvergen
e in
ludes |z| = 1.

Proof (1) ⇒ (2):

De�ne x[n] =

{

1 h[−n] ≥ 0

−1 h[−n] < 0

then y[0] =
∑

x[0− n]h[n] =
∑

|h[n]|.

But |x[n]| ≤ 1∀n so BIBO ⇒ y[0] =
∑

|h[n]| < ∞.

Proof (2) ⇒ (1):

Suppose

∑

|h[n]| = S < ∞ and |x[n]| ≤ B is bounded.

Then |y[n]| =
∣

∣

∑

∞

r=−∞
x[n− r]h[r]

∣

∣

≤
∑

∞

r=−∞
|x[n− r]| |h[r]|

≤ B
∑

∞

r=−∞
|h[r]|≤ BS < ∞
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For a BIBO stable system Y (ejω) = X(ejω)H(ejω)

where H(ejω)is the DTFT of h[n] i.e. H(z) evaluated at z = ejω.

Example: h[n] =
[

1 1 1
]

H(ejω) = 1 + e−jω + e−j2ω

= e−jω (1 + 2 cosω)
∣

∣H(ejω)
∣

∣ = |1 + 2 cosω|

∠H(ejω) = −ω + π
1−sgn(1+2 cosω)

2

Sign 
hange in (1 + 2 cosω) at ω = 2.1 gives

(a) gradient dis
ontinuity in |H(ejω)|

(b) an abrupt phase 
hange of ±π.

Group delay is − d
dω

∠H(ejω) : gives delay of the

modulation envelope at ea
h ω.

Normally varies with ω but for a symmetri
 �lter it

is 
onstant: in this 
ase +1 samples.

Dis
ontinuities of ±kπ do not a�e
t group delay.

0

0 1 2 3
0

1

2

3

ω

0 1 2 3
-10

-5

0

5

10

ω

0 1 2 3
-2

-1

0

1

ω

∠
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Causal System: 
annot see into the future

i.e. output at time n depends only on inputs up to time n.

Formal de�nition:

If v[n] = x[n] for n ≤ n0 then H (v[n]) = H (x[n]) for n ≤ n0.

The following are equivalent:

(1) An LTI system is 
ausal

(2) h[n] is 
ausal ⇔ h[n] = 0 for n < 0

(3) H(z) 
onverges for z = ∞

Any right-sided sequen
e 
an be made 
ausal by adding a delay.

All the systems we will deal with are 
ausal.
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Summary of 
onditions on h[n] for LTI systems:

Causal ⇔ h[n] = 0 for n < 0

BIBO Stable ⇔
∑

∞

n=−∞
|h[n]| < ∞

Summary of 
onditions on H(z) for LTI systems:

Causal ⇔ H(∞) 
onverges

BIBO Stable ⇔ H(z) 
onverges for |z| = 1

Passive ⇔ |H(z)| ≤ 1 for |z| = 1

Lossless or Allpass ⇔ |H(z)| = 1 for |z| = 1
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y[n] = x[n] ∗ h[n]: 
onvolve x[0 : N − 1] with h[0 : M − 1]

x

∗ →

Convolution sum:

y[n] =
∑M−1

r=0 h[r]x[n− r]

y[n] is only non-zero in the range

0 ≤ n ≤ M +N − 2

Thus y[n] has only

M +N − 1 non-zero values

Algebrai
ally:

y[0] y[9]

N = 8, M = 3
M +N − 1 = 10

x[n− r] 6= 0⇒ 0 ≤ n− r ≤ N − 1
⇒ n+ 1−N ≤ r ≤ n

Hen
e: y[n] =
∑min(M−1,n))

r=max(0,n+1−N) h[r]x[n− r]

We must multiply ea
h h[n] by ea
h x[n] and add them to a total

⇒ total arithmeti
 
omplexity (× or + operations) ≈ 2MN
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y⊛[n] = x[n]⊛N h[n]: 
ir
 
onvolve x[0 : N − 1] with h[0 : M − 1]

x

⊛N →

Convolution sum:

y⊛N
[n] =

∑M−1
r=0 h[r]x[(n− r)

mod N ]

y⊛N
[n] has period N

⇒ y⊛N
[n] has N distin
t values

y[0] y[7]

N = 8, M = 3

• Only the �rst M − 1 values are a�e
ted by the 
ir
ular repetition:

y⊛N
[n] = y[n] for M − 1 ≤ n ≤ N − 1

• If we append M − 1 zeros (or more) onto x[n], then the 
ir
ular

repetition has no e�e
t at all and:

y⊛N+M−1
[n] = y[n] for 0 ≤ n ≤ N +M − 2

Cir
ular 
onvolution is a ne
essary evil in ex
hange for using the DFT
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Idea: Use DFT to perform 
ir
ular 
onvolution - less 
omputation

(1) Choose L ≥ M +N − 1 (normally round up to a power of 2)

(2) Zero pad x[n] and h[n] to give sequen
es of length L: x̃[n] and h̃[n]

(3) Use DFT: ỹ[n] = F−1(X̃[k]H̃ [k]) = x̃[n]⊛L h̃[n]

(4) y[n] = ỹ[n] for 0 ≤ n ≤ M +N − 2.

Arithmeti
 Complexity:

DFT or IDFT take 4L log2 L operations if L is a power of 2

(or 16L log2 L if not).

Total operations: ≈ 12L log2 L ≈ 12 (M +N) log2 (M +N)

Bene�
ial if both M and N are >∼ 70 .

Example: M = 103, N = 104:

Dire
t: 2MN = 2× 107

with DFT: = 1.8× 106 ,

But: (a) DFT may be very long if N is large

(b) No outputs until all x[n] has been input.
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If N is very large:

(1) 
hop x[n] into N
K


hunks of length K

(2) 
onvolve ea
h 
hunk with h[n]

(3) add up the results

Ea
h output 
hunk is of length K +M − 1 and overlaps the next 
hunk

Operations: ≈ N
K

× 8 (M +K) log2 (M +K)

Computational saving if ≈ 100 < M ≪ K ≪ N

Example: M = 500, K = 104, N = 107

Dire
t: 2MN = 1010

single DFT: 12 (M +N) log2 (M +N) = 2.8× 109

overlap-add:

N
K

× 8 (M +K) log2 (M +K) = 1.1× 109 ,

Other advantages:

(a) Shorter DFT

(b) Can 
ope with N = ∞

(
) Can 
al
ulate y[0] as soon as x[K − 1] has been read:

algorithmi
 delay = K − 1 samples
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Alternative method:

(1) 
hop x[n] into N
K

overlapping


hunks of length K +M − 1

(2) ⊛K+M−1 ea
h 
hunk with h[n]

(3) dis
ard �rst M − 1 from ea
h 
hunk

(4) 
on
atenate to make y[n]

The �rst M − 1 points of ea
h output 
hunk are invalid

Operations: slightly less than overlap-add be
ause no addition needed to


reate y[n]

Advantages: same as overlap add

Strangely, rather less popular than overlap-add
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• LTI systems: impulse response, frequen
y response, group delay

• BIBO stable, Causal, Passive, Lossless systems

• Convolution and 
ir
ular 
onvolution properties

• E�
ient methods for 
onvolution

◦ single DFT

◦ overlap-add and overlap-save

For further details see Mitra: 4 & 5.
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�t�lt Convolution using overlap add

x[n]⊛y[n] real(i�t(�t(x).*�t(y)))
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Most useful LTI systems 
an be des
ribed by

a di�eren
e equation:

y[n] =
∑M

r=0 b[r]x[n− r]−
∑N

r=1 a[r]y[n− r]

⇔
∑N

r=0 a[r]y[n− r] =
∑M

r=0 b[r]x[n− r] with a[0] = 1

⇔ a[n] ∗ y[n] = b[n] ∗ x[n]

⇔ Y (z) = B(z)
A(z)X(z)

⇔ Y (ejω) = B(ejω)
A(ejω)X(ejω)

(1) Always 
ausal.

(2) Order of system is max(M,N), the highest r with a[r] 6= 0 or b[r] 6= 0.

(3) We assume that a[0] = 1; if not, divide A(z) and B(z) by a[0].

(4) Filter is BIBO stable i� roots of A(z) all lie within the unit 
ir
le.

Note negative sign in �rst equation.

Authors in some SP �elds reverse the sign of the a[n]: BAD IDEA.



FIR Filters

5: Filters

Di�eren
e Equations

⊲ FIR Filters

FIR Symmetries +

IIR Frequen
y

Response

Negating z +

Cubing z +

S
aling z +

Low-pass �lter +

Allpass �lters +

Group Delay +

Minimum Phase +

Linear Phase Filters

Summary

MATLAB routines

DSP and Digital Filters (2017-10159) Filters: 5 � 3 / 15

A(z) = 1: Finite Impulse Response (FIR) �lter: Y (z) = B(z)X(z).

Impulse response is b[n] and is of length M + 1.

Frequen
y response is B(ejω) and is the DTFT of b[n].

Comprises M 
omplex sinusoids + 
onst:

b[0] + b[1]e−jω + · · ·+ b[M ]e−jMω

Small M⇒response 
ontains only low �quefren
ies�

Symmetri
al b[n]⇒H(ejω)e
jMω

2


onsists of

M
2 
osine waves [+ 
onst℄

M=4 M=14 M=24

0 1 2 3
0

0.5

1

ω
0 1 2 3

0

0.5

1

ω
0 1 2 3

0

0.5

1

ω

Rule of thumb: Fastest possible transition ∆ω ≥ 2π
M

(marked line)
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B(ejω) is determined by the zeros of zMB(z) =
∑M

r=0 b[M − r]zr

Real b[n] ⇒ 
onjugate zero pairs: z ⇒ z∗

Symmetri
: b[n] = b[M − n] ⇒ re
ipro
al zero pairs: z ⇒ z−1

Real + Symmetri
 b[n] ⇒ 
onjugate+re
ipro
al groups of four

or else pairs on the real axis

Real: Symmetri
: Real + Symmetri
:

[1, −1.28, 0.64] [1, −1.64 + 0.27j, 1] [1,−3.28, 4.7625, −3.28, 1]

-1 0 1

-1

-0.5

0
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1

z
-1 0 1

-1

-0.5

0
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1

z
-1 0 1
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z

-2 0 2
0
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0

1

2
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-2 0 2

0
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In all of the proofs below, we assume that z = z0 is a root of B(z) so that B(z0) =
∑M

r=0 b[r]z
−r
0 = 0

and then we prove that this implies that other values of z also satisfy B(z) = 0.

(1) Real b[n]

B(z∗0) =
∑M

r=0 b[r]
(

z∗0
)−r

=
∑M

r=0 b
∗[r]

(

z∗0
)−r

sin
e b[r] is real

=
(

∑M
r=0 b[r]z

−r
0

)∗

take 
omplex 
onjugate

= 0∗ = 0 sin
e B(z0) = 0

(2) Symmetri
: b[n] = b[M − n]

B(z−1
0 ) =

∑M
r=0 b[r]z

r
0

=
∑M

n=0 b[M − n]zM−n
0 substitute r = M − n

= zM0
∑M

n=0 b[M − n]z−n
0 take out zM0 fa
tor

= zM0
∑M

n=0 b[n]z
−n
0 sin
e b[M − n] = b[n]

= zM0 × 0 = 0 sin
e B(z0) = 0
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Fa
torize H(z) = B(z)
A(z)=

b[0]
∏

M
i=1(1−qiz

−1)
∏

N
i=1(1−piz−1)

Roots of A(z) and B(z) are the �poles� {pi} and �zeros� {qi} of H(z)

Also an additional N −M zeros at the origin (a�e
t phase only)

∣

∣H(ejω)
∣

∣ =
|b[0]||z−M |∏M

i=1|z−qi|

|z−N |
∏

N
i=1|z−pi|

for z = ejω

Example:

H(z) = 2+2.4z−1

1−0.96z−1+0.64z−2=
2(1+1.2z−1)

(1−(0.48−0.64j)z−1)(1−(0.48+0.64j)z−1)

At ω = 1.3:

∣

∣H(ejω)
∣

∣ = 2×1.76
1.62×0.39= 5.6

∠H(ejω) = (0.6 + 1.3)− (1.7 + 2.2) = −1.97

0 1 2 3
0
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Given a �lter H(z) we 
an form a new one HR(z) = H(−z)

Negate all odd powers of z, i.e. negate alternate a[n] and b[n]

Example: H(z) = 2+2.4z−1

1−0.96z−1+0.64z−2

-1 0 1
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-0.5

0
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1

ℜ(z)

ℑ
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ω

Negate z: HR(z) =
2−2.4z−1

1+0.96z−1+0.64z−2 Negate odd 
oe�
ients
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Pole and zero positions are negated, response is �ipped and 
onjugated.
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Suppose that HR(z) = H(−z). Then HR(z) has the following two properties:

Pole and zero positions are negated

If z0 is a zero of H(z), then HR(−z0) = H(z0) = 0 so −z0 is a zero of HR(z). A similar argumnet

applies to poles.

The frequen
y response is �ipped and 
onjugated

The frequen
y response is given by HR(ejω) = H(−ejω) = H(e−jπ × ejω) = H(ej(ω−π)). This


orresponds to shifting the frequen
y reponse by π rad/samp (or, equivalently by −π rad/samp).

If it is true that all the 
oe�
ients in a[n] and b[n] are real-valued (normally the 
ase), then the

response of H(z) has 
onjugate symmetry, i.e. H(e−jω) = H∗(ejω). In this 
ase we 
an write

HR(ejω) = H(ej(ω−π)) = H∗(ej(π−ω)). This 
orresponds to a frequen
y response that has been

re�e
ted around ω = π
2

(a.k.a. ��ipped�) and then 
onjugated.

So, the transformation of the frequen
y 
an be viewed in one of two ways: (a) it has been shifted by

±π rad/samp or (b) it has been �ipped around ω = π
2

and then 
onjugated. The �rst interpretation

is always true (even for �lters with 
omplex-valued 
oe�
ients) while the se
ond interpretation is more

intuitive but is only true if the �lter 
oe�
ients are real-valued.



Cubing z +

5: Filters

Di�eren
e Equations

FIR Filters

FIR Symmetries +

IIR Frequen
y

Response

Negating z +

⊲ Cubing z +

S
aling z +

Low-pass �lter +

Allpass �lters +

Group Delay +

Minimum Phase +

Linear Phase Filters

Summary

MATLAB routines

DSP and Digital Filters (2017-10159) Filters: 5 � 7 / 15

Given a �lter H(z) we 
an form a new one HC(z) = H(z3)

Insert two zeros between ea
h a[n] and b[n] term

Example: H(z) = 2+2.4z−1

1−0.96z−1+0.64z−2
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0
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Cube z: HC(z) =
2+2.4z−3

1−0.96z−3+0.64z−6 Insert 2 zeros between 
oefs
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C

Pole and zero positions are repli
ated, magnitude response repli
ated.
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Suppose that HC(z) = H(z3). Then HC(z) has the following two properties:

Pole and zero positions are repli
ated three times

If z0 is a zero of H(z), then HC( 3
√
z0) = H(z0) = 0 so any 
ube root of z0 is a zero of HC(z). A

similar argument applies to poles. Any z0 has three 
ube roots in the 
omplex plane whose magnitudes

all have the same value of

3
√

|z0| and whose arguments are ∠z0 +
{

0, 2π
3
, 4π

3

}

.

The frequen
y response is repli
ated three times

The frequen
y response is given by HC(ejω) = H(ej3ω). This 
orresponds to shrinking the response

horizontally by a fa
tor of 3. Also HC

(

ej(ω± 2π
3 )
)

= H
(

ej3(ω± 2π
3 )
)

= H
(

ej3ω±2π
)

= HC

(

ejω
)

meaning that there are three repli
ations of the frequen
y response spa
ed

2π
3

apart. Note that if you

only look at the positive frequen
ies, there are three repli
ations of the positive half of the reponse but

alternate 
opies are �ipped and 
onjugated (assuming the 
oe�
ients a[n] and b[n] are real-valued).

All of this 
arries over to raising z to any positive integer power; the number of repli
ations is equal to

the power 
on
erned.
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Given a �lter H(z) we 
an form a new one HS(z) = H( z
α
)

Multiply a[n] and b[n] by αn

Example: H(z) = 2+2.4z−1

1−0.96z−1+0.64z−2
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S
ale z: HS(z) = H( z
1.1 ) =

2+2.64z−1

1−1.056z−1+0.7744z−2
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Pole and zero positions are multiplied by α, α > 1 ⇒peaks sharpened.

Pole at z = p gives peak bandwidth ≈ 2 |log |p|| ≈ 2 (1− |p|)

For pole near unit 
ir
le, de
rease bandwidth by ≈ 2 logα
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Suppose that HS(z) = H
(

z
α

)

where α is a non-zero real number. Then HS(z) has the following two

properties:

Pole and zero positions are multiplied by α

If z0 is a zero of H(z), then HS(αz) = H(z0) = 0 so αz0 is a zero of HS(z). The argument of the

zero is un
hanged sin
e ∠αz0 = ∠z0. The magnitude of the zero is multiplied by α. A similar argument

applies to poles. If α > 1 then the pole positions will move 
loser to the unit 
ir
le. If α is large enough

to make any pole 
ross the unit 
ir
le then the �lter HS(z) will be unstable.

The bandwidth of any peaks in the response are de
reased by approximately 2 logα

If H(z) has a pole, p, that is near the unit 
ir
le, it results in a peak in the magnitude response at

ω = ∠p whose amplitude is proportional to

1
1−|p| and whose bandwidth is approximately equal to

−2 log |p| ≈ 2 (1− |p|) (whi
h is positive sin
e |p| < 1). The 
orresponding pole in HS(z) is at αp, so

its approximate bandwidth is now −2 log |αp| = −2 log |p|−2 logα. Thus the bandwidth has de
reased

by about 2 logα.

