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e 18 lectures: feel free to ask questions

e Textbooks:
o (a) Mitra “Digital Signal Processing” ISBN:0071289461 £41 covers
most of the course except for some of the multirate stuff
o (b) Harris “Multirate Signal Processing” ISBN:0137009054 £49
covers multirate material in more detail but less rigour than
Mitra

e Lecture slides available via Blackboard or on my website:
http://www.ee.ic.ac.uk/hp/staff/dmb/courses/dspdf/dspdf.htm
o quite dense - ensure you understand each line
o email me if you don’t understand or don't agree with anything

e Prerequisites: 3rd year DSP - attend lectures if dubious
e Exam 4 Formula Sheet (past exam papers + solutions on website)

e Problems: Mitra textbook contains many problems at the end of each
chapter and also MATLAB exercises

DSP and Digital Filters (2016-8746) Introduction: 1 -3 / 16



Signals

1: Introduction

Organization
> signals
Processing
Syllabus
Sequences
Time Scaling
z-Transform

Region of
Convergence

z-Transform examples
Rational z-Transforms
Rational example
Inverse z-Transform
MATLAB routines

Summary

e A signal is a numerical quantity that is a function of one or more
independent variables such as time or position.

e Real-world signals are analog and vary continuously and take
continuous values.

e Digital signals are sampled at discrete times and are quantized to a
finite number of discrete values

e We will mostly consider one-dimensionsal real-valued signals with
regular sample instants; except in a few places, we will ignore the
quantization.

o Extension to multiple dimensions and complex-valued signals
is straighforward in many cases.

Examples:

DSP and Digital Filters (2016-8746) Introduction: 1 -4 / 16



Processing

1: Introduction

Organization
Signals

> Processing
Syllabus
Sequences
Time Scaling
z-Transform

Region of
Convergence

z-Transform examples
Rational z-Transforms
Rational example
Inverse z-Transform
MATLAB routines

Summary

O Aims to “improve” a signal in some way or extract some information
from it

0 Examples:

— Modulation/demodulation

— Coding and decoding

— Interference rejection and noise suppression
— Signal detection, feature extraction

O We are concerned with linear, time-invariant processing
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Main topics:

O Introduction /Revision
O Transforms

O Discrete Time Systems
O Filter Design

— FIR Filter Design
— IIR Filter Design

O Multirate systems

— Multirate Fundamentals
— Multirate Filters
— Subband processing
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Sequences

1: Introduction

Organization We denote the n'* sample of a signal as z[n] where —co < n < +o00 and
Signals the entire sequence as {x|n|} although we will often omit the braces.

Processing

Syllabus . .
> Sequences Special sequences:
Time Scaling 1

n >0
z-Transform - . L -
et o e Unit step: uln] =

0 otherwise

Convergence
z-Transform examples 4
Rational z-Transforms .. ]. n = O
Rational example ® U nit |mpU|Se: 5[77/] = X .
Inverse z-Transform O OtherW|Se
MATLAB routines .
Summary . : 1 condition is true

e Condition: dcondition || = _ (e.g. uln| = dp>0)
0 otherwise -

Right-sided: x[n| = 0 for n < Npin

Left-sided: z[n] =0 for n > Nyaz

Finite length: x[n] = 0 for n ¢ [Npin, Nmaz]

Causal: x[n] =0 for n < 0, Anticausal: x|n] =0 for n > 0
Finite Energy: S2° __|z[n]|* <oo  (e.g. z[n] =n 'uln — 1))
Absolutely Summable: >°°°  |z[n]| < oo = Finite energy

n=—oo
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For sampled signals, the n'" sample is at time t = nT = + Where f, = .

is the sample frequency.

We usually scale time so that f, = 1: divide all “real” frequencies and
angular frequencies by f; and divide all “real” times by T'.

e To scale back to real-world values: multiply all times by T" and all
frequencies and angular frequencies by T—! = f,.

e We use () for “real” angular frequencies and w for normalized angular
frequency. The units of w are “radians per sample”.

Energy of sampled signal, x[n], equals " 22[n]
e Multiply by T to get energy of continuous signal, [ z*(t)dt, provided
there is no aliasing.

Power of {x[n]} is the average of z°[n] in “energy per sample”
e same value as the power of x(t) in “energy per second” provided
there is no aliasing.

Warning: Several MATLAB routines scale time so that f, = 2 Hz. Weird,
non-standard and irritating.
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z- Transform

1: Introduction The z-transform converts a sequence, {z[n]}, into a function, X (z), of an

Organization

Signals arbitrary complex-valued variable z.
Processing

Syllabus Why do It?

Sequences )

Time Scaling

> z-Transform e Complex functions are easier to manipulate than sequences

Region of
Convergence

2 Transform examples e Useful operations on sequences correspond to simple operations on
Rational z-Transforms the ~-tra nsform

Rational example

Inverse z-Transform

MATLAB routines o addition, multiplication, scalar multiplication, time-shift,
Summary convolution
e Definition: X (2) =37 2[n)z~"
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Summary

The set of z for which X (z) converges is its Region of Convergence (ROC).

Complex analysis =: the ROC of a power series (if it exists at all) is always
an annular region of the form 0 < R,,.;n < |2| < Ripaz < 0.

X (z) will always converge absolutely inside the ROC and may converge on
some, all, or none of the boundary.

o ‘“converge absolutely” < S

n——oo |T[M]27"| <00

e finite length & R,,in, =0, Ryyq: = 00
o ROC may included either, both or none of 0 and oo

e absolutely summable < X (z) converges for |z| = 1.

o right-sided & |z[n|]| < A X B" = Ryqp =
o + causal = X (oco0) converges

o left-sided & |z[n]| < AXx B™ = Ryin =0
o 4 anticausal = X (0) converges
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[Convergence Properties]

Null Region of Convergence:

It is possible to define a sequence, z[n|, whose z-transform never converges (i.e. the ROC is null). An
example is x[n] = 1. The z-transfom is X (z) = > 27" and it is clear that this fails to converge for
any real value of z.

Convergence for x[n| causal:
If z[n] is causal with |z[n]| < A x B™ for some A and B, then |X(2)] = [>2° z[n]z7"| <

>20% o |zln]z="] and so, for [2| = R > B, |X(2)| < Y02y AB"R™" = —4—— < o0.

Convergence for z[n]| right-sided:

If z[n] is right-sided with |z[n]| < A x B™ for some A and B and z[n] = 0 for n < N, then
y[n] = x[n — N] is causal with |y[n]| < Ax B"t¥ = ABN x B™. Hence, from the previous result, we
known that Y (2) converges for |z| > B. The z-transform, X (z), is given by X (2) = 2VY (2) so X (2)
will converge for any B < |z| < oo since }ZN| < oo for |z| in this range.
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z-Transform examples

The sample at n = 0 is indicated by an open circle.

un] e T — 1 <|z] €0

x[n] BN PO S DU 222 4+ 2+ 271 0< |z] < o0

x[n — 3] BV I B 23 (222424271 0<z| <0

a"u[n]a—o.8 B RARRE — a < |z] < oo

—amuf-n-1) LR 0<|el<a

nu|n| ettt 1—2zz—_11—|—z_2 1 < |z| <0

sin(wn)u[n]u,—o.5 oot 1_2Z'izlciisrl(%)+z_2 1<z <o
AT 1—2~1 cos(w)

cos(wn)u[nlu,—o0.5 l 2 Toos(0) 122 1< |z] £

Note: Examples 4 and 5 have the same z-transform but different ROCs.

. . r o 9,—q_ rt+1_—r—1
Geometric Progression: ) _ a2z " = 5= —F
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Summary

Most z-transforms that we will meet are rational polynomials with real
coefficients, usually one polynomial in z=! divided by another.

T (P2t g o TIM(z=2m)
G(Z) —9 [Ti_ (1—prz=1) g= [15 (z—pk)

Completely defined by the poles, zeros and gain.

The absolute values of the poles define the ROCs:
JR + 1 different ROCs
where R is the number of distinct pole magnitudes.

Note: There are K — M zeros or M — K poles at z = 0 (easy to overlook)
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Summary

Poles/Zeros: G(z) = (z10.

22(2z—0.25))

5)(z—1.5)

= Poles at z = {—0.5,4+1.5)},
Zeros at z = {0,40.25}

Partial Fractions: G(z) = 1+8:gi_1 + 125
ROC ROC e | et | GG)
.. e [ro
a 0<|z| <0.5
b | 05< 2| < 1.5 e il ot
C 1-5<‘Z‘§OO SR HM “H

DSP and Digital

Filters (2016-8746)

Introduction: 1 — 13 / 16



Inverse z-Transform
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Summary

g[n] = 555 ¢ G(2)2"~'dz where the integral is anti-clockwise around a
circle within the ROC, z = Re??.

Proo1c
27TJ fG M= 1dZZ % (Z;’;’:_oog[m]z—m) z”_ldz

© $ Ml
(")

m=—o00 g 277]
m=—o0 9lM]d[n —m|= g|n]
(i) depends on the circle with radius R lying within the ROC

(i) Cauchy's theorem: 5 § 2~ !dz = 5[ k] for z = Re’? anti-clockwise.

& — jRelf= S fzk ldz = 51 [T RF-1ed (=10 x jRe®dp
— B2 k0 g
= R*§(k)= d(k) [R° = 1]

In practice use a combination of partial fractions and table of z-transforms.
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MATLAB routines
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Summary

tf2zp,zp2tf

2%2 Ty = {Zmapk g}

. b(z— 1)
residuez % — Zk W
b(z— D bo 1 +b L by 272
tf2so0s,sos2tf % =a il gial,ll’;iwa;[??
bo.1+b1 127 T4+by 1272
2p2s08,5052zp | {zm, K, 9} < 11, 107Lla€11,}l,:—1+a22,}l§—2
= Ax + Bu
Zp2ss,ss2z Z & s
p P {2m, Pk, 9} y — Ca + Du
~1) = Ax + Bu
tf2ss,ss2tf %
y=Cz+ Du
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> Summary

Time scaling: assume fs=1s0 - "1 <w <7
+00

n=—oo

—n

z-transform: X (z) = x[n]

ROC: 0 < Riin < |2| < Rinaz < 00
o (Causal: oo € ROC
o Absolutely summable: |z| =1 € ROC

Inverse z-transform: gln| = % $G(2)z""dz
o Not unique unless ROC is specified
o Use partial fractions and/or a table

For further details see Mitra:1 & 6.
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Three Different Fourier Transforms
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Three different Fourier Transforms:

e CTFT (Continuous-Time Fourier Transform): x(t) — X (j2)
DTFT (Discrete-Time Fourier Transform): z[n] — X (e’*)
e DFT a.k.a. FFT (Discrete Fourier Transform): z[n] — X k]