If α > 1 then logα is positive and the peak in HS(z) will have a higher amplitude and a smaller

bandwidth. If α < 1, then logα is negative and the peak will have a lower amplitude and a larger

bandwidth.
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1st order low pass �lter: extremely 
ommon

y[n] = (1− p)x[n] + py[n− 1]⇒ H(z) = 1−p
1−pz−1

Impulse response:

h[n] = (1− p)pn = (1− p)e−
n
τ

where τ = 1
− ln p

is the time 
onstant in samples.

Magnitude response:

∣

∣H(ejω)
∣

∣ = 1−p√
1−2p cosω+p2

Low-pass �lter with DC gain of unity.

3 dB frequen
y is ω3dB = cos−1
(

1− (1−p)2

2p

)

≈ 2 1−p
1+p

≈ 1
τ

Compare 
ontinuous time: HC(jω) =
1

1+jωτ

Indistinguishable for low ω but H(ejω) is periodi
, HC(jω) is not

-1 0 1

-1

-0.5

0

0.5

1

ℜ(z)

ℑ

p=0.80

0.01 0.1

-30

-20
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H(jω)

H
C
(jω)

1/τ 2π
ω  (rad/sample)
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To �nd the 3dB frequen
y we require |H(ejω3 )| =
√

1
2
⇔ |H(ejω0 )|2 = 1

2

.

(1−p)2

1−2p cosω3+p2
= 1

2

⇒ 2 (1− p)2 = 1− 2p cosω3 + p2

⇒ 2 (1− p)2 = (1− p)2 + 2p (1− cosω3)

⇒ cosω3 = 1− (1−p)2

2p

⇒ ω3 = cos−1
(

1− (1−p)2

2p

)

Expressing cosω = x as a Taylor series gives x ≈ 1 − ω2

2
⇒ ω ≈

√
2− 2x. So repla
ing x by the

expression in parentheses gives ω3 ≈
√

(1−p)2

p
= 1−p√

p

.

Writing d = 1 − p and assuming d is small, we 
an write

√
p = (1− d)

1
2 ≈ 1 − 1

2
d = 1

2
(1 + p).

Substituting this into the previous expression gives ω3 ≈ 2 1−p
1+p

.
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If H(z) = B(z)
A(z) with b[n] = a∗[M − n] then we have an allpass �lter:

⇒ H(ejω) =
∑

M
r=0 a∗[M−r]e−jωr

∑
M
r=0 a[r]e−jωr

= e−jωM
∑

M
s=0 a∗[s]ejωs

∑
M
r=0 a[r]e−jωr

[s = M − r℄

The two sums are 
omplex 
onjugates ⇒ they have the same magnitude

Hen
e

∣

∣H(ejω)
∣

∣ = 1∀ω ⇔ �allpass�

However phase is not 
onstant: ∠H(ejω) = −ωM − 2∠A(ejω)

1st order allpass: H(z) = −p+z−1

1−pz−1 = −p 1−p−1z−1

1−pz−1

Pole at p and zero at p−1

: �re�e
ted in unit 
ir
le�

Constant distan
e ratio:

∣

∣ejω − p
∣

∣ = |p|
∣

∣

∣
ejω − 1

p

∣

∣

∣
∀ω

0 1 2 3
0

0.2

0.4

0.6

0.8

1

ω
0 1 2 3

-3

-2

-1

0

ω

∠

-1 0 1

-1

-0.5

0

0.5

1

ℜ(z)

ℑ

In an allpass �lter, the zeros are the poles re�e
ted in the unit 
ir
le.
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An allpass �lter is one in whi
h H(z) =
B(z)
A(z)

with b[n] = a∗[M − n]. Of 
ourse, if the 
oe�
ients

a[n] are all real, then the 
onjugation has no e�e
t and the numerator 
oe�
ients are identi
al to the

numerator 
oe�
ients but in reverse order.

If A(z) has order M , we 
an express the relation between A(z) and B(z) algebrai
ally as

B(z) = z−M Ā(z−1) where the 
oe�
ients of Ā(z) are the 
onjugates of the 
oe�
ients of A(z).

If the roots of A(z) are pi, then we 
an express H(z) in fa
torized form as

H(z) =
M
∏

i=1

−p∗i + z−1

1− piz−1
=

M
∏

i=1

1− p∗i z

z − pi

We 
an therefore write

|H(z)|2 =
M
∏

i=1

(

1− p∗i z
)

(1− piz
∗)

(z − pi)
(

z∗ − p∗i
) =

M
∏

i=1

1− piz
∗ − p∗i z + pip

∗
i zz

∗

zz∗ − piz∗ − p∗i z + pip∗i

=
M
∏

i=1

(

1 +
1 + pip

∗
i zz

∗ − zz∗ − pip
∗
i

zz∗ − piz∗ − p∗i z + pip∗i

)

=
M
∏

i=1



1 +

(

1− |z|2
)(

1− |pi|2
)

|z − pi|2





If all the |pi| < 1, then ea
h term in the produ
t is T1 a

ording to whether |z| S 1.

It follows that, provided H(z) is stable, |H(z)| T 1 a

ording to whether |z| S 1.



Group Delay +

5: Filters

Di�eren
e Equations

FIR Filters

FIR Symmetries +

IIR Frequen
y

Response

Negating z +

Cubing z +

S
aling z +

Low-pass �lter +

Allpass �lters +

⊲ Group Delay +

Minimum Phase +

Linear Phase Filters

Summary

MATLAB routines

DSP and Digital Filters (2017-10159) Filters: 5 � 11 / 15

Group delay: τH(ejω) = −d∠H(ejω)
dω

= delay of the modulation envelope.

Tri
k to get at phase: lnH(ejω) = ln
∣

∣H(ejω)
∣

∣+ j∠H(ejω)

τH =
−d(ℑ(lnH(ejω)))

dω
= ℑ

(

−1
H(ejω)

dH(ejω)
dω

)

= ℜ
(

−z
H(z)

dH
dz

)
∣

∣

∣

z=ejω

H(ejω) =
∑∞

n=0 h[n]e
−jnω= F (h[n]) [F = DTFT℄

dH(ejω)
dω

=
∑∞

n=0 −jnh[n]e−jnω= −jF (nh[n])

τH = ℑ
(

−1
H(ejω)

dH(ejω)
dω

)

= ℑ
(

jF(nh[n])
F(h[n])

)

= ℜ
(

F(nh[n])
F(h[n])

)

Example: H(z) = 1
1−pz−1⇒ τH = −τ[1 −p]= −ℜ

(

−pe−jω

1−pe−jω

)

-1 0 1

-1

-0.5

0

0.5

1

ℜ(z)

ℑ

0 1 2 3

-0.8

-0.6

-0.4

-0.2

0

p=0.80

ω

∠

0 1 2 3

0

1

2

3 p=0.80

ω
τ H

Average group delay (over ω) = (# poles � # zeros) within the unit 
ir
le

Zeros on the unit 
ir
le 
ount �½
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The group delay of a �lter H(z) at a frequen
y ω gives the time delay (in samples) of the envelope

of a modulated sine wave at a frequen
y ω. It is de�ned as τH(ejω) = − d∠H(ejω)
dω

. For example,

H(z) = z−k

de�nes a �lter that delays its input by k samples and we 
an 
al
ulate the group delay by

evaluating

τH(ejω) = −d∠H(ejω)

dω
= − d

dω

(

∠e−jkω
)

= − d

dω
(−kω) = k

whi
h tells us that this �lter has a 
onstant group delay of k samples that is independent of ω.

The average value of τH equals the total 
hange in −∠H(ejω) as ω goes from −π to +π divided by

2π. If you imagine an elasti
 string 
onne
ting a pole or zero to the point z = ejω , you 
an see that

as ω goes from −π to +π the string will wind on
e around the pole or zero if it is inside the unit 
ir
le

but not if it is outside. Thus, the total 
hange in ∠H(ejω) is equal to 2π times the the di�eren
e

between the number of poles and the number of zeros inside the unit 
ir
le. A zero that is exa
tly on

the unit 
ir
le 
ounts

1
2

sin
e there is a sudden dis
ontinuity of π in ∠H(ejω) as ω passes through the

zero position.

When you multiply or divide 
omplex numbers, their phases add or subtra
t, so it follows that when

you multiply or divide transfer fun
tions their group delays will add or subtra
t. Thus, for example,

the group delay of an IIR �lter, H(z) =
B(z)
A(z)

, is given by τH = τB − τA. This means too that we


an determine the group delay of a fa
torized transfer fun
tion by summing the group delays of the

individual fa
tors.
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The slide shows how to determine the group delay, τH , from either the impulse response, h[n], or

the transfer fun
tion, H(z). We start by using a tri
k that is very 
ommon: if you want to get at

the magnitude and phase of a 
omplex number separately, you 
an do so by taking its natural log:

ln
(

rejθ
)

= ln |r| + jθ or, in general, lnH = ln |H| + j∠H. By rearranging this equation, we get

∠H = ℑ (lnH) where ℑ( ) denotes taking the imaginary part of a 
omplex number. Using this, we 
an

write

τH =
−d
(

ℑ
(

lnH(ejω)
))

dω
= ℑ

(

−d
(

lnH(ejω)
)

dω

)

= ℑ
( −1

H(ejω)

dH(ejω)

dω

)

. (1)

By going ba
k to the de�nition of the DTFT, we �nd that H(ejω) = F (h[n]) and

dH(ejω)
dω

=
−jF (nh[n]) where F ( ) denotes the DTFT. Substituting these expressions into the above equation

gives us a formula for τH in terms of the impulse response h[n].

τH = ℜ
(

F (nh[n])

F (h[n])

)

(2)

In order to express τH in terms of z, we �rst note that if z = ejω then

dz
dω

= jz. By substituting

z = ejω into equation (1), we get

τH = ℑ
( −1

H(z)

dH(z)

dω

)

= ℑ
( −1

H(z)

dH(z)

dz

dz

dω

)

= ℑ
( −jz

H(z)

dH(z)

dz

)

= ℜ
( −z

H(z)

dH(z)

dz

)∣

∣

∣

∣

z=ejω
.
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As an example, suppose we want to determine the group delay of : H(z) = 1
1−pz−1 . As noted above,

if H(z) =
B(z)
A(z)

, then τH = τB − τA. In this 
ase τB = 0 so τH = −τ[1 −p].

Using equation (2) gives τH = −ℜ
(

F([0 −p])
F([1 −p])

)

sin
e nh[n] = [0 1]× [1 − p].

Applying the de�nition of the DTFT, we get

τH = −ℜ
( −pe−jω

1− pe−jω

)

= ℜ
(

p

ejω − p

)

=
ℜ
(

p
(

e−jω − p
))

(ejω − p) (e−jω − p)
=

p cosω − p2

1− 2p cosω + p2

As demonstrated above, the average value of τH is zero for this �lter be
ause there is one pole and one

zero inside the unit 
ir
le.
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Average group delay (over ω) = (# poles � # zeros) within the unit 
ir
le

• zeros on the unit 
ir
le 
ount �½

Re�e
ting an interior zero to the exterior

multiplies

∣

∣H(ejω)
∣

∣

by a 
onstant but

in
reases average group delay by 1 sample.
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0
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ω
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A �lter with all zeros inside the unit 
ir
le is a minimum phase �lter:

• Lowest possible group delay for a given magnitude response

• Energy in h[n] is 
on
entrated towards n = 0
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This proof is not examinable

Suppose H(z) has a zero inside the unit 
ir
le at z = z0 so that we 
an write H(z) =
(

1− z0z−1
)

F (z).

If we �ip this zero outside the unit 
ir
le, we 
an write G(z) =
(

z−1 − z∗0
)

F (z) whi
h has the same

magnitude response as H(z).

Taking inverse z-transforms, we 
an write the 
orresponding time domain equations:

h[n] = f [n]− z0f [n− 1] and g[n] = f [n− 1]− z∗0f [n].

Now, de�ning f [−1] , 0, we sum the energy in the �rst K + 1 samples of the impulse response:

K
∑

k=0

|h[k]|2 =
K
∑

k=0

|f [k]− z0f [k − 1]|2 =
K
∑

k=0

(f [k]− z0f [k − 1]) (f [k]− z0f [k − 1])∗

=
K
∑

k=0

|f [k]|2 − z0f [k − 1]f∗[k]− z∗0f
∗[k − 1]f [k] + |z0|2 |f [k − 1]|2

=
K
∑

k=0

|z0|2 |f [k]|2 − z0f [k − 1]f∗[k]− z∗0f
∗[k − 1]f [k] + |f [k − 1]|2

+
K
∑

k=0

(

1− |z0|2
)(

|f [k]|2 − |f [k − 1]|2
)
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So, repeating the previous line,

K
∑

k=0

|h[k]|2 =
K
∑

k=0

|z0|2 |f [k]|2 − z0f [k − 1]f∗[k]− z∗0f
∗[k − 1]f [k] + |f [k − 1]|2

+
K
∑

k=0

(

1− |z0|2
)(

|f [k]|2 − |f [k − 1]|2
)

=
K
∑

k=0

(f [k − 1]− z∗0f [k]) (f [k − 1]− z∗0f [k])
∗ +

(

1− |z0|2
)

K
∑

k=0

(

|f [k]|2 − |f [k − 1]|2
)

=
K
∑

k=0

|g[k]|2 +
(

1− |z0|2
)(

|f [K]|2 − |f [−1]|2
)

=

K
∑

k=0

|g[k]|2 +
(

1− |z0|2
)

|f [K]|2 ≥
K
∑

k=0

|g[k]|2

sin
e |z0| < 1 implies that

(

1− |z0|2
)

> 0. Thus �ipping a zero from inside the unit 
ir
le to outside

never in
reases the energy in the �rst K + 1 samples of the impulse response (for any K). Hen
e the

minimum phase response is the one with the most energy in the �rst K + 1 samples for any K.
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The phase of a linear phase �lter is: ∠H(ejω) = θ0 − αω

Equivalently 
onstant group delay: τH = −d∠H(ejω)
dω

= α

A �lter has linear phase i� h[n] is symmetri
 or antisymmetri
:

h[n] = h[M − n] ∀n or else h[n] = −h[M − n] ∀n
M 
an be even (⇒ ∃ mid point) or odd (⇒ ∄ mid point)

Proof ⇐:

2H(ejω) =
∑M

0 h[n]e−jωn +
∑M

0 h[M − n]e−jω(M−n)

= e−jωM
2

∑M
0 h[n]e−jω(n−M

2 ) + h[M − n]ejω(n−
M
2 )

h[n] symmetri
:

2H(ejω) = 2e−jωM
2

∑M

0 h[n] cos
(

n− M
2

)

ω

h[n] anti-symmetri
:

2H(ejω) = −2je−jωM
2

∑M

0 h[n] sin
(

n− M
2

)

ω

= 2e−j(π
2 +ωM

2 )
∑M

0 h[n] sin
(

n− M
2

)

ω
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• Useful �lters have di�eren
e equations:

◦ Freq response determined by pole/zero positions

◦ N −M zeros at origin (or M −N poles)

◦ Geometri
 
onstru
tion of |H(ejω)|
⊲ Pole bandwidth ≈ 2 |log |p|| ≈ 2 (1− |p|)

◦ Stable if poles have |p| < 1

• Allpass �lter: a[n] = b[M − n]
◦ Re�e
ting a zero in unit 
ir
le leaves |H(ejω)| un
hanged

• Group delay: τH
(

ejω
)

= −d∠H(ejω)
dω

samples

◦ Symmetri
al h[n] ⇔ τH
(

ejω
)

= M
2 ∀ω

◦ Average τH over ω = (# poles � # zeros) within the unit 
ir
le

• Minimum phase if zeros have |q| ≤ 1
◦ Lowest possible group delay for given |H(ejω)|

• Linear phase = Constant group Delay = symmetri
/antisymmetri
 h[n]

For further details see Mitra: 6, 7.
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�lter �lter a signal

impz Impulse response

residuez partial fra
tion expansion

grpdelay Group Delay

freqz Cal
ulate �lter frequen
y response
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For any BIBO stable �lter, H(ejω) is the DTFT of h[n]

H(ejω) =
∑∞

−∞ h[n]e−jωn ⇔ h[n] = 1
2π

∫ π

−π
H(ejω)ejωndω

If we know H(ejω) exa
tly, the IDTFT gives the ideal h[n]

Example: Ideal Lowpass �lter

H(ejω) =

{

1 |ω| ≤ ω0

0 |ω| > ω0

⇔ h[n] = sinω0n
πn

-2 0 2
0

0.5

1

2ω
0

ω

0

 2π/ω
0

Note: Width in ω is 2ω0, width in n is

2π
ω0

: produ
t is 4π always

Sadly h[n] is in�nite and non-
ausal. Solution: multiply h[n] by a window
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Trun
ate to ±M
2 to make �nite; h1[n] is now of length M + 1

MSE Optimality:

De�ne mean square error (MSE) in frequen
y domain

E = 1
2π

∫ π

−π

∣

∣H(ejω)−H1(e
jω)

∣

∣

2
dω

= 1
2π

∫ π

−π

∣

∣

∣
H(ejω)−

∑

M
2

−M
2

h1[n]e
−jωn

∣

∣

∣

2

dω

Minimum E is when h1[n] = h[n].

Proof: From Parseval: E =
∑

M
2

−M
2

|h[n]− h1[n]|
2
+
∑

|n|>M
2
|h[n]|

2

However: 9% overshoot at a dis
ontinuity even for large n.