Forward Transform Inverse Transform
CTFT X(jQ) = [ _z(t)e Pdt  z(t) = 5= [*._ X (jQ)eHdO
DTFT X (ed¥) =" z[nle9¥"  zn] =5 [*_ X(e/¥)e/*"dw

DFT XIk| = Zév_l z[nle= 2R z[n] = ~ év_l X [k]ed?m %

We use € for “real” and w = QT for “normalized” angular frequency.
Nyquist frequency is at Onyq = 277% = 7 and wnyq = 7.
For “power signals” (energy o< duration), CTFT & DTFT are unbounded.
Fix this by normalizing:

X () = imayeo 55 fflA r(t)e I dt

X (€/%) = limg_o0 ﬁ Zi‘A x[n]e”Iwn
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Convergence of DTFT

B s et DTFT: X (e/%) = > x[n]e™7“" does not converge for all z[n].
Fourier Transform . . . y K __ 1

¥ Convergence of Consider the finite sum: Xk (e/%) = Z_K x[nleIwm

> DTFT

DTFT Properties

_ Strong Convergence:
DFT Properties

S x[n] absolutely summable = X (/) converges uniformly
arseval's Theorem . .
e o > |z[n]] < oo = sup,, | X (e/%) — X (e7*)] ——0

Sampling Process
Zero-Padding

Phase Unwrapping Weaker convergence:

Uncertainty principle x|n] finite energy = X (e’%) converges in mean square
Summary
MATLAB routines Z—oo |CIZ’[TL” < 00 = QL ’X(@jw) _ XK(@Jw)| dw ——— 0
TS K—oco
Example: x[n| = sn0.50mn
mn
1 K=5 1 K=20 1 K=50
0.8 0.8 0.8
3; 0.6 3: 0.6 3: 0.6
£ 04 & 0.4 & 0.4
0.2 0.2 0.2
0 0 0
0% 01 02z 03 04 05 0% 01 02z 03 024 05 0% 01 02z 03 02 05
w/21t  (rad/sample) w/21t  (rad/sample) w/21t  (rad/sample)

Gibbs phenomenon:
Converges at each w as K — oo but peak error does not get smaller.
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[IDTFT Convergence Proofs]

(1) Strong Convergence: [these proofs are not examinable]
We are given that 3 ™ |z[n]| < oo = Ve >0, INsuchthat >, -y |z[n]| <e
For K > N, sup,, }X(ej“’) — XK(ejw)‘ = sup,, )Z|n|>K x[n]e‘jw”‘

<sup,, (Spns i [2lnle 790 ) = 5 s i l2ln]] < e

(2) Weak Convergence:

We are given that 3°°° |z[n]|® < co = Ve > 0, 3 N such that 2 in|>N z[n]|? < e

< , .
Define yl&l[n] = 0 n| < K so that its DTFT is, YIEl(e/w) = 37 ylKl[p]e—iwn
We see that X (e/*) — X (e7¥) = 3°°° _ x[n]e= 79" — S5 x[nle—Iwn

From Parseval’'s theorem, > °° |y[K] [n]}Q — % fif |y[K] ejw)}Q dew
— 27r — }X(ejw) — XK(€JW)| dw

Hence for K > N, 27T 7T’X(e*?“’)—XK(eJW)} dw =Y " }y [nH :Z|n|>N|x[n]|2 < €

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 — note 1 of slide 3
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MATLAB routines

DTFT: X(e%) =537

' x[n]emIwm
e DTFT is periodic in w: X (el@+2m™)) = X (/%) for integer m.

e DTFT is the z-Transform evaluated at the point e/“:

X(z) = Y, cln]"
DTFT converges iff the ROC includes |z]| = 1.

e DTFT is the same as the CTFT of a signal comprising impulses at
the sample times (Dirac § functions) of appropriate heights:

z5(t) = > x[n|o(t — nT)=z(t) x Y. 0(t —nT)

Equivalent to multiplying a continuous z(¢) by an impulse train.

Proof: X (e?¥) =Y x[n]e 7w

o

ZZO__OO zn] [ 6(t— nT)e 99T dt
f S xn)d(t —nT)e iwrdt
= f eI gt
(i) OK if D7 \az[nn <oo. (i) use w = QT
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MATLAB routines

DFT: X[k] = év_l xn)e 72T R
DTFT: X(e/¥) =Y x[nle 7v"

o

Case 1: z[n] =0 forn ¢ |0, N — 1]

DFT is the same as DTFT at wy = %Tk

: _ __ 9 N—1
The {wy } are uniformly spaced from w = 0 to w = 27 =%~

DFT is the z-Transform evaluated at N equally spaced points
around the unit circle beginning at z = 1.

Case 2: x|n| is periodic with period N

DFT equals the normalized DTFT
X[k] = th_>OO % X XK(ej“k)

where Xg(e79) = 28 z[n]e=iwn
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[Proof of Case 2]

We want to show that if x[n] = z[n + N] (i.e. xz[n] is periodic with period N) then
lim g o0 507 X XK (e99%) £ limp 00 s X D1 g w[n]e 996" = XT[k]

where wy, = 2Zk. We assume that z[n] is bounded with |z[n]| < B.

We first note that the summand is periodic:

x[n + N]e‘jwk(”+N) = x[n]e‘jwkne_jk%]v = x[n]e‘jwk”e_ﬂﬁk = x[n]e‘jwk”.

We now define M and R so that 2K +1 = MN + R where 0 < R < N (i.e. MN is the largest
multiple of N that is < 2K + 1). We can now write

N K —j N K—R —; N K _j
SRTT X 2k Tne IR = g X Qg wn]e IR + e X 2k gy @nle 70"

The first sum contains M N consecutive terms of a periodic summand and so equals M times the sum

over one period. The second sum contains R bounded terms and so its magnitude is < RB < NB.

N % . -
So m X Z_KI’[?’L]G JWET — MN—|—R X Z [ ]6 kan"‘P: 1+LLN X X[k?] +P
N NB
Where|P|<MN+RXNB§MN_i_OXNB:w
As M — oo, — 1 so the whole expression tends to X[k].

N
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Symmetries

& L Billeenr If z[n] has a special property then X (e7“)and X [k] will have correspondin

Fourier Transforms y

PTG TG properties as shown in the table (and vice versa):

Convergence of

DTFT

DTFT Properties

EFT Properties One domain Other domain
Symmetries

Parsevlal's Theorem Discrete Periodic

Convolution - -

Sampling Process Sym metric Sym metric

i:::;ﬂ:fpp;ng Antisymmetric Antisymmetric

Uncertainty principle Real Conjugate Symmetric

Summary - . . .

MATLAB routines Imaginary Conjugate Antisymmetric

Real + Symmetric Real + Symmetric

Real + Antisymmetric | Imaginary + Antisymmetric

Symmetric: z|n| = z[-n]
X(e?v) = X(e™7v)

X[k] = X[(—k) | = X[N — k] for k > 0

mod N
Conjugate Symmetric: z[n| = z*[—n]
Conjugate Antisymmetric: x[n] = —z*[—n]

DSP and Digital Filters (2017-10159) Fourier Transforms: 2 -6 / 14
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MATLAB routines

Fourier transforms preserve “energy”

CTFT  [lz@®)f dt = 5= [IX(GQ)" dQ
DTFT 3% [a[n]® = & [™ [ X(e7%)]” du
DFT o lalllt =& 20 T IXK])

More generally, they actually preserve complex inner products:

S anlytn] = L 00 T X RV [A]

Unitary matrix viewpoint for DFT:

If we regard x and X as vectors, then X = Fx where F' is
a symmetric matrix defined by fri1.,401 = e 7?7~ .

The inverse DFT matrix is F~1 = +F#
equivalently, G = \/LNF is a unitary matrix with GG =1.

DSP and Digital Filters (2017-10159)
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Convolution
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Summary
MATLAB routines

DTFT: Convolution — Product

z[n] = g[n] x hin]=

2 oo 9lkIRIn — K]

= X (&%) = G(e?¥)H (e¥)

DFT: Circular convolution— Product

z[n]

= g|n] ®n h[n|=
= X |[k]

> im0 9IKIRI(n = k) mody]

= G[k]HI]

DTFT: Product— Circular Convolution =27
y[n] = g[n]h[n]

S Y (%) = L G(e) @, H(e) =

yln] = gln|h|n]

= Y|k| =

% ffﬁ G(ejQ)H(ej(w_e))dQ

DFT: Product— Circular Convolution =N

LGk @y HIK)

gln] : ru hin] : Ll gln| x hn] : l [ ‘ | ] gln| ®3 h(n|

DSP and Digital Filters (2017-10159)
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Sampling Process

Time Time Frequency
Arals W ]
il
Low Pass « IR W CTFT
Filter |l
Sample X T s TT‘rl "TT?J»L*TTH \f DT_F>T ‘ [
1.0 17,1,
Window X cososett M Mt00cc0es 3 . ??QLNTQN DTFT /U\M
DFT . ?TWTT@N DFT ﬂ’T Th

()— Filter —< A/D Converter Window DFT —
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Zero padding means added extra zeros onto the end of z[n| before
performing the DFT.

Time x|n] Frequency | X [k]|
Windowed
Signal Ill
With zero-
padding IE

e Zero-padding causes the DFT to evaluate the DTFT at more values
of wy. Denser frequency samples.

e Width of the peaks remains constant: determined by the length and
shape of the window.

e Smoother graph but increased frequency resolution is an illusion.

DSP and Digital
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Phase Unwrapping

2: Three Different Phase of a DTFT is only defined to within an integer multiple of 2.

Fourier Transforms

Fourier Transforms

Convergence of
DTFT

DTFT Properties

DFT Properties T TT
Symmetries 0'3? L) Q

&
Parseval's Theorem LJ}

Convolution

Sampling Process -
Zero-Padding w (rad/sample)

> Phase Unwrappin
> Unwrapeivg o[} X[K]
Uncertainty principle

Summary

MATLAB routines

0 L
é-zo -
; ; ; 40 ; ; ;
2 0 2 2 0 2
w (rad/sample) w (rad/sample)
/X [K] /X k] unwrapped

Phase unwrapping adds multiples of 27 onto each /X [k] to make the
phase as continuous as possible.
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Uncertainty principle

2: Three Different
Fourier Transforms

N

Fourier Transforms

Letopar) (fwﬂX(jw)Pdw)% o1
TTe (@) d TIXGoPd ) =2

The first term measures the “width” of z(¢) around ¢t = 0.

CTFT uncertainty principle: (

Convergence of
DTFT

DTFT Properties

Sy It is like o if |z(t)|” was a zero-mean probability distribution.
Parseval’s Theorem The second term is similarly the “width” of X (jw) in frequency.

Convolution

A signal cannot be concentrated in both time and frequency.