0

h
1
[n]

M=14

0 1 2 3
0

0.5

1

M=14

M=28

ω

Normal to delay by

M
2 to make 
ausal. Multiplies H(ejω) by e−j M

2 ω

.
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Trun
ation ⇔ Multiply h[n] by a re
tangular window, w[n] = δ−M
2 ≤n≤M

2

⇔ Cir
ular Convolution HM+1(e
jω) = 1

2πH(ejω)⊛W (ejω)

W (ejω) =
∑

M
2

−M
2

e−jωn(i)= 1 + 2
∑0.5M

1 cos (nω)

(ii)

= sin 0.5(M+1)ω
sin 0.5ω

Proof: (i) e−jω(−n) + e−jω(+n) = 2 cos (nω) (ii) Sum geom. progression

E�e
t: 
onvolve ideal freq response with Diri
hlet kernel (aliassed sin
)

-2 0 2

0

0.5

1

ω
-2 0 2

0

0.5

1

 4π/(M+1)

ω
-2 0 2

0

0.5

1

ω

-2 0 2

0

0.5

1 M=14

ω

Provided that

4π
M+1 ≪ 2ω0 ⇔ M + 1 ≫ 2π

ω0

:

Passband ripple: ∆ω ≈ 4π
M+1 , stopband

2π
M+1

Transition pk-to-pk: ∆ω ≈ 4π
M+1

Transition Gradient:

d|H|
dω

∣

∣

∣

ω=ω0

≈ M+1
2π
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Other properties of W (ejω):

The DTFT of a symmetri
 re
tangular window of length M + 1 is W (ejω) =
∑

M
2

−

M
2

e−jωn =

ejω
M
2

∑M
0 e−jωn = ejω

M
2 1−e−jω(M+1)

1−e−jω = ej0.5ω(M+1)
−e−j0.5ω(M+1)

ej0.5ω−e−j0.5ω =
sin 0.5(M+1)ω

sin 0.5ω

.

For small x we 
an approximate sinx ≈ x; the error is < 1% for x < 0.25. So, for ω < 0.5, we have

W (ejω) ≈ 2ω−1 sin 0.5(M + 1)ω.

The peak value is at ω = 0 and equals M + 1; this means that the peak gradient of HM+1(e
jω) will

be

M+1
2π

.

The minimum value of W (ejω) is approximately equal to the minimuum of 2ω−1 sin 0.5(M+1)ω whi
h

is when sin 0.5(M + 1)ω = −1 i.e. when ω = 1.5π
0.5(M+1)

= 3π
M+1

.

Hen
e minW (ejω) ≈ min 2ω−1 sin 0.5(M + 1)ω = −
M+1
1.5π

.

Passband and Stopband ripple:

The ripple in W (ejω) =
sin 0.5(+1)ω

sin 0.5ω

has a period of ∆ω = 2π
0.5(+1)

= 4π
M+1

and this gives rise to

ripple with this period in both the passband and stopband of HM+1(e
jω).

However the stopband ripple takes the value of HM+1(e
jω) alternately positive and negative. If you

plot the magnitude response,

∣

∣HM+1(e
jω)

∣

∣

then this ripple will be full-wave re
ti�ed and will double in

frequen
y so its period will now be

2π
M+1

.
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When you multiply an impulse response by a window M + 1 long

HM+1(e
jω) = 1

2πH(ejω)⊛W (ejω)

-2 0 2
0

0.5

1

ω
-2 0 2

0

10

20

ω

M=20

-2 0 2

0

0.5

1

ω

1

(a) passband gain ≈ w[0]; peak≈ w[0]
2 + 0.5

2π

∫

mainlobe
W (ejω)dω

re
tangular window: passband gain = 1; peak gain = 1.09

(b) transition bandwidth, ∆ω = width of the main lobe

transition amplitude, ∆H = integral of main lobe÷2π

re
tangular window: ∆ω = 4π
M+1 , ∆H ≈ 1.18

(
) stopband gain is an integral over os
illating sidelobes of W (ejω)

re
t window:

∣

∣minH(ejω)
∣

∣ = 0.09 ≪
∣

∣minW (ejω)
∣

∣ = M+1
1.5π

(d) features narrower than the main lobe will be broadened and

attenuated
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Re
tangular: w[n] ≡ 1

don't use

Hanning: 0.5 + 0.5c1
ck = cos 2πkn

M+1

rapid sidelobe de
ay

Hamming: 0.54 + 0.46c1

best peak sidelobe

Bla
kman-Harris 3-term:

0.42 + 0.5c1 + 0.08c2

best peak sidelobe

Kaiser:

I0

(

β

√

1−( 2n
M )2

)

I0(β)

β 
ontrols width v sidelobes

Good 
ompromise:

Width v sidelobe v de
ay

0 1 2 3

-50

0 -13 dB6.27/(M+1)

ω

0 1 2 3

-50

0

-31 dB
12.56/(M+1)

ω

0 1 2 3

-50

0

-40 dB

12.56/(M+1)

ω

0 1 2 3

-50

0

-70 dB

18.87/(M+1)

ω

0 1 2 3

-50

0

-40 dB

13.25/(M+1)

β = 5.3

ω

0 1 2 3

-50

0

-70 dB

21.27/(M+1)

β = 9.5

ω
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Several formulae estimate the required order of a �lter, M .

E.g. for lowpass �lter

Estimated order is

M ≈ −5.6−4.3 log10(δǫ)
ω2−ω1

≈ −8−20 log10 ǫ

2.2∆ω

Required M in
reases as either the

transition width, ω2 − ω1, or the gain

toleran
es δ and ǫ get smaller.

Only approximate.

Example:

Transition band: f1 = 1.8 kHz, f2 = 2.0 kHz, fs = 12 kHz,.

ω1 = 2πf1
fs

= 0.943, ω2 = 2πf2
fs

= 1.047

Ripple: 20 log10 (1 + δ) = 0.1 dB, 20 log10 ǫ = −35 dB

δ = 10
0.1
20 − 1 = 0.0116, ǫ = 10

−35
20 = 0.0178

M ≈
−5.6−4.3 log10(2×10−4)

1.047−0.943 = 10.25
0.105 = 98 or

35−8
2.2∆ω

= 117
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Spe
i�
ations:

Bandpass: ω1 = 0.5, ω2 = 1

Transition bandwidth: ∆ω = 0.1

Ripple: δ = ǫ = 0.02
20 log10 ǫ = −34 dB

20 log10 (1 + δ) = 0.17 dB

Order:

M ≈ −5.6−4.3 log10(δǫ)
ω2−ω1

= 92

Ideal Impulse Response:

Di�eren
e of two lowpass �lters

h[n] = sinω2n
πn

− sinω1n
πn

Kaiser Window: β = 2.5

0

M=92

0 1 2 3
0

0.5

1

ω

0 1 2 3
0

0.5

1 M=92
β = 2.5

ω

0 1 2 3
-60

-40

-20

0 M=92
β = 2.5

ω
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Take M + 1 uniform samples of H(ejω); take IDFT to obtain h[n]

Advantage:

exa
t mat
h at sample points

Disadvantage:

poor intermediate approximation if spe
trum is varying rapidly

Solutions:

(1) make the �lter transitions smooth over ∆ω width

(2) oversample and do least squares �t (
an't use IDFT)

(3) use non-uniform points with more near transition (
an't use IDFT)

-2 0 2
0

0.5

1 M+1=93

ω
0 1 2 3

0

0.5

1 M+1=93

ω
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• Make an FIR �lter by windowing the IDTFT of the ideal response

◦ Ideal lowpass has h[n] = sinω0n
πn

◦ Add/subtra
t lowpass �lters to make any pie
ewise 
onstant

response

• Ideal �lter response is ⊛ with the DTFT of the window

◦ Re
tangular window (W (z) =Diri
hlet kernel) has −13 dB

sidelobes and is always a bad idea

◦ Hamming, Bla
kman-Harris are good

◦ Kaiser good with β trading o� main lobe width v. sidelobes

• Un
ertainty prin
iple: 
annot be 
on
entrated in both time and

frequen
y

• Frequen
y sampling: IDFT of uniform frequen
y samples: not so great

For further details see Mitra: 7, 10.
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diri
(x,n) Diri
hlet kernel:

sin 0.5nx
sin 0.5x

hanning

hamming

kaiser

Window fun
tions

(Note 'periodi
' option)

kaiserord Estimate required �lter order and β
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We restri
t ourselves to zero-phase �lters of odd length M + 1, symmetri


around h[0], i.e. h[−n] = h[n].

H(ω) = H(ejω) =
∑

M
2

−M
2

h[n]e−jnω= h[0] + 2
∑

M
2

1 h[n] cosnω

H(ω) is real but not ne
essarily positive (unlike

∣

∣H(ejω)
∣

∣).

Weighted error: e(ω) = s(ω)
(

H(ω)− d(ω)
)

where d(ω) is the target.

Choose s(ω) to 
ontrol the error variation with ω.

Example: lowpass �lter

d(ω) =

{

1 0 ≤ ω ≤ ω1

0 ω2 ≤ ω ≤ π

s(ω) =

{

δ−1 0 ≤ ω ≤ ω1

ǫ−1 ω2 ≤ ω ≤ π

e(ω) = ±1 when H(ω) lies at the edge of the spe
i�
ation.

Minimax 
riterion: h[n] = argminh[n] maxω |e(ω)|: minimize max error
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Want to �nd the best �t line: with the smallest maximal error.

Best �t line always attains the

maximal error three times with

alternate signs

2 4 6 8
2

4

6

8

Proof:

Assume the �rst maximal deviation from the line is negative as shown.

There must be an equally large positive deviation; or else just move the line

downwards to redu
e the maximal deviation.

This must be followed by another maximal negative deviation; or else you


an rotate the line and redu
e the deviations.

Alternation Theorem:

A polynomial �t of degree n to a set of bounded points is minimax if and

only if it attains its maximal error at n+ 2 points with alternating signs.

There may be additional maximal error points.

Fitting to a 
ontinuous fun
tion is the same as to an in�nite number of

points.
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H(ω) = H(ejω) = h[0] + 2
∑

M
2

1 h[n] cosnω

But cosnω = Tn(cosω): Chebyshev polynomial of 1st kind

cos 2ω = 2 cos2 ω − 1 = T2(cosω) T2(x) = 2x2 − 1
cos 3ω = 4 cos3 ω − 3 cosω = T3(cosω) T3(x) = 4x3 − 3x

Re
urren
e Relation:

Tn+1(x) = 2xTn(x)− Tn−1(x) with T0(x) = 1, T1(x) = x

Proof: cos (nω + ω) + cos (nω − ω) = 2 cosω cosnω

So H(ω) is an M
2 order polynomial in cosω: alternation theorem applies.

Example: Symmetri
 lowpass �lter of orderM = 4
H(z) = 0.1766z2 + 0.4015z + 0.2124 + 0.4015z−1 + 0.1766z−2
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Maximal error lo
ations o

ur either at band

edges or when

dH
dω

= 0

H(ω) = h[0] + 2
∑

M
2

1 h[n] cosnω
= P (cosω)

where P (x) is a polynomial of order

M
2 .

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

ω

|H
|

M=18

dH
dω

= −P ′(cosω) sinω

= 0 at ω = 0, π and at most

M
2 − 1 zeros of polynomial P ′(x).

∴ With two bands, we have at most

M
2 + 3 maximal error frequen
ies.

We require

M
2 + 2 of alternating signs for the optimal �t.

Only three possibilities exist (try them all):

(a) ω = 0 + two band edges + all

(

M
2 − 1

)

zeros of P ′(x).

(b) ω = π + two band edges + all

(

M
2 − 1

)

zeros of P ′(x).

(
) ω = {0 and π} + two band edges +

(

M
2 − 2

)

zeros of P ′(x).
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1. Guess the positions of the

M
2 + 2 maximal error frequen
ies and give

alternating signs to the errors (e.g. 
hoose evenly spa
ed ω).

2. Determine the error magnitude, ǫ, and the

M
2 + 1 
oe�
ients of

the polynomial that passes through the maximal error lo
ations.

3. Find the lo
al maxima of the error fun
tion by evaluating

e(ω) = s(ω)
(

H(ω)− d(ω)
)

on a dense set of ω.

4. Update the maximal error frequen
ies to be an alternating subset of

the lo
al maxima + band edges + {0 and/or π}.

If maximum error is > ǫ, go ba
k to step 2. (typi
ally 15 iterations)

5. Evaluate H(ω) on M + 1 evenly spa
ed ω and do an IDFT to get h[n].
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For ea
h extremal frequen
y, ωi for 1 ≤ i ≤ M
2 + 2

d(ωi) = H(ωi) +
(−1)iǫ
s(ωi)

= h[0] + 2
∑

M
2

n=1 h[n] cosnωi +
(−1)iǫ
s(ωi)

Method 1: (Computation time ∝ M3

)

Solve

M
2 + 2 equations in

M
2 + 2 unknowns for h[n] + ǫ.

In step 3, evaluate H(ω) = h[0] + 2
∑

M
2

n=1 h[n] cosnωi

Method 2: Don't 
al
ulate h[n] expli
itly (Computation time ∝ M2

)

Multiply the ωi equation by ci =
∏

j 6=i
1

cosωi−cosωj

and add them:

∑

M
2
+2

i=1 ci

(

h[0] + 2
∑

M
2

n=1 h[n] cosnω + (−1)iǫ
s(ωi)

)

=
∑

M
2
+2

i=1 cid(ωi)

All terms involving h[n] sum to zero leaving

∑

M
2
+2

i=1
(−1)ici
s(ωi)

ǫ =
∑

M
2
+2

i=1 cid(ωi)

Solve for ǫ then 
al
ulate the H(ωi) then use Lagrange interpolation:

H(ω) = P (cosω) =
∑

M
2
+2

i=1 H(ωi)
∏

j 6=i

cosω−cosωj

cosωi−cosωj
(

M
2 + 1

)

-polynomial going through all the H(ωi) [a
tually order

M
2 ℄
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Filter Spe
i�
ations:

Bandpass ω = [0.5, 1], Transition widths: ∆ω = 0.2

Stopband Attenuation: −25 dB and −15 dB

Passband Ripple: ±0.3 dB

Determine gain toleran
es for ea
h band:

−25 dB = 0.056, −0.3 dB = 1− 0.034, −15 dB = 0.178

Predi
ted order: M = 36
M
2 + 2 extremal frequen
ies are distributed between the bands

Filter meets spe
s ,; 
learer on a de
ibel s
ale

Most zeros are on the unit 
ir
le + three re
ipro
al pairs

Re
ipro
al pairs give a linear phase shift

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

ω

|H
|

M=36

0 0.5 1 1.5 2 2.5 3
-30

-25

-20
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0

ω
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• Can have linear phase

◦ no envelope distortion, all frequen
ies have the same delay ,

◦ symmetri
 or antisymmetri
: h[n] = h[−n]∀n or −h[−n]∀n
◦ antisymmetri
 �lters have H(ej0) = H(ejπ) = 0
◦ symmetry means you only need

M
2 + 1 multipli
ations

to implement the �lter.

• Always stable ,

• Low 
oe�
ient sensitivity ,

• Optimal design method fast and robust ,

• Normally needs higher order than an IIR �lter /

◦ Filter order M ≈ dBatten

3.5∆ω

where ∆ω is the most rapid transition

◦ Filtering 
omplexity ∝ M × fs ≈
dBatten

3.5∆ω
fs =

dBatten

3.5∆Ω f2
s

∝ f2
s for a given spe
i�
ation in uns
aled Ω units.
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Optimal Filters: minimax error 
riterion

• use weight fun
tion, s(ω), to allow di�erent errors

in di�erent frequen
y bands

• symmetri
 �lter has zeros on unit 
ir
le or in re
ipro
al pairs

• Response of symmetri
 �lter is a polynomial in cosω
• Alternation Theorem:

M
2 + 2 maximal errors with alternating signs

Remez Ex
hange Algorithm (also known as Parks-M
Lellan Algorithm)

• multiple 
onstant-gain bands separated by transition regions

• very robust, works for �lters with M > 1000
• E�
ient: 
omputation ∝ M2

• 
an go mad in the transition regions

Modi�ed version works on arbitrary gain fun
tion

• Does not always 
onverge

For further details see Mitra: 10.
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�rpm optimal FIR �lter design

�rpmord estimate require order for �rpm


�rpm arbitrary-response �lter design

remez [obsolete℄ optimal FIR �lter design
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Classi
al 
ontinuous-time �lters optimize tradeo�:

passband ripple v stopband ripple v transition width

There are expli
it formulae for pole/zero positions.

Butterworth: G̃2(Ω) =
∣∣∣H̃(jΩ)

∣∣∣
2

= 1
1+Ω2N

• Monotoni
 ∀Ω
• G̃(Ω) = 1− 1

2Ω
2N + 3

8Ω
4N + · · ·

�Maximally �at�: 2N − 1 derivatives are zero

Chebyshev: G̃2(Ω) = 1
1+ǫ2T 2

N
(Ω)

where polynomial TN (cosx) = cosNx

• passband equiripple + very �at at ∞

Inverse Chebyshev: G̃2(Ω) = 1

1+(ǫ2T 2
N
(Ω−1))−1

• stopband equiripple + very �at at 0

Ellipti
: [no ni
e formula℄

• Very steep + equiripple in pass and stop bands
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Change variable: z = α+s
α−s

⇔ s = α z−1
z+1 : a one-to-one invertible mapping

• ℜ axis (s) ↔ ℜ axis (z)

• ℑ axis (s) ↔ Unit 
ir
le (z)

Proof: z = ejω⇔s = α ejω−1
ejω+1 = α e

j ω
2 −e

−j ω
2

e
j ω
2 +e

−j ω
2
= jα tan ω

2= jΩ

• Left half plane(s) ↔inside of unit 
ir
le (z)

Proof: s = x+ jy ⇔ |z|2 = |(α+x)+jy|2

|(α−x)−jy|2

= α2+2αx+x2+y2

α2−2αx+x2+y2 = 1 + 4αx
(α−x)2+y2

x < 0 ⇔ |z| < 1

• Unit 
ir
le (s) ↔ ℑ axis (z)
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Take H̃(s) = 1
s2+0.2s+4 and 
hoose α = 1

Substitute: s = α z−1
z+1 [extra zeros at z = −1℄

H(z) = 1

( z−1

z+1 )
2
+0.2 z−1

z+1
+4

= (z+1)2

(z−1)2+0.2(z−1)(z+1)+4(z+1)2

= z2+2z+1
5.2z2+6z+4.8 = 0.19 1+2z−1+z−2

1+1.15z−1+0.92z−2

Frequen
y response is identi
al (both magnitude and

phase) but with a distorted frequen
y axis:

Frequen
y mapping: ω = 2 tan−1 Ω
α

Ω =
[
α 2α 3α 4α 5α

]

→ ω =
[
1.6 2.2 2.5 2.65 2.75

]
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Choosing α: Set α = Ω0

tan 1
2
ω0

to map Ω0 → ω0

Set α = 2fs =
2
T

to map low frequen
ies to themselves
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Alternative method: H̃(s) = 1
s2+0.2s+4

Find the poles and zeros: ps = −0.1± 2j

Map using z = α+s
α−s

⇒ pz = −0.58± 0.77j

After the transformation we will always end up with

the same number of poles as zeros:

Add extra poles or zeros at z = −1

H(z) = g × (1+z−1)2

(1+(0.58−0.77j)z−1)(1+(0.58+0.77j)z−1)

= g × 1+2z−1+z−2

1+1.15z−1+0.92z−2

Choose overall s
ale fa
tor, g, to give the same gain

at any 
onvenient pair of mapped frequen
ies:

At Ω0 = 0⇒ s0 = 0⇒
∣∣∣H̃(s0)

∣∣∣ = 0.25

⇒ ω0 = 2 tan−1 Ω0

α
= 0⇒ z0 = ejω0 = 1

⇒ |H(z0)| = g × 4
3.08 = 0.25⇒ g = 0.19

H(z) = 0.19 1+2z−1+z−2

1+1.15z−1+0.92z−2
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We 
an transform the z-plane to 
hange the 
uto�

frequen
y by substituting

z = ẑ−λ
1−λẑ

⇔ ẑ = z+λ
1+λz

Frequen
y Mapping:

If z = ejω, then ẑ = z 1+λz−1

1+λz

has modulus 1

sin
e the numerator and denominator are


omplex 
onjugates.

Hen
e the unit 
ir
le is preserved.

⇒ ejω̂ = ejω+λ
1+λejω

Some algebra gives: tan ω
2 =

(
1+λ
1−λ

)
tan ω̂

2

Equivalent to:

z −→ s = z−1
z+1 −→ ŝ = 1−λ

1+λ
s −→ ẑ = 1+ŝ

1−ŝ

Lowpass Filter example:

Inverse Chebyshev

ω0 = π
2 = 1.57

λ=0.6
−→ ω̂0 = 0.49
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Transform any lowpass �lter with 
uto� frequen
y ω0 to:

Target Substitute Parameters

Lowpass

ω̂ < ω̂1

z−1 = ẑ−1−λ
1−λẑ−1 λ =

sin(ω0−ω̂1
2 )

sin(ω0+ω̂1
2 )

Highpass

ω̂ > ω̂1

z−1 = − ẑ−1+λ
1+λẑ−1 λ =

cos(ω0+ω̂1
2 )

cos(ω0−ω̂1
2 )

Bandpass

ω̂1 < ω̂ < ω̂2

z−1 = − (ρ−1)−2λρẑ−1+(ρ+1)ẑ−2

(ρ+1)−2λρẑ−1+(ρ−1)ẑ−2 λ =
cos( ω̂2+ω̂1

2 )
cos( ω̂2−ω̂1

2 )
ρ = cot

(
ω̂2−ω̂1

2

)
tan

(
ω0

2

)

Bandstop

ω̂1 ≮ ω̂ ≮ ω̂2

z−1 = (1−ρ)−2λẑ−1+(ρ+1)ẑ−2

(ρ+1)−2λẑ−1+(1−ρ)ẑ−2 λ =
cos( ω̂2+ω̂1

2 )
cos( ω̂2−ω̂1

2 )
ρ = tan

(
ω̂2−ω̂1

2

)
tan

(
ω0

2

)

Bandpass and bandstop transformations are quadrati
 and so will double the order:

" # $ % & ' 0 1 2 (

0

0 ) *

1
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Bilinear transform works well for a lowpass �lter but the non-linear


ompression of the frequen
y distorts any other response.

Alternative method: H̃(s)
L

−1

−→ h(t)
sample
−→ h[n] = T × h(nT )

Z
−→ H(z)

Express H̃(s) as a sum of partial fra
tions H̃(s) =
∑N

i=1
gi

s−p̃i

Impulse response is h̃(t) = u(t)×
∑N

i=1 gie
p̃it

Digital �lter

H(z)
T

=
∑N

i=1
gi

1−ep̃iT z−1 has identi
al impulse response

Poles of H(z) are pi = ep̃iT

(where T = 1
fs

is sampling period)

Zeros do not map in a simple way

Properties:

, Impulse response 
orre
t. , No distortion of frequen
y axis.

/ Frequen
y response is aliased.

Example: Standard telephone �lter - 300 to 3400 Hz bandpass
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• Classi
al �lters have optimal tradeo�s in 
ontinuous time domain

◦ Order ↔ transition width↔ pass ripple↔ stop ripple

◦ Monotoni
 passband and/or stopband

• Bilinear mapping

◦ Exa
t preservation of frequen
y response (mag + phase)

◦ non-linear frequen
y axis distortion

◦ 
an 
hoose α to map Ω0 → ω0 for one spe
i�
 frequen
y

• Spe
tral transformations

◦ lowpass → lowpass, highpass, bandpass or bandstop

◦ bandpass and bandstop double the �lter order

• Impulse Invarian
e

◦ Aliassing distortion of frequen
y response

◦ preserves frequen
y axis and impulse response

For further details see Mitra: 9.
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bilinear Bilinear mapping

impinvar Impulse invarian
e

butter

butterord

Analog or digital

Butterworth �lter


heby1


heby1ord

Analog or digital

Chebyshev �lter


heby2


heby2ord

Analog or digital

Inverse Chebyshev �lter

ellip

ellipord

Analog or digital

Ellipti
 �lter
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We want to find a filter H(ejω) = B(ejω)
A(ejω) that approximates a target

response D(ω). Assume A is order N and B is order M .

Two possible error measures:

Solution Error: ES(ω) = WS(ω)
(

B(ejω)
A(ejω) −D(ω)

)

Equation Error: EE(ω) = WE(ω)
(

B(ejω)−D(ω)A(ejω)
)

We may know D(ω) completely or else only |D(ω)|

We minimize
∫ π

−π
|E∗(ω)|

p
dω

where p = 2 (least squares) or ∞ (minimax).

Weight functions W∗(ω) are chosen to control relative errors at different

frequencies. WS(ω) = |D(ω)|−1 gives constant dB error.

We actually want to minimize ES but EE is easier because it gives
rise to linear equations.

However if WE(ω) =
WS(ω)
|A(ejω)| , then |EE(ω)| = |ES(ω)|
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Overdetermined set of equations Ax = b (#equations > #unknowns)

We want to minimize ||e||2 where e = Ax− b

||e||2 = e
T
e=

(

x
T
A

T − b
T
)

(Ax− b)

Differentiate with respect to x:
d
(

e
T
e
)

= dxT
A

T (Ax− b) +
(

x
T
A

T − b
T
)

Adx

[since d (uv) = du v + u dv]
= 2dxT

A
T (Ax− b) [since u

T
v = v

T
u]

= 2dxT
(

A
T
Ax−A

T
b
)

This is zero for any dx iff A
T
Ax = A

T
b

Thus ||e||2 is minimized if x =
(

A
T
A
)−1

A
T
b

These are the Normal Equations (“Normal” because A
T
e = 0)

The pseudoinverse x = A
+
b works even if AT

A is singular and finds the x

with minimum ||x||2 that minimizes ||e||2.

This is a very widely used technique.
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For every ω we want: 0 = W (ω)
(

B(ejω)−D(ω)A(ejω)
)

= W (ω)
(

∑M
m=0 b[m]e−jmω −D(ω)

(

1 +
∑N

n=1 a[n]e
−jnω

))

⇒
(

u(ω)T v(ω)T
)

(

a

b

)

= W (ω)D(ω)

where u(ω)T = −W (ω)D(ω)
[

e−jω e−j2ω · · · e−jNω
]

v(ω)T = W (ω)
[

1 e−jω e−j2ω · · · e−jMω
]

Choose K values of ω,
{

ω1 · · · ωK

}

[with K ≥ M+N+1
2 ]

(

U
T

V
T

)

(

a

b

)

= d [K equations, M +N + 1 unkowns]

where U =
[

u(ω1) · · · u(ωK)
]

,

V =
[

v(ω1) · · · v(ωK)
]

,

d =
[

W (ω1)D(ω1) · · · W (ωK)D(ωK)
]T

We want to force a and b to be real; find least squares solution to
(

ℜ
(

U
T
)

ℜ
(

V
T
)

ℑ
(

U
T
)

ℑ
(

V
T
)

)(

a

b

)

=

(

ℜ (d)
ℑ (d)

)
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Least squares solution minimizes the EE rather than ES .

However EE = ES if WE(ω) =
WS(ω)
|A(ejω)| .

We can use an iterative solution technique:

1 Select K frequencies {ωk} (e.g. uniformly spaced)

2 Initialize WE(ωk) = WS(ωk)

3 Find least squares solution to
WE(ωk)

(

B(ejωk)−D(ωk)A(ejωk)
)

= 0∀k

4 Force A(z) to be stable

Replace pole pi by (p∗i )
−1 whenever |pi| ≥ 1

5 Update weights: WE(ωk) =
WS(ωk)

|A(ejωk )|

6 Return to step 3 until convergence

But for faster convergence use Newton-Raphson . . .
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Newton: To solve f(x) = 0 given an initial guess x0, we write

f(x) ≈ f(x0) + (x− x0)f
′(x0)⇒ x = x0 −

f(x0)
f ′(x0)

Converges very rapidly once x0 is close to the solution

So for each ωk, we can write (omitting the ω and ejω arguments)

ES ≈ WS

(

B0

A0

−D
)

+ WS

A0

(B −B0)−
WSB0

A2

0

(A−A0)

= WS

A0

(

B0 −A0D +B −B0 −
B0

A0

(A− 1)− B0

A0

+B0

)

From which we get a linear equation for each ωk :
(

B0

DA0

u
T

v
T

)

(

a

b

)

= W
(

A0D + B0

A0

−B0

)

where W = WS

A0

and, as before, un(ω) = −W (ω)D(ω)e−jnω

for n ∈ 1 : N and vm(ω) = W (ω)e−jmω for m ∈ 0 : M .

At each iteration, calculate A0(e
jωk) and B0(e

jωk) based on a and b from
the previous iteration.

Then use linear least squares to minimize the linearized ES using the above
equation replicated for each of the ωk.
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If the filter specification only dictates the target magnitude: |D(ω)|, we
need to select the target phase.

Solution:
Make an initial guess of the phase and then at each iteration

update ∠D(ω) = ∠
B(ejω)
A(ejω) .

Initial Guess:
If H(ejω) is causal and minimum phase then the magnitude and
phase are not independent:

∠H(ejω) = − ln
∣

∣H(ejω)
∣

∣⊛ cot ω
2

ln
∣

∣H(ejω)
∣

∣ = ln |H(∞)|+ ∠H(ejω)⊛ cot ω
2

where ⊛ is circular convolution and cotx is taken to be zero for
−ǫ < x < ǫ for some small value of ǫ and we take the limit as ǫ → 0.

This result is a consequence of the Hilbert Relations.
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We define t[n] = u[n− 1]− u[−1− n]

T (z) = z−1

1−z−1 − z
1−z

= 1+z−1

1−z−1

T (ejω) = 1+e−jω

1−e−jω = e
j ω

2 +e
−j ω

2

e
j ω

2 −e
−j ω

2

=
2 cos ω

2

2j sin ω
2

= −j cot ω
2

h[n]→even/odd parts: he[n] =
1
2 (h[n] + h[−n])

ho[n] =
1
2 (h[n]− h[−n])

so ℜ
(

H(ejω)
)

= He(e
jω)

ℑ
(

H(ejω)
)

= −jHo(e
jω)

If h[n] is causal: ho[n] = he[n]t[n]
he[n] = h[0]δ[n] + ho[n]t[n]

Hence, for causal h[n]:
ℑ
(

H(ejω)
)

= −j
(

ℜ
(

H(ejω)
)

⊛−j cot ω
2

)

= −ℜ
(

H(ejω)
)

⊛ cot ω
2

0

t[n]

0

h[n]

0

h[-n]

0

h
e
[n]

0

h
o
[n]

ℜ
(

H(ejω)
)

= H(∞) + jℑ
(

H(ejω)
)

⊛−j cot ω
2

= H(∞) + ℑ
(

H(ejω)
)

⊛ cot ω
2
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Given H(z) = g

∏
(1−qmz−1)

∏
(1−pnz−1)

lnH(z) = ln(g) +
∑

ln
(

1− qmz−1
)

−
∑

ln
(

1− pnz
−1

)

= ln |H(z)|+ j∠H(z)

Taylor Series:

ln
(

1− az−1
)

= −az−1 − a2

2 z−2 − a3

3 z−3 − . . .

causal and stable provided |a| < 1

So, if H(z) is minimum phase (all pn and qm inside
unit circle) then lnH(z) is the z-transform of a
stable causal sequence and:

∠H(ejω) = − ln
∣

∣H(ejω)
∣

∣⊛ cot ω
2

ln
∣

∣H(ejω)
∣

∣ = ln |g|+ ∠H(ejω)⊛ cot ω
2

Example: H(z) = 10−7z−1

100−40z−1−11z−2+68z−3

Note symmetric dead band in cot ω
2 for |ω| < ǫ
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• Want to minimize solution error, ES, but EE gives linear equations:

◦ ES(ω) = WS(ω)
(

B(ejω)
A(ejω) −D(ω)

)

◦ EE(ω) = WE(ω)
(

B(ejω)−D(ω)A(ejω)
)

◦ use W∗(ω) to weight errors at different ω.

• Linear least squares: solution to overdetermined Ax = b

◦ Least squares error: x̂ =
(

A
T
A
)−1

A
T
b

• Closed form solution: least squares EE at {ωk}

◦ use WE(ω) =
WS(ω)
|A(ejω)| to approximate ES

◦ use Taylor series to approximate ES better (Newton-Raphson)

• Hilbert relations
◦ relate ℜ

(

H
(

ejω
))

and ℑ
(

H
(

ejω
))

for causal stable sequences

◦ ⇒ relate ln
∣

∣H
(

ejω
)
∣

∣ and ∠H
(

ejω
)

for causal stable minimum
phase sequences

For further details see Mitra: 9.
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invfreqz IIR design for complex response
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Filter: H(z) = B(z)
A(z) with input x[n] and output y[n]

y[n] =
∑M

k=0 b[k]x[n− k]−
∑N

k=1 a[k]y[n− k]

Dire
t forms use 
oe�
ients a[k] and b[k] dire
tly

Dire
t Form 1:

• Dire
t implementation of di�eren
e equation

• Can view as B(z) followed by

1
A(z)

Dire
t Form II:

• Implements

1
A(z) followed by B(z)

• Saves on delays (= storage)
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Can 
onvert any blo
k diagram into an equivalent transposed form:

• Reverse dire
tion of ea
h inter
onne
tion

• Reverse dire
tion of ea
h multiplier

• Change jun
tions to adders and vi
e-versa

• Inter
hange the input and output signals

Example:

Dire
t form II → Dire
t Form IIt

Would normally be drawn with input on the left

Note: A valid blo
k diagram must never have any feedba
k loops that don't

go through a delay (z−1

blo
k).
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v[n] is a ve
tor of delay element outputs

Can write: v[n+ 1] = Pv[n] + qx[n]
y[n] = rTv[n] + sx[n]

{

P,q, rT , s
}

is the state-spa
e

representation of the �lter stru
ture.

The transfer fun
tion is given by:

H(z) = B(z)
A(z) =

det(zI−P+qrT )
det(zI−P) + s− 1

The transposed form has P → PT

and q ↔ r ⇒ same H(z)

Example: Dire
t Form IIt

P =

(

−a[1] 1
−a[2] 0

)

q =

(

b[1]− b[0]a[1]
b[2]− b[0]a[2]

)

rT =
(

1 0
)

s = b[0]

From whi
h H(z) = b[0]z2+b[1]z+b[2]
z2+a[1]z+a[2]
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[This is not examinable℄

We start by proving a useful formula whi
h shows how the determinant of a matrix, A, 
hanges when

you add a rank-1 matrix, qrT , onto it. The formula is known as the Matrix Determinant Lemma. For

any nonsingular matrix A and 
olumn ve
tors q and r, we 
an write

(

1 rT

0 A

)(

1 + rTA−1q 0T

−A−1q I

)

=

(

1 0T

−q I

)(

1 rT

0 A+ qrT

)

.