Sampling Process
Zero-Padding

Phase Unwrapping Proof Outline:

> principle Assume f\:r; )P dt =1= [|X(jw)|? dw =27 [Parseval]
Summar

MATLAyB routines Set /U( ) _:> V(]CU) — ]UJX(]CU) [by partS]

Now ftxfi—fdt— lth(t)‘t:_oo — [222dt =0— 5 [by parts]

— | [ tedzdt|” < ([ t2a2dt) ( [ dt) [Schwartz]

(f 2a2dt) ([ [o(t)*dt)= (f 12a2dt) (& [ [V (o) dw)
= ([ #2a2dt) (5 [w? X (je)| dov)

No exact equivalent for DTFT/DFT but a similar effect is true
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[Uncertainty Principle Proof Steps]

(1) Suppose v(t) = %%. Then integrating the CTFT definition by parts w.r.t. t gives
de(t) _— .
X(jQ) = ffooo x(t)e it = [ Lo(t)e™ Jﬂt] + A [0, M e=i0tat = 0 + LV (jQ)
(2) Since % (lx2) xi—f, we can apply integration by parts to get
&) 27 ©© oo dt 2 _ 1 oo 2 _ 1 _ 1
[ taz—dt [t x i | DA S ta?dt=—1 [ 2?dt=—-2 x1=—1
It follows that ’f trdz dt’ —%)2 = % which we will use below.

(3) The Cauchy-Schwarz inequality is that in a complex inner product space

lu-v|? < (u-u)(v-v). For the inner-product space of real-valued square-integrable functions
2

this becomes | [~ u(t)v(t)dt‘ < [ uF(t)de x [T

and v(t) dw(t) to get

| et < ( (%) de) = (7 2a) (0?1
(4) From Parseval’s theorem for the CTFT, [v2(¢)dt =

= [ 1V( jQ|2dQ From step (1), we can
substitute V (jQ2) = jQX (j) to obtain [v?(t)dt = 5= = [O? X (5Q? dQ. Making this substitution
in (3) gives

T < (ft2a2dt) (f02(t)dt) = ([ t3x2dt) (% [ w? |X(jQ|2dQ)

v2(t)dt. We apply this with u(t) = tz(t)
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Summary

2: Three Different
Fourier Transforms

Fourier Transforms

Convergence of
DTFT

DTFT Properties
DFT Properties
Symmetries
Parseval’'s Theorem
Convolution
Sampling Process
Zero-Padding
Phase Unwrapping
Uncertainty principle
> Summary
MATLAB routines

[]

O o 0O o o

Three types: CTFT, DTFT, DFT

— DTFT = CTFT of continuous signal x impulse train
— DFT = DTFT of periodic or finite support signal

> DFT is a scaled unitary transform

DTFT: Convolution — Product; Product — Circular Convolution
DFT: Product <> Circular Convolution

DFT: Zero Padding — Denser freq sampling but same resolution
Phase is only defined to within a multiple of 2.

Whenever you integrate over frequency you need a scale factor

— % for CTFT and DTFT or % for DFT
— e.g. Inverse transform, Parseval, frequency domain convolution

For further details see Mitra: 3 & 5.
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MATLAB routines

2: Three Different
Fourier Transforms

Fourier Transforms

Convergence of
DTFT

DTFT Properties
DFT Properties
Symmetries
Parseval’'s Theorem
Convolution
Sampling Process
Zero-Padding

Phase Unwrapping
Uncertainty principle

Summary
> MATLAB routines

fft, ifft DFT with optional zero-padding
fftshift swap the two halves of a vector
conv convolution or polynomial multiplication (not
circular)
z[n|®y[n| real (ifft(fft(x).*fft(y)))
unwrap remove 27 jumps from phase spectrum

DSP and Digital

Filters (2017-10159)
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3: Discrete Cosine
> Transform

DFT Problems

DCT +
Basis Functions

DCT of sine wave
DCT Properties
Energy Conservation
Energy Compaction
Frame-based coding
Lapped Transform +

MDCT (Modified
DCT)

MDCT Basis
Elements

Summary
MATLAB routines

3: Discrete Cosine Transform

DSP and Digital Filters (2017-10120)
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DFT Problems

3: Discrete Cosine
Transform

> DFT Problems
DCT +
Basis Functions

DCT of sine wave
DCT Properties
Energy Conservation
Energy Compaction
Frame-based coding
Lapped Transform +

MDCT (Modified
DCT)

MDCT Basis
Elements

Summary
MATLAB routines

For processing 1-D or 2-D signals (especially coding), a common method is
to divide the signal into “frames” and then apply an invertible transform to
each frame that compresses the information into few coefficients.

The DFT has some problems when used for this purpose:

e N real z[n] <+ N complex X|k| : 2 real, % — 1 conjugate pairs
W }; i I
$ol

— 1
e DFT  the DTFT of a periodic signal formed by replicating z[n| .
= Spurious frequency components from boundary discontinuity.

—-ilie

Ne20 (Ll l& ¢ll —

f=0.08

——o
—o

° —

Imag Real

TT [1253¢0er¢0t1] I

The Discrete Cosine Transform (DCT) overcomes these problems.
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DCT +

Y aeforeye Cosine To form the Discrete Cosine Transform (DCT), replicate z[0 : N — 1] but in
FT Problems s reverse order and insert a zero between each pair of samples:
Basis Functions ? X[n] N=6 oy[r] I

DCT of sine wave
DCT Properties
Energy Conservation ?