It is easy to verify this by multiplying out the matri
es. We now take the determinant of both sides

making use of the result that the determinant of a blo
k triangular matrix is the produ
t of the

determinants of the blo
ks along the diagonal (assuming they are all square). This gives:

det (A)×
(

1 + rTA−1q
)

= det
(

A+ qrT
)

⇒ rTA−1q =
det(A+qrT )

det(A)
− 1

Now we take the z-transform of the state spa
e equations

v[n+ 1] = Pv[n] + qx[n] −→
z−transform

zV = PV + qX

y[n] = rTv[n] + sx[n] Y = rTV + sX

The upper equation gives (zI−P)V = qX from whi
h V = (zI−P)−1 qX and by substituting this

in the lower equation, we get

Y

X
= rT (zI−P)−1 q+ s =

det(zI−P+qrT )
det(zI−P)

+ s− 1.
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If all 
omputations were exa
t, it would not make any di�eren
e whi
h of

the equivalent stru
tures was used. However ...

• Coe�
ient pre
ision

Coe�
ients are stored to �nite pre
ision and so are not exa
t.

The �lter a
tually implemented is therefore in
orre
t.

• Arithmeti
 pre
ision

Arithmeti
 
al
ulations are not exa
t.

◦ Worst 
ase for arithmeti
 errors is when 
al
ulating the

di�eren
e between two similar values:

1.23456789− 1.23455678 = 0.00001111: 9 s.f. → 4 s.f.

Arithmeti
 errors introdu
e noise that is then �ltered by the transfer

fun
tion between the point of noise 
reation and the output.
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The roots of high order polynomials 
an be very sensitive to small 
hanges

in 
oe�
ient values.

Wilkinson's polynomial: (famous example)

f(x) =
∏20

n=1 (x− n) = x20 − 210x19 + 20615x18 − . . .

has roots well separated on the real axis.

Multiplying the 
oe�
ient of x19

by 1.000001 moves the roots a lot.

�Speaking for myself I regard it as the most traumati
 experien
e in

my 
areer as a numeri
al analyst�, James Wilkinson 1984

0 5 10 15 20 25

-5

0

5

0 5 10 15 20 25

-5

0

5

Moral: Avoid using dire
t form for �lters orders over about 10.
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Avoid high order polynomials by fa
torizing into quadrati
 terms:

B(z)
A(z) = g

∏
(1+bk,1z

−1+bk,2z
−2)

∏
(1+ak,1z−1+ak,2z−2)= g

∏K
k=1

1+bk,1z
−1+bk,2z

−2

1+ak,1z−1+ak,2z−2

where K = max
(⌈

M
2

⌉

,
⌈

N
2

⌉)

.

The term

1+bk,1z
−1+bk,2z

−2

1+ak,1z−1+ak,2z−2 is a biquad (bi-quadrati
 se
tion).

We need to 
hoose:

(a) whi
h poles to pair with whi
h zeros in ea
h biquad

(b) how to order the biquads

Dire
t Form II

Transposed
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Example: Ellipti
 lowpass �lter

2 pole pairs and 2 zero pairs

need 2 biquads

Noise introdu
ed in one biquad is ampli�ed

by all the subsequent ones:

-1 0 1

-1

-0.5

0

0.5

1

z

• Make the peak gain of ea
h biquad as small as possible

◦ Pair poles with nearest zeros to get lowest peak gain

begin with the pole nearest the unit 
ir
le

◦ Pairing with farthest zeros gives higher peak biquad gain

• Poles near the unit 
ir
le have the highest peaks and introdu
e most

noise so pla
e them last in the 
hain

0 0.5 1 1.5 2 2.5 3
-40

-20

0

20 Nearest

ω

G
ai

n 
(d

B
)

0 0.5 1 1.5 2 2.5 3
-40

-20

0

20 Farthest

ω

G
ai

n 
(d

B
)
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Implementation 
an take advantage of any symmetry in the 
oe�
ients.

Linear phase �lters are always FIR and have symmetri
 (or, more rarely,

antisymmetri
) 
oe�
ients.

H(z) =
∑M

m=0 h[m]z−m h[M −m] = h[m]

= h
[

M
2

]

z−
M
2 +

∑
M
2 −1
m=0 h[m]

(

z−m + zm−M
)

[m even℄

For M even, we only need

M
2 + 1 multiplies instead of M + 1.

We still need M additions and M delays.

M = 6:

For M odd (no 
entral 
oe�
ient), we only need

M+1
2 multiplies.
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Software Implementation:

All that matters is the total number of multiplies and adds

Hardware Implementation:

Delay elements (z−1

) represent storage registers

The maximum 
lo
k speed is limited by the number of sequential

operations between registers

Example: Symmetri
 Linear Phase Filter

Dire
t form: Maximum sequential delay = 4a+m

Transpose form: Maximum sequential delay = a+m ,

a and m are the delays of adder and multiplier respe
tively
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Allpass �lters have mirror image numerator and denominator 
oe�
ients:

b[n] = a[N − n] ⇔ B(z) = z−NA(z−1)

⇒
∣

∣H(ejω)
∣

∣ ≡ 1∀ω

There are several e�
ient stru
tures, e.g.

• First Order: H(z) = a[1]+z−1

1+a[1]z−1

• Se
ond Order: H(z) = a[2]+a[1]z−1+z−2

1+a[1]z−1+a[2]z−2

Allpass �lters have a gain magnitude of 1 even with 
oe�
ient errors.
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Suppose G is allpass: G(z) = z−NA(z−1)
A(z)

V (z) = X(z)− kGz−1V (z)

⇒ V (z) = 1
1+kGz−1X(z)

Y (z) = kV (z) +Gz−1V (z) = k+z−1G
1+kGz−1X(z)

Y (z)
X(z) =

kA(z)+z−N−1A(z−1)
A(z)+kz−N−1A(z−1)

, z−(N+1)D(z−1)
D(z)

Obtaining {d[n]} from {a[n]}:

d[n] =











1 n = 0

a[n] + ka[N + 1− n] 1 ≤ n ≤ N

k n = N + 1

Obtaining {a[n]} from {d[n]}:

k = d[N + 1] a[n] = d[n]−kd[N+1−n]
1−k2

If G(z) is stable then

Y (z)
X(z) is stable if and only if |k| < 1 (see note)
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We want to show that if G(z) is a stable allpass �lter then

Y (z)
X(z)

=
k+z

−1
G(z)

1+kz−1G(z)

is stable if and only if

|k| < 1.

We make use of a property of allpass �lters (proved in a note in le
ture 5) that if G(z) is a stable allpass

�lter, then |G(z)| T 1 a

ording to whether |z| S 1.

If z is a root of the denominator 1 + kz−1G(z), then

kz−1G(z) = −1

⇒ |k| × |z−1| × |G(z)| = 1

⇒ |k| =
|z|

|G(z)|

It follows from the previously stated property of G(z) that |z| S 1 ⇔
|z|

|G(z)|
S 1 ⇔ |k| S 1.
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Suppose N = 3, k = 0.5 and

A(z) = 1 + 4z−1 − 6z−2 + 10z−3

A(z) → D(z)
z0 z−1 z−2 z−3 z−4

A(z) 1 4 −6 10
z−4A(z−1) 10 −6 4 1

D(z) = A(z) + kz−4A(z−1) 1 9 −9 12 0.5

D(z) → A(z)
z0 z−1 z−2 z−3 z−4

D(z) 1 9 −9 12 0.5
k = d[N + 1] 0.5
z−4D(z−1) 0.5 12 −9 9 1

D(z)− kz−4D(z−1) 0.75 3 −4.5 7.5 0

A(z) = D(z)−kz−4D(z−1)
1−k2 1 4 −6 10 0
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We 
an implement any allpass �lter H(z) = z−MA(z−1)
A(z) as a latti
e �lter

with M stages:

• Initialize AM (z) = A(z)
• Repeat for m = M : −1 : 1

◦ k[m] = am[m]

◦ am−1[n] =
am[n]−k[m]am[m−n]

1−k2[m] for 0 ≤ n ≤ m− 1

equivalently Am−1(z) =
Am(z)−k[m]z−mAm(z−1)

1−k2[m]

A(z) is stable i� |k[m]| < 1 for all m (good stability test)
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Label outputs um[n] and vm[n] and de�ne Hm(z) = Vm(z)
Um(z) =

z−mAm(z−1)
Am(z)

From earlier slide (slide 12):

Um−1(z)
Um(z) = 1

1+k[m]z−1Hm−1(z)
= Am−1(z)

Am−1(z)+k[m]z−mAm−1(z−1) =
Am−1(z)
Am(z)

Hen
e:

Um(z)
X(z) = Am(z)

A(z) and

Vm(z)
X(z) = Um(z)

X(z) × Vm(z)
Um(z) =

z−mAm(z−1)
A(z)

The numerator of

Vm(z)
X(z) is of order m so you 
an 
reate any numerator of order M by

summing appropriate multiples of Vm(z):

w[n] =
∑M

m=0 cmvm[n] ⇒ W (z) =
∑M

m=0 cmz−mAm(z−1)

A(z)
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A(z) = A3(z) = 1 + 0.2z−1 − 0.23z−2 + 0.2z−3

• k[3] = 0.2⇒a2[ ] =
[1, 0.2, −0.23]−0.2[0.2, −0.23, 0.2]

1−0.22 = [1, 0.256, −0.281]

• k[2] = −0.281⇒a1[ ] =
[1, 0.256]+0.281[−0.281, 0.256]

1−0.2812 = [1, 0.357]

• k[1] = 0.357⇒a0[ ] = 1

V0(z)
X(z) = 1

1+0.2z−1
−0.23z−2+0.2z−3

V1(z)
X(z) = 0.357+z−1

1+0.2z−1
−0.23z−2+0.2z−3

V2(z)
X(z) = −0.281+0.256z−1+z−2

1+0.2z−1
−0.23z−2+0.2z−3

V3(z)
X(z) = 0.2−0.23z−1+0.2z−2+z−3

1+0.2z−1
−0.23z−2+0.2z−3

Add together multiples of

Vm(z)
X(z) to 
reate an arbitrary

B(z)
1+0.2z−1

−0.23z−2+0.2z−3
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Form a new output signal as w[n] =
∑M

m=0 cmvm[n]

W (z) =
∑M

m=0 cmVm(z) = B(z)
1+0.2z−1

−0.23z−2+0.2z−3X(z)

V0(z)
X(z) = 1

1+0.2z−1
−0.23z−2+0.2z−3

V1(z)
X(z) = 0.357+z−1

1+0.2z−1
−0.23z−2+0.2z−3

V2(z)
X(z) = −0.281+0.256z−1+z−2

1+0.2z−1
−0.23z−2+0.2z−3

V3(z)
X(z) = 0.2−0.23z−1+0.2z−2+z−3

1+0.2z−1
−0.23z−2+0.2z−3

We have









b[0]
b[1]
b[2]
b[3]









=









1 0.357 −0.281 0.2
0 1 0.256 −0.23
0 0 1 0.2
0 0 0 1

















c0
c1
c2
c3









Hen
e 
hoose cm as









c0
c1
c2
c3









=









1 0.357 −0.281 0.2
0 1 0.256 −0.23
0 0 1 0.2
0 0 0 1









−1 







b[0]
b[1]
b[2]
b[3]








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• Filter blo
k diagrams

◦ Dire
t forms

◦ Transposition

◦ State spa
e representation

• Pre
ision issues: 
oe�
ient error, arithmeti
 error

◦ 
as
aded biquads

• Allpass �lters

◦ �rst and se
ond order se
tions

• Latti
e �lters

◦ Arbitrary allpass response

◦ Arbitrary IIR response by summing intermediate outputs

For further details see Mitra: 8.
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residuez

b(z−1)

a(z−1) →
∑

k
rk

1−pkz−1

tf2sos,sos2tf

b(z−1)

a(z−1) ↔
∏

l

b0,l+b1,lz
−1+b2,lz

−2

1+a1,lz−1+a2,lz−2

zp2sos,sos2zp {zm, pk, g} ↔
∏

l

b0,l+b1,lz
−1+b2,lz

−2

1+a∈1,lz−1+a2,lz−2

zp2ss,ss2zp {zm, pk, g} ↔

{

x′ = Ax+Bu

y = Cx+Du

tf2ss,ss2tf

b(z−1)

a(z−1) ↔

{

x′ = Ax+Bu

y = Cx+Du

poly poly(A) = det (zI−A)
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Multirate systems in
lude more than one sample rate

Why bother?:

• May need to 
hange the sample rate

e.g. Audio sample rates in
lude 32, 44.1, 48, 96 kHz

• Can relax analog or digital �lter requirements

e.g. Audio DAC in
reases sample rate so that the re
onstru
tion �lter


an have a more gradual 
uto�

• Redu
e 
omputational 
omplexity

FIR �lter length ∝ fs
∆f

where ∆f is width of transition band

Lower fs ⇒ shorter �lter + fewer samples ⇒
omputation ∝ f2
s
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Downsample y[m] = x[Km]

Upsample v[n] =

{

u
[

n
K

]

K | n

0 else

Example:

Downsample by 3 then upsample by 4

w[n]

0

x[m]

0

y[r]

0

• We use di�erent index variables (n, m, r) for di�erent sample rates

• Use di�erent 
olours for signals at di�erent rates (sometimes)

• Syn
hronization: all signals have a sample at n = 0.
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Su

essive downsamplers or up-

samplers 
an be 
ombined

Upsampling 
an be exa
tly inverted

Downsampling destroys information

permanently ⇒ uninvertible

Resampling 
an be inter
hanged

i� P and Q are 
oprime (surprising!)

Proof: Left side: y[n] = w
[

1

Q
n
]

= x
[

P
Q
n
]

if Q | n else y[n] = 0.

Right side: v[n] = u [Pn] = x
[

P
Q
n
]

if Q | Pn.

But {Q | Pn ⇒ Q | n} i� P and Q are 
oprime.

[Note: a | b means �a divides into b exa
tly�℄
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Resamplers 
ommute with addi-

tion and multipli
ation

Delays must be multiplied by the

resampling ratio

Noble identities:

Ex
hange resamplers and �lters

Corrollary

Example: H(z) = h[0] + h[1]z−1 + h[2]z−2 + · · ·
H(z3) = h[0] + h[1]z−3 + h[2]z−6 + · · ·



Noble Identities Proof

11: Multirate Systems

Multirate Systems

Building blo
ks

Resampling Cas
ades

Noble Identities

⊲

Noble Identities

Proof

Upsampled

z-transform

Downsampled

z-transform

Downsampled

Spe
trum

Power Spe
tral

Density +

Perfe
t

Re
onstru
tion

Commutators

Summary

MATLAB routines

DSP and Digital Filters (2017-9045) Multirate: 11 � 6 / 14

De�ne hQ[n] to be the

impulse response of H(zQ).

Assume that h[r] is of length M + 1 so that hQ[n] is of length QM + 1.

We know that hQ[n] = 0 ex
ept when Q | n and that h[r] = hQ[Qr].

w[r] = v[Qr] =
∑QM

s=0
hQ[s]x[Qr − s]

=
∑M

m=0
hQ[Qm]x[Qr −Qm] =

∑M

m=0
h[m]x[Q(r −m)]

=
∑M

m=0
h[m]u[r −m] = y[r] ,

Upsampled Noble Identity:

We know that v[n] = 0 ex
ept when Q | n and that v[Qr] = x[r].

w[n] =
∑QM

s=0
hQ[s]v[n− s] =

∑M

m=0
hQ[Qm]v[n−Qm]

=
∑M

m=0
h[m]v[n−Qm]

If Q ∤ n, then v[n−Qm] = 0 ∀m so w[n] = 0 = y[n]

If Q | n = Qr, then w[Qr] =
∑M

m=0
h[m]v[Qr −Qm]

=
∑M

m=0
h[m]x[r −m] = u[r] = y[Qr] ,
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V (z) =
∑

n v[n]z
−n =

∑

n s.t. K|n u[
n
K
]z−n

=
∑

m u[m]z−Km = U(zK)

Spe
trum: V (ejω) = U(ejKω)

Spe
trum is horizontally shrunk and repli
ated K times.

Total energy un
hanged; power (= energy/sample) multiplied by

1

K

Upsampling normally followed by a LP �lter to remove images.

Example:

K = 3: three images of the original spe
trum in all.

Energy un
hanged:

1

2π

∫
∣

∣U(ejω)
∣

∣

2
dω = 1

2π

∫
∣

∣V (ejω)
∣

∣

2
dω

-2 0 2
0

0.5

1

ω
-2 0 2

0

0.5

1

ω
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De�ne cK [n] = δK|n[n] =
1

K

∑K−1

k=0
e

j2πkn

K

Now de�ne xK [n] =

{

x[n] K | n

0 K ∤ n
= cK [n]x[n]

XK(z) =
∑

n xK [n]z−n = 1

K

∑

n

∑K−1

k=0
e

j2πkn
K x[n]z−n

= 1

K

∑K−1

k=0

∑

n x[n]
(

e
−j2πk

K z
)−n

= 1

K

∑K−1

k=0
X(e

−j2πk

K z)

From previous slide:

XK(z) = Y (zK)

⇒ Y (z) = XK(z
1
K ) = 1

K

∑K−1

k=0
X(e

−j2πk
K z

1
K )

Frequen
y Spe
trum:

Y (ejω) = 1

K

∑K−1

k=0
X(e

j(ω−2πk)
K )

= 1

K

(

X(e
jω

K ) +X(e
jω

K
− 2π

K ) +X(e
jω

K
− 4π

K ) + · · ·
)

Average of K aliased versions, ea
h expanded in ω by a fa
tor of K.

Downsampling is normally pre
eded by a LP �lter to prevent aliasing.
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Y (ejω) = 1

K

∑K−1

k=0
X(e

j(ω−2πk)
K )

Example 1:

K = 3

Not quite limited to ± π
K

Shaded region shows aliasing -2 0 2
0

0.5

1

ω
-2 0 2

0

0.5

1

ω

Energy de
reases:

1

2π

∫
∣

∣Y (ejω)
∣

∣

2
dω ≈ 1

K
× 1

2π

∫
∣

∣X(ejω)
∣

∣

2
dω

Example 2:

K = 3

Energy all in

π
K
≤ |ω| < 2 π

K

No aliasing: , -2 0 2
0

0.5

1

ω
-2 0 2

0

0.5

1

ω

No aliasing: If all energy is in r π
K
≤ |ω| < (r + 1) π

K

for some integer r

Normal 
ase (r = 0): If all energy in 0 ≤ |ω| ≤ π
K

Downsampling: Total energy multiplied by ≈ 1

K

(= 1

K

if no aliasing)

Average power ≈ un
hanged (= energy/sample)
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Example: Signal in ω ∈ ±0.4π + Tone � ω = ±0.1π + White noise

Power = Energy/sample = Average PSD

= 1

2π

∫ π

−π
PSD(ω)dω = 0.6

Component powers:

Signal = 0.3, Tone = 0.2, Noise = 0.1 -3 -2 -1 0 1 2 3
0

0.5

1

Frequency (rad/samp)

P
S

D
 , 
∫  =

 0
.5

 +
 0

.1
 =

 0
.6

original rate

Upsampling:

Same energy

per se
ond

⇒ Power is ÷K
-3 -2 -1 0 1 2 3

0

0.2

0.4

Frequency (rad/samp)

P
S

D
 , 
∫  =

 0
.1

3 
+

 0
.1

8 
=

 0
.3 upsample × 2

-3 -2 -1 0 1 2 3
0

0.1

0.2

0.3

Frequency (rad/samp)

P
S

D
 , 
∫  =

 0
.0

56
 +

 0
.1

4 
=

 0
.2 upsample × 3

Downsampling:

Average power

is un
hanged.

∃ aliasing in

the ÷3 
ase.

-3 -2 -1 0 1 2 3
0

0.2

0.4

0.6

Frequency (rad/samp)

P
S

D
 , 
∫  =

 0
.5

 +
 0

.1
 =

 0
.6

downsample ÷ 2

-3 -2 -1 0 1 2 3
0

0.2

0.4

0.6

Frequency (rad/samp)

P
S

D
 , 
∫  =

 0
.4

9 
+

 0
.1

1 
=

 0
.6 downsample ÷ 3
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The energy of a spe
trum is Ex =
∑+∞

−∞
|x[n]|2 and its power is Px = limN→∞

1

2N+1

∑+N
−N

|x[n]|2.

The energy, Ex, is the total energy in all samples while the power, Px, is the average energy per

sample. If the �nite signal xN [n] is de�ned as xN [n] =

{

x[n] |n| ≤ N

0 |n| > N

, then the power spe
tral

density (PSD) is given by Sxx

(

ejω
)

= limN→∞

1

2N+1

∣

∣XN

(

ejω
)
∣

∣

2

. From Parseval's theorem, Px is

the average value of Sxx

(

ejω
)

or, equivalently, Px = 1

2π

∫ π

−π
Sxx

(

ejω
)

dω.

The signal on the previous slide has three 
omponents: (i) a signal 
omponent with a power of 0.3

and a trapezoidal PSD with a width of ±0.4π, (ii) a tonal 
omponent with a power of 0.2 whose PSD


onsists of two delta fun
tions and (iii) a white noise 
omponent of power 0.1 whose PSD is 
onstant

at 0.1. The tonal 
omponent might arise from a time-domain waveform

√
0.4 cos (0.1πn+ φ) where φ

is arbitrary and does not a�e
t the PSD.

Upsampling by K inserts additional zero-valued samples and so does not a�e
t Ex but, sin
e there are

now K times as many samples, Px is divided by K. The original periodi
 PSD is shrunk horozontally by

a fa
tor of K whi
h means that there are now K images of the original PSD at spa
ings of ∆ω = 2π
K

.

So, for example, when K = 2, the 
entral trapezoidal 
omponent has a maximum height of 0.5 and

a width of ±0.2π and there is a se
ond, identi
al, trapezoidal 
omponent shifted by ∆ω = 2π
K

= π.

When K is an even number, one of the images will be 
entred on ω = π and so will wrap around from

+π to −π. The power of ea
h image is multiplied by K−2

but, sin
e there are K images, the total

power is multiplied by K−1

. For the white noise, the images all overlap (and add in power), so the

white noise PSD amplitude is multiplied by K−1

. Finally, the amplitudes of the delta fun
tions are

multiplied by K−2

so that the total power of all K images is multiplied by K−1

.
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Downsampling by K deletes samples but leaves the average power of the remaining ones un
hanged.

Thus the total power of the downsampled spe
tra remains at 0.6. The downsampled PSD is the average

of K shifted versions of the original PSD that have been expanded horizontally by a fa
tor of K. The

white noise 
omponent is the average of K identi
al expanded but attenuated versions of itself and so

its PSD amplitude remains at 0.1. The power of a tonal 
omponents is un
hanged and so its amplitude

is also un
hanged.

When downsampling by a fa
tor of K = 3, the original width of the trapezoidal 
omponent expands

from ±0.4π to ±1.2π whi
h ex
eeds the ±π range of the graph. Thus, as ω approa
hes π, the PSD

of the signal 
omponent is de
reasing with ω but has not rea
hed 0 at ω = π. This portion of the

trapezium wraps around to ω = −π and gives rise to the little triangle of additional noise in the range

−π < ω < −0.8π where it adds onto the white noise 
omponent. In a similar way, the portion of the

trapezium that over�ows the left edge of the graph gives rise to additional noise at the right of the

graph in the range 0.8π < ω < π.

Summary of Spe
tral Density Changes: Width × Height (×Images)

Energy and Power Energy Spe
tral Density Power Spe
tral Density

Spe
tral Densities Up: 1 : K Down: K : 1 Up: 1 : K Down: K : 1

Alias-free blo
k K−1 × 1 (×K) K ×K−2 K−1 ×K−1 (×K) K ×K−1

Tone: δ(ω − ω0) 1×K−1 (×K) 1×K−1 1×K−2 (×K) 1× 1

White Noise 1× 1 1×K−1 1×K−1 1× 1

Integral

∫

dω ×1 ≈ ×K−1 ×K−1 ≈ ×1
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x[n] 
defghijklmn

u[m] 
 f i l

p[n] -
--f--i--l

v[m] b e h k

q[n] -b
-ef-hi-kl

w[m] a d g j

y[n] ab
defghijkl

Input sequen
e x[n] is split into three streams at

1

3

the sample rate:

u[m] = x[3m], v[m] = x[3m− 1], w[m] = x[3m− 2]

Following upsampling, the streams are aligned by the delays and then added

to give:

y[n] = x[n− 2]

Perfe
t Re
onstru
tion: output is a delayed s
aled repli
a of the input
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x[n] 
defghijklmn

u[m] 
 f i l

v[m] b e h k

w[m] a d g j

v[m+ 1

3
] e h k l

w[m+ 2

3
] d g j m

y[n] ab
defghijkl

The 
ombination of delays and downsamplers 
an be regarded as a


ommutator that distributes values in sequen
e to u, w and v.

Fra
tional delays, z−
1
3

and z−
2
3

are needed to syn
hronize the streams.

The output 
ommutator takes values from the streams in sequen
e.

For 
larity, we omit the fra
tional delays and regard ea
h terminal, ◦, as

holding its value until needed. Initial 
ommutator position has zero delay.

The 
ommutator dire
tion is against the dire
tion of the z−1

delays.
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• Multirate Building Blo
ks

◦ Upsample: X(z)
1:K
→ X(zK)

Invertible, Inserts K − 1 zeros between samples

Shrinks and repli
ates spe
trum

Follow by LP �lter to remove images

◦ Downsample: X(z)
K:1
→ 1

K

∑K−1

k=0
X(e

−j2πk

K z
1
K )

Destroys information and energy, keeps every Kth

sample

Expands and aliasses the spe
trum

Spe
trum is the average of K aliased expanded versions

Pre
ede by LP �lter to prevent aliases

• Equivalen
es

◦ Noble Identities: H(z)←→ H(zK)
◦ Inter
hange P : 1 and 1 : Q i� Pand Q 
oprime

• Commutators

◦ Combine delays and down/up sampling

For further details see Mitra: 13.
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resample 
hange sampling rate
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Filter Spe
i�
ation:

Sample Rate: 20 kHz

Passband edge: 100 Hz (ω1 = 0.03)

Stopband edge: 300 Hz (ω2 = 0.09)

Passband ripple: ±0.05 dB (δ = 0.006)

Stopband Gain: −80 dB (ǫ = 0.0001)

This is an extreme �lter be
ause the 
uto� frequen
y is only 1% of the

Nyquist frequen
y.

Symmetri
 FIR Filter:

Design with Remez-ex
hange algorithm

Order = 360

0 1 2 3

-80

-60

-40

-20

0

M=360

ω (rad/s)
0 0.05 0.1

-80

-60

-40

-20

0

ω
1

ω
2

ω (rad/s)
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If a �lter passband o

upies only a small fra
tion

of [0, π], we 
an downsample then upsample

without losing information.

Downsample: aliased 
omponents at o�sets of

2π
K

are almost zero be
ause of H(z)

Upsample: Images spa
ed at

2π
K


an be

removed using another low pass �lter

To avoid aliasing in the passband, we need

2π
K

− ω2 ≥ ω1 ⇒ K ≤ 2π
ω1+ω2

0 1 2 3
-60

-40

-20

0

ω
1

ω
2 ω

0 1 2 3
-60

-40

-20

0
ω = 2π /4 K = 4 

ω

0 1 2 3
-60

-40

-20

0
ω = 2π /7 K = 7 

ω

Centre of transition band must be ≤ intermediate Nyquist freq,

π
K

We must add a lowpass �lter to remove the images:

Passband noise = noise �oor at output of H(z) plus 10 log10 (K − 1) dB.
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For our �lter: original Nyquist frequen
y = 10 kHz and transition band


entre is at 200 Hz so we 
an use K = 50.

We will split H(z) into K �lters ea
h of order R− 1. For 
onvenien
e,

assume M + 1 is a multiple of K (else zero-pad h[n]).

Example: M = 399, K = 50⇒ R = M+1
K

= 8

H(z) =
∑M

m=0 h[m]z−m

=
∑K−1

m=0 h[m]z−m +
∑K−1

m=0 h[m+K]z−(m+K) + · · · [R terms℄

=
∑R−1

r=0

∑K−1
m=0 h[m+Kr]z−m−Kr

=
∑K−1

m=0 z
−m

∑R−1
r=0 hm[r]z−Kr

where hm[r] = h[m+Kr]

=
∑K−1

m=0 z
−mHm

(

zK
)

Example: M = 399, K = 50, R = 8
h3[r] = [h[3], h[53], · · · , h[303], h[353]]

This is a polyphase implementation of the �lter H(z)
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H(z) is low pass so we downsample its

output by K without aliasing.

The number of multipli
ations per input

sample is M + 1 = 400.

Using the Noble identities, we 
an move

the resampling ba
k through the adders

and �lters. Hm(zK) turns into Hm(z)

at a lower sample rate.

We still perform 400 multipli
ations but

now only on
e for every K input

samples.

Multipli
ations per input sample = 8 (down by a fa
tor of 50 ,) but v[n]

has the wrong sample rate (/).
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To restore sample rate: upsample and

then lowpass �lter to remove images

We 
an use the same lowpass �lter,

H(z), in polyphase form:

∑K−1
m=0 z

−m
∑R−1

r=0 hm[r]z−Kr

This time we put the delay z−m

after

the �lters.

Multipli
ations per output sample =

400

Using the Noble identities, we 
an move

the resampling forwards through the

�lters. Hm(zK) turns into Hm(z) at a

lower sample rate.

Multipli
ations per output sample = 8

(down by a fa
tor of 50 ,).
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The overall system implements:

Need an extra gain of K to 
ompensate for the downsampling energy loss.

Filtering at downsampled rate requires 16 multipli
ations per input sample

(8 for ea
h �lter). Redu
ed by

K
2 from the original 400.

H(ejω) rea
hes −10 dB at the downsampler

Nyquist frequen
y of

π
K

.

Spe
tral 
omponents > π
K

will be aliased

down in frequen
y in V (ejω).

For V (ejω), passband gain (blue 
urve)

follows the same 
urve as X(ejω).

Noise arises from K aliased spe
tral intervals.

Unit white noise in X(ejω) gives passband

noise �oor at −69 dB (red 
urve) even

though stop band ripple is below −83 dB

(due to K − 1 aliased stopband 
opies).
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ω
2π/50

ω (rad/s)

0 1 2 3
-80

-60

-40

-20

0

ω
1

ω (downsampled)



Upsampler Implementation

12: Polyphase Filters

Heavy Lowpass

�ltering

Maximum De
imation

Frequen
y

Polyphase

de
omposition

Downsampled

Polyphase Filter

Polyphase Upsampler

Complete Filter

⊲

Upsampler

Implementation

Downsampler

Implementation

Summary

DSP and Digital Filters (2016-9045) Polyphase Filters: 12 � 8 / 10

We 
an represent the upsampler


ompa
tly using a 
ommutator.

Sample y[n] 
omes from Hk(z)

where k = n mod K.

[�@f � indi
ates the sample rate℄

H0(z) 
omprises a sequen
e of 7

delays, 7 adders and 8 gains.

We 
an share the delays between

all 50 �lters.

We 
an also share the gains and

adders between all 50 �lters and

use 
ommutators to swit
h the


oe�
ients.

We now need 7 delays, 7 adders and 8 gains for the entire �lter.
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We 
an again use a 
ommutator.

The outputs from all 50 �lters are

added together to form v[i].

We use the transposed form of

Hm(z) be
ause this will allow us

to share 
omponents.

We 
an sum the outputs of the

gain elements using an

a

umulator whi
h sums blo
ks of

K samples.

Now we 
an share all the


omponents and use 
ommutators

to swit
h the gain 
oe�
ients.

We need 7 delays, 7 adders, 8

gains and 8 a

umulators in total.

w[i] =
∑

K−1

r=0
u[Ki− r]
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• Filtering should be performed at the lowest possible sample rate

◦ redu
e �lter 
omputation by K

◦ a
tual saving is only

K
2 be
ause you need a se
ond �lter

◦ downsampled Nyquist frequen
y ≥ max (ω

passband

) + ∆ω
2

• Polyphase de
omposition: split H(z) as

∑K−1
m=0 z

−mHm(zK)
◦ ea
h Hm(zK) 
an operate on subsampled data

◦ 
ombine the �ltering and down/up sampling

• Noise �oor is higher be
ause it arises from K spe
tral intervals that

are aliased together by the downsampling.

• Share 
omponents between the K �lters

◦ multiplier gain 
oe�
ients swit
h at the original sampling rate

◦ need a new 
omponent: a

umulator/downsampler (K : Σ)

For further details see Harris 5.



13: Resampling Filters

⊲

13: Resampling

Filters

Resampling

Halfband Filters

Dyadi
 1:8 Upsampler

Rational Resampling

Arbitrary Resampling

+
Polynomial

Approximation

Farrow Filter +

Summary

MATLAB routines

DSP and Digital Filters (2017-10126) Resampling: 13 � 1 / 10



Resampling

13: Resampling

Filters

⊲ Resampling

Halfband Filters

Dyadi
 1:8 Upsampler

Rational Resampling

Arbitrary Resampling

+
Polynomial

Approximation

Farrow Filter +

Summary

MATLAB routines

DSP and Digital Filters (2017-10126) Resampling: 13 � 2 / 10

Suppose we want to 
hange the sample rate while preserving information:

e.g. Audio 44.1 kHz↔48 kHz↔96 kHz

Downsample:

LPF to new Nyquist bandwidth: ω0 = π
K

Upsample:

LPF to old Nyquist bandwidth: ω0 = π
K

Rational ratio: fs ×
P
Q

LPF to lower of old and new Nyquist

bandwidths: ω0 = π
max(P,Q)

• Polyphase de
omposition redu
es 
omputation by K = max(P,Q).

• The transition band 
entre should be at the Nyquist frequen
y, ω0 = π
K

• Filter order M ≈ d
3.5∆ω

where d is stopband attenuation in dB and ∆ω

is the transition bandwidth (Remez-ex
hange estimate).

• Fra
tional semi-Transition bandwidth, α = ∆ω
2ω0

, is typi
ally �xed.

e.g. α = 0.05 ⇒ M ≈ dK
7πα = 0.9dK (where ω0 = π

K

)
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If K = 2 then the new Nyquist frequen
y is

ω0 = π
2 .

We multiply ideal response

sinω0n
πn

by a Kaiser

window. All even numbered points are zero

ex
ept h[0] = 0.5.

If 4 | M and we make the �lter 
ausal (×z−
M
2

),

H(z) = 0.5z−
M
2 + z−1

∑

M
2
−1

r=0 h1[r]z
−2r

where h1[r] = h[2r + 1− M
2 ]

Half-band upsampler:

We inter
hange the �lters with the 1:2 blo
k

and use the 
ommutator notation.

H1(z) is symmetri
al with

M
2 
oe�
ients

so we need

M
4 multipliers in total (input gain

of 0.5 
an usually be absorbed elsewhere).