Energy Compaction
Frame-based coding T

Lapped Transform + 0 5 o

0 12 23
S (et Take the DFT of length 4N real, symmetric, odd-sample-only sequence.
MDCT Basis Result is real, symmetric and anti-periodic: only need first N values

Elements
Summary

MATLAB routines YIK ? X[k

12 =2

T e ? 9

0 © 5

Forward DCT: X¢ k] = Z,ﬁ:ol x[n] cos 27T(24"EL1)1€ fork=0:N—1

Inverse DCT: z[n] = +X[0] + 2 N—1 X [k] cos 2m(2n41)k

N k=1 AN

1
N
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DCT formula derivation

This proof is not examinable.

We want to show that X¢[k| = 27];7:—01 x[n] cos W is equivalent to replicating z[n] in reverse
order, inserting alternate zeros, taking DFT, dividing by 2 and keeping first NV values:

0 r even
Replicating + zero insertion gives y[r] = ¢ @ [7"51] rodd,1 <r < 2N —1
x[‘wgﬁ] rodd, 2N +1<r < 4N — 1
n _;2mb
Yrlk] = S Lyl Wiy £ 22N by + qw O where Wb = e~/ %
(ii) 2n+1)k AN —2m—1)k
N yl2n + WRTYR 4 SN L yAN — 2m — Y A Y
(iii) 2n+1)k —(2m+1)k
2 SN gl w 2n DR SN i 2D
=23 N 1an ]COSW:MC[H (i) odd r only: r = 2n + 1
(ii) reverse order forn > N: m=2N —1—n
(iii) substitute y definition & WiNF = ¢ 727 4N =1
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IDCT formula derivation

This proof is not examinable.

We want to show that z[n] = + X[0] + % z{j;ll X[k] co
Since Y [k] = 2X k] we can write y[r] =
So we can write,

x[n] = y[2n—|— 1] = 2N ZiN 1 X[k ]W4—]\§2n—|—1)k

—(2n+1)k
: NzQN 1X[]W4]\§ +)_L

2N =0

2N —1 —(2n+1)k
L SN X kWY

(iii) —(2n
= X0+ & A5 XKW

+WX[ ]W4N(2”+1>N + LN XN — W

N 27r 2n+1)k
0] + Nzkzllx[k] (473\1 )

Notes: (i) k =1+ 2N for k > 2N and X[k +2N]| =

g 2m(2n+ 1k
AN

__ s+ 27b
where W2 = ¢e¢7 77

2N —1 X[Z]W (2n—|—1)(l—|—2N)

—(2n+1)(2N—r)
AN

1 —X[’I“] WiJQ\]n—I—l)r—l—QN

— X[k

(ii) (2n—|—1)(l—|—2N) (22;1)1 +n_|_% and ei27(nt+3) — 1
(iii) k-2N—rfor/€>N
(iv) X[N] =0 and X[2N —r] = —X]r|
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Basis Functions

3: Discrete Cosine . . N-—-1 ; kn
Transform DFT basis functions: z[n] = & Y ,_, X[k]e/*™~
DFT Problems

DCT +

> Basis Functions 0: | 3: W 2]
DCT of sine wave a - w

DCT Properties

Energy Conservation

Energy Compaction 1: 5/9’9’0
Frame-based coding . W

Lapped Transform +
MDCT (Modified

DCT)
MDCT Basis
Elements
Summary
routines I I . vl 2ulk: L
MATLAB rout DCT basis functions: x[n| = %X[O] + % k=1 X k] cos 77(47;\;r )

e — P
PP e
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DCT of sine wave

3: Discrete Cosine N —
Transform

DFT Problems
DCT + f

Basis Functions

DCT Properties

> DCT of sine wave TT
Energy Conservation T [n] T‘P

DCT: Xcolk] =30 o =

2|3

Energy Compaction N=20

Frame-based coding f=0.10
Lapped Transform +
MDCT (Modified ]

DCT)
| X k]|

MDCT Basis
Elements

Summary

——0o0
o—
o—

MATLAB routines

Xolk) T [

S 27 (2n+1)k

F# %

N=20
f=0.08

—-ille
Il

[

TTT????????TTT [

TTQOOAI‘\

1

T??OO nnnnnn

DFT: Real—Complex; Freq range |0, 1]; Poorly localized

unless f = N

Xplk]|occk™  for Nf < k< ¥

DCT: Real—Real; Freq range [0,0.5]; Well localized Vf;

| Xclk]| x k72 for2Nf <k < N

DSP and Digital Filters (2017-10120)
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DCT Properties

3: Discrete Cosine - ] . N—1 27r(2n+1)k
ransrorm D f t . X k‘ —

Toansform efinition: X[k] =) ., x[n]cos =%

o T e Linear: ax[n] + By[n] — aX[k] + BY [K]

DCT of sine wave

> DCT Properties e “Convolution+—Multiplication” property of DFT does not hold ®
Energy Conservation

B S e Symmetric: X|—k] = X|[k] since cos —ak = cos +ak

rame-based coding

Lapped Transform +

MDCT (Modified e Anti-periodic: X[k + 2N] = —X k| because:
DO Basis o 2m(2n+1)(k+2N)=272n+ 1)k +87rNn+4N~r
i o cos(f+m) = —cosb

MATLAB routines

— X[N] = 0 since X[N] = X[-N] = —X[-N + 2N]
e Periodic: X[k +4N] = —-X[k+ 2N]| = XK]
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Energy Conservation

3: Discrete Cosine
Transform

DFT Problems

DCT +

Basis Functions
DCT of sine wave
DCT Properties

Energy
Conservation

Energy Compaction
Frame-based coding
Lapped Transform +

MDCT (Modified
DCT)