Computation:

M
4 multiplies per input sample

0 1 2 3
0

0.5

1

ω (rad/s)

M=20
β=2.5
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Suppose X(z): BW = 0.8π ⇔ α = 0.2

Upsample 1:2 → U(z):

Filter HP (z) must remove image: ∆ω = 0.2π

For attenuation = 60 dB, P ≈ 60
3.5∆ω

= 27.3

Round up to a multiple of 4: P = 28

Upsample 1:2 → V (z): ∆ω = 0.6π⇒ Q = 12

Upsample 1:2 → Y (z): ∆ω = 0.8π⇒ R = 8

[diminishing returns + higher sample rate℄

Multipli
ation Count:

(

1 + P
4

)

× fx + Q
4 × 2fx + R

4 × 4fx = 22fx
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0
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1 0.8π

ω

0 1 2 3
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ω
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ω

0 1 2 3
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ω
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ω

Alternative approa
h using dire
t 1:8 upsampling:

∆ω = 0.05π ⇒ M = 110⇒ 111fx multipli
ations (using polyphase)
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To resample by

P
Q

do 1:P

then LPF, then Q:1.

Resample by

P
Q

⇒ ω0 = π
max(P,Q)

∆ω , 2αω0 = 2απ
max(P,Q)

Polyphase: H(z) =
∑P−1

p=0 z−pHp(z
P )

Commutate 
oe�
ients:

v[s] uses Hp(z) with p = smodP

Keep only every Qth

output:

y[i] uses Hp(z) with p = QimodP

Multipli
ation Count:

H(z): M + 1 ≈ 60 [dB℄

3.5∆ω
= 2.7max(P,Q)

α

Hp(z): R + 1 = M+1
P

= 2.7
α

max
(

1, Q
P

)

M + 1 
oe�
ients in all

Multipli
ation rate:

2.7
α

max
(

1, Q

P

)

× fy = 2.7
α

max (fy, fx)
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Sometimes need very large P and Q:

e.g.

44.1 kHz

48 kHz

= 147
160

Multipli
ation rate OK:

2.7max(fy, fx)
α

However # 
oe�
ients:

2.7max(P,Q)
α

Alternatively, use any large integer P

and round down to the nearest sample:

E.g. for y[i] at time iQ
P

use hp[r]

where p = (⌊iQ⌋)mod P

Equivalent to 
onverting to analog with

zero-order hold and resampling at fy = P
Q

.

Zero-order hold 
onvolves with re
tangular

1
P

-wide window ⇒ multiplies

periodi
 spe
trum by

sin Ω

2P
Ω

2P

. Resampling aliases Ω to Ωmod 2Pπ
Q

.

Unit power 
omponent at Ω1 gives alias 
omponents with total power:

sin2 Ω1

2P

∑

∞

n=1

(

2P
2nPπ+Ω1

)2

+
(

2P
2nPπ−Ω1

)2

≈
ω2

1

4P 2

2π2

6π2 =
Ω2

1

12P 2

For worst 
ase, Ω1 = π, need P = 906 to get −60 dB /
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Suppose we wish to upsample by an irrational fa
tor,

√
2 = P

Q

. We 
hoose a integer value for P ≫ P
Q

,

say P = 25. Con
eptually, we will upsample by P = 25 to obtain v[s] and then downsample by

Q = P√
2
= 17.6 . . .. Taking the input sample rate to be 1, the output sample number i will be at time

i√
2
= iQ

P

whi
h 
orresponds to the sample n′ = iQ

P

of x[n] and to sample s′ = iQ of v[s].

Unfortunately, s′ is not an integer and so we will instead use sample s = ⌊s′⌋ = ⌊iQ⌋ of v[s] instead

where ⌊ ⌋ denotes the ��oor� fun
tion whi
h rounds down to the nearest integer. To 
al
ulate this, we

use the sub-�lter hp[r] where p = s mod P . The input samples used by the �lter will be the R + 1

most re
ent samples of x[n] namely x[⌊n′⌋ − R] to x[⌊n′⌋] .

i n′ = iQ/P s′ = iQ s = ⌊s′⌋ p = s mod P ⌊n′⌋ −R : ⌊n′⌋
0 0 0 0 0 −R : 0

1 0.71 17.68 17 17 −R : 0

2 1.41 35.36 35 10 1−R : 1

3 2.12 53.03 53 3 2−R : 2

4 2.83 70.71 70 20 2−R : 2

5 3.54 88.39 88 13 3−R : 3

The table shows the values of everything for the �rst six samples of y[i]. Sin
e we only use every 17th

or 18th value of v[s], the sub�lter that is used, p, in
reases by 17 or 18 (modulo P ) ea
h time.



[Alias Components℄

DSP and Digital Filters (2017-10126) Resampling: 13 � note 2 of slide 6

Ignoring the polyphase implementation, the low pass �lter operates at a sample rate of P and therefore

has a periodi
 spe
trum that repeats at intervals of 2Pπ. Therefore, 
onsidering positive frequen
ies

only, a signal 
omponent in the passband at Ω1 will have images at Ω = 2nPπ ± Ω1 for all positive

integers n.

These 
omponents are multiplied by the

sin 0.5P−1Ω
0.5P−1Ω

fun
tion and therefore have amplitudes of

sin 0.5P−1(2nPπ±Ω1)

0.5P−1(2nPπ±Ω1)
=

sin(nπ±0.5P−1Ω1)
(nπ±0.5P−1Ω1)

=
sin(±1n0.5P−1Ω1)
(nπ±0.5P−1Ω1)

.

When we do the downsampling to an output sample rate of

P
Q

, these images will be aliased to frequen
ies

Ωmod 2Pπ
Q

. In general, these alias frequen
ies will be s
attered throughout the range (0, π) and will

result in broadband noise.

We need to sum the squared amplitudes of all these 
omponents:

∑∞
n=1

sin2(±1n0.5P−1Ω1)
(nπ±0.5P−1Ω1)

2 = sin2
(

0.5P−1Ω1

)
∑∞

n=1
1

(nπ±0.5P−1Ω1)
2

If we assume that nπ ≫ 0.5P−1Ω1 and also that sin
(

0.5P−1Ω1

)

≈ 0.5P−1Ω1, then we 
an approx-

imate this sum as

(

0.5P−1Ω1

)2 ∑∞
n=1

2
(nπ)2

=
Ω2

1

4P2 × 2
π2

∑∞
n=1 n

−2

The summation is a standard result and equals

π2

6

.

So the total power of the aliased 
omponents is

Ω2
1

12P2 .
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Suppose P = 50 and H(z) has order M = 249
H(z) is lowpass �lter with ω0 ≈ π

50

Split into 50 �lters of length R+ 1 = M+1
P

= 5:

hp[0] is the �rst P samples of h[m]
hp[1] is the next P samples, et
.

hp[r] = h[p+ rP ]

Use a polynomial of order L to

approximate ea
h segment:

hp[r] ≈ fr(
p
P
) with 0 ≤ p

P
< 1

h[m] is smooth, so errors are low.

E.g. error < 10−3

for L = 4

• Resultant �lter almost as good

• Instead of M + 1 = 250


oe�
ients we only need

(R+ 1)(L+ 1) = 25

where

R+ 1 = 2.7
α

max
(

1, Q
P

)
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Filter 
oe�
ients depend on fra
tional part of iQ
P

:

∆[i] = iQ
P
− n where n =

⌊

iQ
P

⌋

y[i] =
∑R

r=0 fr(∆[i])x[n− r]

where fr(∆) =
∑L

l=0 bl[r]∆
l

y[i] =
∑R

r=0

∑L

l=0 bl[r]∆[i]lx[n− r]

=
∑L

l=0∆[i]l
∑R

r=0 bl[r]x[n− r]

=
∑L

l=0∆[i]lvl[n]

where vl[n] = bl[n] ∗ x[n]

[like a Taylor series expansion℄

Horner's Rule:

y[i] = v0[n] + ∆ (v1[n] + ∆ (v2[n] + ∆ (· · · )))

Multipli
ation Rate:

Ea
h Bl(z) needs R+ 1 per input sample

Horner needs L per output sample

R+ 1 = M+1
P

= 5

R+ 1 ≈
2.7
α

max
(

1,
Q

P

)

Total: (L+ 1) (R+ 1) fx + Lfy = 2.7(L+1)
α

max
(

1, fx
fy

)

fx + Lfy



[Farrow Filter sub-�lter indexing℄

DSP and Digital Filters (2017-10126) Resampling: 13 � note 1 of slide 8

We assume that the input sample rate is 1 and the output sample rate is

P
Q

. Output sample y[i] is

therefore at time n′ = iQ

P

whi
h will not normally be an integer.

Normal Resampling Method

In the normal resampling pro
edure, this 
orresponds to sample s = iQ of v[s] where v[s] is obtained

by upampling x[n] by a fa
tor of P . Using a polyphase �lter to do the upsampling, we use ea
h of the

sub-�lters hp[n] in turn to generate the upsampled samples v[s] where p = s mod P and the �lter a
ts

on the R + 1most re
ent input samples, x[n − R] to x[n] where n = ⌊n′⌋]. We 
an write any integer

s, as the sum of an exa
t multiple of P and the remainder when s ÷ P as s = P
⌊

s
P

⌋

+ s mod P .

Substituting the previously de�ned expressions for n and p into this equation gives iQ = Pn + p. We


an rearrange this to get p = Pn′ − Pn where p lies in the range [0, P − 1℄ and determines whi
h of

the sub�lters we will use.

Farrow Filter

In the normal method (above), the sub-�lter than we use is indexed by p whi
h lies in the range [0, P−1].

In the Farrow �lter, the sub-�lter that we use is instead indexed by the value of the fra
tional number

∆ = p

P

whi
h always lies in the range [0, 1). From the previous paragraph, ∆[i] = p

P
= n′ − n =

iQ
P

−
⌊

iQ
P

⌋

whi
h is a fun
tion only of the output sample number, i and the resampling ratio

P
Q

. The

advantage of this is that both P nor Q 
an now be non-integers.
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• Transition band 
entre at ω0

◦ ω0 = the lower of the old and new Nyquist frequen
ies

◦ Transition width = ∆ω = 2αω0, typi
ally α ≈ 0.1

• Fa
torizing resampling ratio 
an redu
e 
omputation

◦ halfband �lters very e�
ient (half the 
oe�
ients are zero)

• Rational resampling ×P
Q

◦ # multiplies per se
ond:

2.7
α

max (fy, fx)
◦ # 
oe�
ients:

2.7
α

max (P, Q)

• Farrow Filter

◦ approximate �lter impulse response with polynomial segments

◦ arbitrary, time-varying, resampling ratios

◦ # multiplies per se
ond:

2.7(L+1)
α

max (fy, fx)×
fx
fy

+ Lfy

⊲ ≈ (L+ 1) fx
fy

times rational resampling 
ase

◦ # 
oe�
ients:

2.7
α

max (P, Q)× L+1
P

◦ 
oe�
ients are independent of fy when upsampling

For further details see Mitra: 13 and Harris: 7, 8.
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g
d(p,q) Find αp+ βq = 1 for 
oprime p, q

poly�t Fit a polynomial to data

polyval Evaluate a polynomial

up�rdn Perform polyphase �ltering

resample Perform polyphase resampling
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DSP and Digital Filters (2017-10178) FM Radio: 14 � 2 / 12

FM spe
trum: 87.5 to 108MHz

Ea
h 
hannel: ±100 kHz

Baseband signal:

Mono (L + R): ±15 kHz

Pilot tone: 19 kHz

Stereo (L � R): 38± 15 kHz

RDS: 57± 2 kHz

FM Modulation:

Freq deviation: ±75 kHz

L�R signal is multiplied by 38 kHz to shift it to baseband

[This example is taken from Ch 13 of Harris: Multirate Signal Pro
essing℄
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DSP and Digital Filters (2017-10178) FM Radio: 14 � 3 / 12

FM band: 87.5 to 108MHz

Normally sample at fs > 2f

However:

fs = 80MHz aliases band

down to [7.5, 28]MHz.

�ve frequen
ies alias

to [−28, −7.5]MHz.

We must suppress other

frequen
ies that alias to the

range ±[7.5, 28]MHz.

Need an analogue bandpass �lter to extra
t the FM band. Transition band

mid-points are at fs = 80MHz and 1.5fs = 120MHz.

You 
an use an aliased analog-digital 
onverter (ADC) provided that the

target band �ts entirely between two 
onse
utive multiples of

1
2fs.

Lower ADC sample rate ,. Image = undistorted frequen
y-shifted 
opy.
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DSP and Digital Filters (2017-10178) FM Radio: 14 � 4 / 12

FM band shifted to 7.5 to 28MHz (from 87.5 to 108MHz)

We need to sele
t a single 
hannel 200 kHz wide

We shift sele
ted 
hannel to DC and then downsample to fs = 400 kHz.

Assume 
hannel 
entre frequen
y is fc = c× 100 kHz

We must apply a �lter before downsampling to remove unwanted images

The downsampled signal is 
omplex sin
e positive and negative frequen
ies


ontain di�erent information.

We will look at three methods:

1 Freq shift, then polyphase lowpass �lter

2 Polyphase bandpass 
omplex �lter

3 Polyphase bandpass real �lter
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DSP and Digital Filters (2017-10178) FM Radio: 14 � 5 / 12

Multiply by e−j2πr fc
80MHz

to shift


hannel at fc to DC.

fc = c× 100 k ⇒ fc
80M = c

800

Result of multipli
ation is 
omplex

(thi
k lines on diagram)

Next, lowpass �lter to ±100 kHz
∆ω = 2π 200 k

80 M

= 0.157

⇒ M = 60 dB

3.5∆ω
= 1091

Finally, downsample 200 : 1

Polyphase:

Hp(z) has

⌈

1092
200

⌉

= 6 taps

Complex data × Real Coe�
ients (needs 2 multiplies per tap)

Multipli
ation Load:

2× 80MHz (freq shift) + 12× 80MHz (Hp(z)) = 14× 80MHz
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DSP and Digital Filters (2017-10178) FM Radio: 14 � 6 / 12

Channel 
entre frequen
y fc = c× 100 kHz where c is an integer.

Write c = 4k + l

where k =
⌊

c
4

⌋

and l = cmod 4

We multiply u[r] by e−j2πr c
800

, 
onvolve with h[m] and then downsample:

v[n] =
∑M

m=0 h[m]u[200n−m]e−j2π(200n−m) c
800

[r = 200n℄

=
∑M

m=0 h[m]ej2π
mc
800u[200n−m]e−j2π200n 4k+l

800

[c = 4k + 1℄

=
∑M

m=0 g[c][m]u[200n−m]e−j2π ln
4

[g[c][m]
∆
= h[m]ej2π

mc
800

℄

= (−j)ln
∑M

m=0 g[c][m]u[200n−m] [e−j2π ln
4

indep of m℄

Multipli
ation Load for polyphase implementation:

G[c],p(z) has 
omplex 
oe�
ients × real input⇒ 2 mults per tap

(−j)ln ∈ {+1, −j, −1, +j} so no a
tual multiplies needed

Total: 12× 80MHz (for G[c],p(z)) + 0 (for −jln) = 12× 80MHz
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Channel frequen
y fc = c× 100 kHz where c = 4k + l is an integer

g[c][m] = h[m]ej2π
cm
800

g[c],p[s] = gc[200s+ p]= h[200s+ p]ej2π
c(200s+p)

800

[polyphase℄

= h[200s+ p]ej2π
cs
4 ej2π

cp
800 , h[200s+ p]ej2π

cs
4 αp

De�ne f[c],p[s] = h[200s+ p]ej2π
(4k+l)s

4 = jlsh[200s+ p]

Although f[c],p[s] is 
omplex it requires only one multipli
ation per

tap be
ause ea
h tap is either purely real or purely imaginary.

Multipli
ation Load:

6× 80MHz (Fp(z)) + 4× 80MHz (×ej2π
cp
800

) = 10× 80MHz
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Complex FM signal 
entred at DC: v(t) = |v(t)|ejφ(t)

We know that log v = log |v|+ jφ

The instantaneous frequen
y of v(t) is dφ

dt

.

We need to 
al
ulate x(t) = dφ

dt
= dℑ(log v)

dt
= ℑ

(

1
v
dv
dt

)

= 1
|v|2ℑ

(

v∗ dv
dt

)

We need:

(1) Di�erentiation �lter, D(z)

(2) Complex multiply, w[n]× v∗[n] (only need ℑ part)

(3) Real Divide by |v|2

x[n] is baseband signal (real):
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Window design method:

(1) 
al
ulate d[n] for the ideal �lter

(2) multiply by a window to give �nite support

Di�erentiation:

d
dt
ejωt = jωejωt ⇒ D(ejω) =

{

jω |ω| ≤ ω0

0 |ω| > ω0

Hen
e d[n] = 1
2π

∫ ω0

−ω0
jωejωndω = j

2π

[

ωejnω

jn
− ejnω

j2n2

]ω0

−ω0

[IDTFT℄

= nω0 cosnω0−sinnω0

πn2

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

ω (rad/sample)

|H
|

 ω
0

0 0.5 1 1.5 2 2.5 3

-80

-60

-40

-20

0
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|H
| (

dB
)

 ω
0

Using M = 18, Kaiser window, β = 7 and ω0 = 2.2 = 2π×140 kHz
400 kHz :

Near perfe
t di�erentiation for ω ≤ 1.6 (≈ 100 kHz for fs = 400 kHz)

Broad transition region allows shorter �lter
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Aim: extra
t 19 kHz pilot tone, double freq → real 38 kHz tone.