MDCT Basis
Elements

Summary
MATLAB routines

DCT X[k‘] ZN—l [n] COS 27T(27”L+1)k

nOa7

4N
N—-1 7 (2n k
IDCT: z[n] = £ X[0] + 2 S0 " X [k] cos 2X2ndL)
P xiri N=6 y YIK ? X
T ]l et = T
0 TleTT 23 ]

Energy: E=3""J |z[n]|* = L |X[0]" + 2 "N |1 X [n] [
In diagram above: £ — 2EF— 8NE—~ 0.5NE

Orthogonal DCT (preserves energy: > \x[n]|2 =) |X[n]|2)

1 N-—1
1 $oN- k=0
ODCT: X[k] = N 2n=o 21

< ZN_Ol x[n] cos 2W(247]L\J,r1)k k+#0

I0DCT: an] = /% X[0] + /% S35, X [K] cos 2rEdE

Note: MATLAB dct() calculates the ODCT
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Energy Compaction

S If consecutive x|n]| are positively correlated, DCT concentrates energy in a
27 Dl few X [k] and decorrelates them.
DCT +
Basis Functions
DCT of sine wave Example: Markov Process: x[n] = px[n — 1] + /1 — p?uln]
s o ion where u[n] is i.i.d. unit Gaussian.
Energy Then (2*[n]) =1 and (z[n]z[n — 1]) = p.
Frame-based coding Covariance of vector x is S; ; = (xxf). = = pli=il.
Lapped Transform + ’ 1,]
MDCT (Modified . .
DCT) Suppose ODCT of x is Cx and DFT is Fx.
MDCT Basis . . H ~H H L H
Elements Covariance of Cx is <Cxx C > = CSC" (similarly FSF*)
ummary
MATLAB routines Diagonal elements give mean coefficient energy.

e Used in MPEG and JPEG (superseded by
JPEG2000 using wavelets)

e Used in speech recognition to decorrelate

| p=09 | spectral coeficients: DCT of log spectrum

N =32

Cumulative energy (%)
~
o

5 10 15 20 25 30
No of coefficients

Energy compaction good for coding (low-valued coefficients can be set to 0)
Decorrelation good for coding and for probability modelling
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Frame-based coding

5 BTG S e Divide continuous signal |

DFT Problems N into frames L V\/\/\N\/\/\ N\/V
Basis Functions X{K : : :k=30/220
DCT :f sinte wave 1 d Apply DCT to eaCh frame F[] l

DCT Properties :

Energy Conservation e Encode DCT o ‘/\/\/\/\/\/\/\

Energy Compaction y[n]-x[n] - - /m\’:/\/‘m\':
> f;j::‘,;"’a“d o e.g. keep only 30 X [k] ’ T

Lapped Transform +

|\Dn<[:>1c_:)'r (Modified e Apply IDCT — y[n]

MDCT Basis

Elemente Problem: Coding may create discontinuities at frame boundaries
ummary .

MATLAB routines €.g. JPEG, MPEG use 8 x 8 plxel blocks

8.3 kB (PNG) 1.6 kB (JPEG) 0.5 kB (JPEG)
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Lapped Transform +
= s (e Modified Discrete Cosine Transform (MDCT): overlapping frames 2N long
e iV -1
DCT ofenevavs " Xol0: N - 1]

S ot = %l[0:2N —1]

Frame-based coding

Lapped Transform ZC[N . 3N — 1]

>
I\Dng-i'l;':)-r (Modified MDET X1[N : 2N —1]
M N 3N — 1)
:ﬂu:Tn:?Ar),B routines ZC[QN . 4N — 1]
VDST X,[2N 1 3N — 1]
MEET o[2N D AN — 1]

y[n| = yoln| + y1[n]| + ya[n|

§y[n]

Vi = error

0 ‘N ION

MDCT: 2N — N coefficients, IMDCT: N — 2N samples
Add y;[n| together to get y[n]. Only two non-zero terms far any n.
Errors cancel exactly: Time-domain alias cancellation (TDAC)

DSP and Digital Filters (2017-10120)
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MDCT (Modified DCT)

MDCT: X[k] = S22V 2[n] cos 22nt 1t H) k1) 0<k<N
IMDCT: y[n] = & S0 X[k] cos 2XEntIEN)2h41) 0<n<2N

If x, X and y are column vectors, then X = Mx and y = %MTX = %MTMX

where M is an N x 2N matrix with my_,, = cos 27 (2n+1+N)(2k+1)

SN
Quasi-Orthogonality: The 2N x 2Nmatrix, +MTM, is almost the identity:
1 ... 0 ] 0 ... 1 ]
I1-J 0 :
i T — l — . S . — . . .
MM 2[ 0 I_|_J]W'th1 : o0 d L :
0 - 1 1 -0

When two consective y frames are overlapped by N samples, the second half of the first
frame has thus been multiplied by 3 (I + J) and the first half of the second frame by

% (I —J). When these y frames are added together, the corresponding x samples have
been multiplied by % I+J)+ % (I —J) =1 giving perfect reconstruction.

Normally the 2/N-long x and y frames are windowed before the MDCT and again after the
IMDCT to avoid any discontinuities; if the window is symmetric and satisfies
w?[i] + w?[i + N] = 2 the perfect reconstruction property is still true.
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[Deriving the value of +M*'M]

This proof is not examinable.