(1) shift spe
trum down by 20 kHz: multiply by e−j2πn 20 kHz
400kHz

(2) low pass �lter to ±1 kHz to extra
t 
omplex pilot at −1 kHz: H(z)

(3) square to double frequen
y to −2 kHz [

(

ejωt
)2

= ej2ωt

℄

(4) shift spe
trum up by 40 kHz: multiply by e+j2πn 40 kHz
400 kHz

(5) take real part

More e�
ient to do low pass �ltering at a low sample rate:

Transition bands:

F (z): 1 → 17 kHz, H(z): 1 → 3 kHz, G(z): 2 → 18 kHz
∆ω = 0.25 ⇒ M = 68, ∆ω = 0.63 ⇒ 27, ∆ω = 0.25 ⇒ 68
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DSP and Digital Filters (2017-10178) FM Radio: 14 � 11 / 12

Anti-alias �lter: F (z)

Ea
h bran
h, Fp(z), gets every 20th sample and an identi
al ej2π
n
20

So Fp(z) 
an �lter a real signal and then multiply by �xed ej2π
p
20

Anti-image �lter: G(z)

Ea
h bran
h, Gp(z), multiplied by identi
al ej2π
n
10

So Gp(z) 
an �lter a real signal

Multiplies:

F and G ea
h: (4 + 2)× 400 kHz, H + x2

: (2× 28 + 4)× 20 kHz

Total: 15× 400 kHz [Full-rate H(z) needs 273× 400 kHz℄
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• Aliased ADC allows sampling below the Nyquist frequen
y

◦ Only works be
ause the wanted signal �ts entirely within a

Nyquist band image

• Polyphase �lter 
an be 
ombined with 
omplex multipli
ations to

sele
t the desired image

◦ subsequent multipli
ation by −jln shifts by the desired multiple

of

1
4 sample rate

⊲ No a
tual multipli
ations required

• FM demodulation uses a di�erentiation �lter to 
al
ulate

dφ
dt

• Pilot tone bandpass �lter has narrow bandwidth so better done at a

low sample rate

◦ double the frequen
y of a 
omplex tone by squaring it

This example is taken from Harris: 13.
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DSP and Digital Filters (2017-10127) Subband Pro
essing: 15 � 2 / 12

• The Hm(z) are bandpass analysis �lters and divide x[n] into

frequen
y bands

• Subband pro
essing often pro
esses frequen
y bands independently

• The Gm(z) are synthesis �lters and together re
onstru
t the output

• The Hm(z) outputs are bandlimited and so 
an be subsampled

without loss of information

◦ Sample rate multiplied overall by

∑

1
Pi

∑

1
Pi

= 1 ⇒ 
riti
ally sampled : good for 
oding

∑

1
Pi

> 1 ⇒ oversampled : more �exible

• Goals:

(a) good frequen
y sele
tivity in Hm(z)

(b) perfe
t re
onstru
tion: y[n] = x[n− d] if no pro
essing

• Bene�ts: Lower 
omputation, faster 
onvergen
e if adaptive
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Vm(z) = Hm(z)X(z) [m ∈ {0, 1}℄

Um(z) = 1
K

∑K−1
k=0 Vm(e

−j2πk

K z
1

K ) = 1
2

{

Vm

(

z
1

2

)

+ Vm

(

−z
1

2

)}

Wm(z) = Um(z2) = 1
2 {Vm(z) + Vm(−z)} [K = 2]

= 1
2 {Hm(z)X(z) +Hm(−z)X(−z)}

Y (z) =
[

W0(z) W1(z)
]

[

G0(z)
G1(z)

]

= 1
2

[

X(z) X(−z)
]

[

H0(z) H1(z)
H0(−z) H1(−z)

] [

G0(z)
G1(z)

]

=
[

X(z) X(−z)
]

[

T (z)
A(z)

]

[X(−z)A(z) is �aliased� term℄

We want (a) T (z) = 1
2 {H0(z)G0(z) +H1(z)G1(z)} = z−d

and (b) A(z) = 1
2 {H0(−z)G0(z) +H1(−z)G1(z)} = 0
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For perfe
t re
onstru
tion without aliasing, we require

1
2

[

H0(z) H1(z)
H0(−z) H1(−z)

] [

G0(z)
G1(z)

]

=

[

z−d

0

]

Hen
e:

[

G0(z)
G1(z)

]

=

[

H0(z) H1(z)
H0(−z) H1(−z)

]

−1 [
2z−d

0

]

= 2z−d

H0(z)H1(−z)−H0(−z)H1(z)

[

H1(−z) −H1(z)
−H0(−z) H0(z)

] [

1
0

]

= 2z−d

H0(z)H1(−z)−H0(−z)H1(z)

[

H1(−z)
−H0(−z)

]

For all �lters to be FIR, we need the denominator to be

H0(z)H1(−z)−H0(−z)H1(z) = cz−k

, whi
h implies

[

G0(z)
G1(z)

]

= 2
c
zk−d

[

H1(−z)
−H0(−z)

]

d=k
= 2

c

[

H1(−z)
−H0(−z)

]

Note: c just s
ales Hi(z) by c
1

2

and Gi(z) by c−
1

2

.
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QMF satis�es:

(a) H0(z) is 
ausal and real

(b) H1(z) = H0(−z): i.e.

∣

∣H0(e
jω)

∣

∣

is re�e
ted around ω = π
2

(
) G0(z) = 2H1(−z) = 2H0(z)

(d) G1(z) = −2H0(−z) = −2H1(z)

QMF is alias-free:

A(z) = 1
2 {H0(−z)G0(z) +H1(−z)G1(z)}

= 1
2 {2H1(z)H0(z)− 2H0(z)H1(z)} = 0

QMF Transfer Fun
tion:

T (z) = 1
2 {H0(z)G0(z) +H1(z)G1(z)}

= H2
0 (z)−H2

1 (z) = H2
0 (z)−H2

0 (−z)
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Polyphase de
omposition:

H0(z) = P0(z
2) + z−1P1(z

2)
H1(z) = H0(−z) = P0(z

2)− z−1P1(z
2)

G0(z) = 2H0(z) = 2P0(z
2) + 2z−1P1(z

2)
G1(z) = −2H0(−z) = −2P0(z

2) + 2z−1P1(z
2)

Transfer Fun
tion:

T (z) = H2
0 (z)−H2

1 (z) = 4z−1P0(z
2)P1(z

2)

we want T (z) = z−d ⇒ P0(z) = a0z
−k

, P1(z) = a1z
k+1−d

⇒ H0(z) has only two non-zero taps ⇒ poor freq sele
tivity

∴ Perfe
t re
onstru
tion QMF �lterbanks 
annot have good freq sele
tivity
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Polyphase de
omposition:

A(z) = 0 ⇒ no alias term

T (z) = H2
0 (z)−H2

1 (z) = H2
0 (z)−H2

0 (−z) = 4z−1P0(z
2)P1(z

2)

Options:

(A) Perfe
t Re
onstru
tion: T (z) = z−d ⇒ H0(z) is a bad �lter.

(B) T (z) is Linear Phase FIR:

⇒ Tradeo�:

∣

∣T (ejω)
∣

∣ ≈ 1 versus H0(z) stopband attenuation

(C) T (z) is Allpass IIR: H0(z) 
an be Butterworth or Ellipti
 �lter

⇒ Tradeo�: ∠T (ejω) ≈ τω versus H0(z) stopband attenuation
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T (z) ≈ 1

H0(z) order M , linear phase ⇒ H0(e
jω) = ±e−jωM

2

∣

∣H0(e
jω)

∣

∣

T (ejω) = H2
0 (e

jω)−H2
1 (e

jω) = H2
0 (e

jω)−H2
0 (−ejω)

= e−jωM
∣

∣H0(e
jω)

∣

∣

2
− e−j(ω−π)M

∣

∣H0(e
j(ω−π))

∣

∣

2

= e−jωM
(

∣

∣H0(e
jω)

∣

∣

2
− (−1)

M
∣

∣H0(e
j(π−ω))

∣

∣

2
)

M even ⇒ T (ej
π
2 ) = 0 / so 
hoose M odd ⇒ − (−1)M = +1

Sele
t h0[n] by numeri
al iteration to minimize

α
∫ π

π
2
+∆

∣

∣H0(e
jω)

∣

∣

2
dω + (1− α)

∫ π

0

(
∣

∣T (ejω)
∣

∣− 1
)2

dω

α → balan
e between H0(z) being lowpass and T (ejω) ≈ 1

Johnston �lter

(M = 11):

h
0
[n] M=11

0 1 2 3
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|T (z)| = 1

Choose P0(z) and P1(z) to be allpass IIR �lters:

H0,1(z) =
1
2

(

P0(z
2)± z−1P1(z

2)
)

, G0,1(z) = ±2H0,1(z)

A(z) = 0 ⇒ No aliasing

T (z) = H2
0 −H2

1 = . . . = z−1P0(z
2)P1(z

2) is an allpass �lter.

H0(z) 
an be made a Butterworth or Ellipti
 �lter with MH = 4MP + 1:

0 1 2 3

-8

-6

-4

-2

0

P
0
(z2)

z-1P
1
(z2)

M
P
=1

A
0
=1+0.236z-1

A
1
=1+0.715z-1

ω

∠

0 1 2 3
-60

-40

-20

0
H

0
H

1
M

H
=5

ω

H
0
(z)

0 1 2 3

5

10

15

T(z)

ω (rad/sample)

Phase 
an
ellation: ∠z−1P1 = ∠P0 + π ; Ripples in H0 and H1 
an
el.
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A half-band �lterbank divides the full band into two equal halves.

You 
an repeat the pro
ess on either or both of the signals u1[p]

and v1[p].

Dividing the lower band in half repeatedly results in an o
tave band

�lterbank . Ea
h subband o

upies one o
tave (= a fa
tor of 2 in

frequen
y) ex
ept the �rst subband.

The properties �perfe
t re
onstru
tion� and �allpass� are preserved

by the iteration.

0 1 2 3
0

0.5

1

X=Y

0 1 2 3
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V
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U
1

0 1 2 3
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V
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V
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U
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• Half-band �lterbank:

◦ Re
onstru
ted output is T (z)X(z) +A(z)X(−z)
◦ Unwanted alias term is A(z)X(−z)

• Perfe
t re
onstru
tion: imposes strong 
onstraints on analysis

�lters Hi(z) and synthesis �lters Gi(z).

• Quadrature Mirror Filterbank (QMF) adds an additional symmetry


onstraint H1(z) = H0(−z).

◦ Perfe
t re
onstru
tion now impossible ex
ept for trivial 
ase.

◦ Neat polyphase implementation with A(z) = 0
◦ Johnston �lters: Linear phase with T (z) ≈ 1
◦ Allpass �lters: Ellipti
 or Butterworth with |T (z)| = 1

• Can iterate to form a tree stru
ture with equal or unequal

bandwidths.

See Mitra 
hapter 14 (whi
h also in
ludes some perfe
t re
onstru
tion

designs).
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FORMULA SHEET AVAILABLE IN EXAM

The following formulae will be available in the exam:

Where a question requires a numerical answer, it must be given as a fully evaluated decimal number and
not as an unevaluated arithmetic expression.

Notation

• All signals and filter coefficients are real-valued unless explicitly noted otherwise.

• Unless otherwise specified, upper and lower case letters are used for sequences and their z-transforms
respectively. The signal at a block diagram node V is v[n] and its z-transform is V (z).

• x[n] = [a, b, c, d, e, f ] means that x[0] = a, . . . x[5] = f and that x[n] = 0 outside this range.

• ℜ(z), ℑ(z), z∗, |z| and ∠z denote respectively the real part, imaginary part, complex conjugate,
magnitude and argument of a complex number z.

• The expected value of x is denoted E{x}.

• In block diagrams: solid arrows denote the direction of signal flow; an open triangle denotes a gain
element with the gain indicated adjacently; a “+” in a circle denotes an adder/subtractor whose
inputs may be labelled “+” or ”−” according to their sign; the sample rate, f , of a signal in Hz
may be indicated in the form “@ f ”.

Abbreviations

BIBO Bounded Input, Bounded Output IIR Infinite Impulse Response
CTFT Continuous-Time Fourier Transform LTI Linear Time-Invariant
DCT Discrete Cosine Transform MDCT Modified Discrete Cosine Transform
DFT Discrete Fourier Transform PSD Power Spectral Density
DTFT Discrete-Time Fourier Transform SNR Signal-to-Noise Ratio
FIR Finite Impulse Response

Standard Sequences

• δ [n] = 1 for n = 0 and 0 otherwise.

• δcondition[n] = 1 whenever "condition" is true and 0 otherwise.

• u[n] = 1 for n≥ 0 and 0 otherwise.
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Geometric Progression

• ∑
r
n=0 αnz−n = 1−αr+1z−r−1

1−αz−1 provided that αz−1 6= 1.

• ∑
∞
n=0 αnz−n = 1

1−αz−1 provided that
∣∣αz−1

∣∣< 1.

Forward and Inverse Transforms

z: X(z) = ∑
∞
−∞ x[n]z−n x[n] = 1

2π j

¸
X(z)zn−1dz

CTFT: X( jΩ) =
´

∞

−∞
x(t)e− jΩ tdt x(t) = 1

2π

´
∞

−∞
X( jΩ)e jΩ tdΩ

DTFT: X(e jω) = ∑
∞
−∞ x[n]e− jωn x[n] = 1

2π

´
π

−π
X(e jω)e jωndω

DFT: X [k] = ∑
N−1
0 x[n]e− j2π

kn
N x[n] = 1

N ∑
N−1
0 X [k]e j2π

kn
N

DCT: X [k] = ∑
N−1
n=0 x[n]cos 2π(2n+1)k

4N x[n] = X [0]
N + 2

N ∑
N−1
n=1 X [k]cos 2π(2n+1)k

4N

MDCT: X [k] = ∑
2N−1
n=0 x[n]cos 2π(2n+1+N)(2k+1)

8N y[n] = 1
N ∑

N−1
0 X [k]cos 2π(2n+1+N)(2k+1)

8N

Convolution

DTFT: v[n] = x[n]∗ y[n], ∑
∞
r=−∞ x[r]y[n− r] ⇔ V

(
e jω
)
= X

(
e jω
)

Y
(
e jω
)

v[n] = x[n]y[n] ⇔ V
(
e jω
)
= 1

2π
X
(
e jω
)
~Y

(
e jω
)
, 1

2π

´
π

−π
X
(
e jθ
)

Y
(
e j(ω−θ)

)
dθ

DFT: v[n] = x[n]~N y[n], ∑
N−1
r=0 x[r]y[(n− r) mod N ] ⇔ V [k] = X [k]Y [k]

v[n] = x[n]y[n] ⇔ V [k] = 1
N X [k]~N Y [k], 1

N ∑
N−1
r=0 X [r]Y [(k− r) mod N ]

Group Delay

The group delay of a filter, H(z), is τH(e jω) = −d∠H(e jω )
dω

= ℜ

(
−z

H(z)
dH(z)

dz

)∣∣∣
z=e jω

= ℜ

(
F (nh[n])
F (h[n])

)
where

F () denotes the DTFT.

Order Estimation for FIR Filters

Three increasingly sophisticated formulae for estimating the minimum order of an FIR filter with unity
gain passbands:

1. M ≈ a
3.5∆ω

2. M ≈ a−8
2.2∆ω

3. M ≈ a−1.2−20log10 b
4.6∆ω
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where a =stop band attenuation in dB, b = peak-to-peak passband ripple in dB and ∆ω = width of
smallest transition band in radians per sample.

z-plane Transformations

A lowpass filter, H(z), with cutoff frequency ω0 may be transformed into the filter H(ẑ) as follows:

Target H(ẑ) Substitute Parameters

Lowpass
ω̂ < ω̂1

z−1 = ẑ−1−λ

1−λ ẑ−1 λ =
sin
(

ω0−ω̂1
2

)
sin
(

ω0+ω̂1
2

)

Highpass
ω̂ > ω̂1

z−1 =− ẑ−1+λ

1+λ ẑ−1 λ =
cos
(

ω0+ω̂1
2

)
cos
(

ω0−ω̂1
2

)

Bandpass
ω̂1 < ω̂ < ω̂2

z−1 =− (ρ−1)−2λρ ẑ−1+(ρ+1)ẑ−2

(ρ+1)−2λρ ẑ−1+(ρ−1)ẑ−2 λ =
cos
(

ω̂2+ω̂1
2

)
cos
(

ω̂2−ω̂1
2

) , ρ = cot
(

ω̂2−ω̂1
2

)
tan
(

ω0
2

)
Bandstop

ω̂1 ≮ ω̂ ≮ ω̂2

z−1 = (1−ρ)−2λ ẑ−1+(ρ+1)ẑ−2

(ρ+1)−2λ ẑ−1+(1−ρ)ẑ−2 λ =
cos
(

ω̂2+ω̂1
2

)
cos
(

ω̂2−ω̂1
2

) , ρ = tan
(

ω̂2−ω̂1
2

)
tan
(

ω0
2

)

Noble Identities

Q:1 =H(z) H(zQ) Q:1

1:Q =H(z) H(zQ)1:Q

Multirate Spectra

Upsample: 1:Qv[n] x[r] ⇒ x[r] =

{
v
[

r
Q

]
if Q | r

0 if Q - r
⇒ X(z) =V (zQ)

Downsample: Q:1v[n] y[m] ⇒ y[m] = v[Qm] ⇒ Y (z) = 1
Q ∑

Q−1
k=0 V

(
e
− j2πk

Q z
1
Q

)

Multirate Commutators

Input Commutator Output Commutator

x[n]

z–1

z–1

P:1

P:1

P:1

x[n]

uP[m]

uP-1[m]

u1[m]

⇒

uP[m]

uP-1[m]

u1[m]

z–1

1:P

1:P

1:P

y[n]uP-1[m]

u1[m]

⇒

uP[m]

y[n]

z–1

uP-1[m]

u1[m]

uP[m]
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