If we define A = %MTM with myg,, = cos 27r(2n—|—1é|—]\]]\7)(2k:—|—1) , we want to show that
_ 1| I+Jd 0 : : o B
A = 3 0 -3 | To avoid fractions, we write a = £ so that mg, =

cos(a(2n+1+ N)(2k +1)). Now we can say

| N-1
Qrn = - MErMkn
N k=0
| N-1
= N cos (a(2r+ 14+ N)(2k+ 1)) cos(a(2n+ 1+ N)(2k+ 1))
k=0
| N1 | N1
= v 2 cos (2a(r —n)(2k + 1)) + kz:% cos (2a(r +n+ 1+ N)(2k + 1))
where, in the last line, we used the identity cosf cos¢ = = cos (0 —od)+ 5 cos (0 + o).

We now convert these terms to complex exponentials to sum them as geometric progressions.
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(o5 Sy cos (2a(r — n)(2k + 1))]

Converting to a the real part () of geometric progression (with o = 82—]7\77):
N-1 N-1
1 Ga(r—m@k+1) = R ( Y exp(i2a(r—n)(2k+ 1)
— cos 2a(r —n = — ex a(r—mn
2N oN "\ &= TP

1 N—-1
= <exp (j2a(r —n)) 3 exp (jdalr — n>k>>

k=0
1 — exp (jda(r — n)N))
1 —exp (jda(r —n))

[\

= LN% (exp (j2a(r — n))

1 1 —exp (j4a(r —n)N)
= vt (eXp(—ﬂOé(?“—n)) — exp (jQOé(?“—n)))
1 1 —exp (j4a(r — n)N)
- 2N§R ( —2jsin (2a(r — n)) )
1 sin(4a(r —n)N) 1 sin((r —n)m)

AN sin(2a(r —n)) 4N sin (57rm)

The numerator is sine of a multiple of m and is therefore 0. Therefore the whole sum is zero unless

the denominator is zero or, equivalently, (r — n) is a multiple of 2N. Since 0 < 7, n < 2N, this only

1 N-—1 1
3N 2ek=0 080 =

happens when » = n in which case the sum becomes 5 -
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[k Sy cos (2a(r +n+ 14+ N)(2k + 1))]

1 N—-1

5N 2p—o €08 (2a(r +n + 1+ N)(2k + 1)) is the same as before with r —n replaced by r+n+1+ N.

We can therefore write

N—1
1 1 si 1+ N
— S cosa(r+n+14+N)(2k+1)) = sin((r+n+1+N)m)
2N 4N gin (r+n+1+N )
k=0 sSN T

The numerator is again the sine of a multiple of 7w and is therefore 0. Therefore the whole sum is zero
unless (r +n + 1+ N) is a multiple of 2N. This only happens when r +n = N — 1 or 3N — 1 since
0 <r,n<2N. The constraint r4+n = N — 1 corresponds to the anti-diagonal of the top left quadrant
of the A matrix, while »+n = 3N — 1 corresponds to the anti-diagonal of the bottom right quadrant.

Writing 7 +n + 1 + N = x, we can use L'Hépital’s rule to evaluate 4%\] Sisri?(iwi) at ¢ = {2N, 4N}.
2N

Differentiating numerator and denominator gives %% which comes to {—%, %} respectively at
2N T

x ={2N, 4N}.
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MDCT Basis Elements

Teansform MDCT: X [k] = S22V 2[n] cos 2H2nt 1t H) k1) 0<k<N
DFT Problems

DCT + N—-1 27 (2 1+N)(2k+1

Basis Ffunctions IMDCT y[n] — % k=0 X[k] COS 7T( nt ;_N )( + ) O S n < 2N
DCT of sine wave

DCT Properties In vector notation: X = Mx and y = + MTX = + M”TMx

Energy Conservation
Energy Compaction

Frame-based coding The rows Of M form the 0 M
Lapped Transform 4 MDCT basis elements.

MDCT (Modified
DCT)

MDCT Basis
> Elements

Summary
MATLAB routines

Example (N = 4):

M =

The basis frequencies

0.56
—0.98
0.20
0.83

020 —0.20 —0.56 —0.83 —0.98 —0.98 —0.83 |
—0.56  0.56 0.98 0.20 -0.83 -0.83 0.20
0.83 —-0.83 —-0.20 098 —-0.56 —-0.56 0.98
—-098 098 —-0.83 056 —-0.20 -—-0.20 0.56

are {0.5, 1.5, 2.5, 3.5} times the fundamental.
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Summary

5 BTG S DCT: Discrete Cosine Transform
DFT Problems N e Equivalent to a DFT of time-shifted double-length | x % ]
Basis Functions e Often scaled to make an orthogonal transform (ODCT)
DT pone wave e Better than DFT for energy compaction and decorrelation ©
Energy Conservation o Energy Compaction: Most energy is in only a few coefficients
il i o Decorrelation: The coefficients are uncorrelated with each other
::;2;" (T“;i':l::;“ + e Nice convolution property of DFT is lost ®
Enlgfisasis MDCT: Modified Discrete Cosine Transform
B> Grrreery e Llapped transform: 2N — N — 2N
MATLAB routines e Aliasing errors cancel out when overlapping output frames are added
e Similar to DCT for energy compaction and decorrelation ©
e Overlapping windowed frames can avoid edge discontinuities ©
e Used in audio coding: MP3, WMA, AC-3, AAC, Vorbis, ATRAC

For further details see Mitra: 5.
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MATLAB routines

3: Discrete Cosine
Transform

DFT Problems

DCT +

Basis Functions

DCT of sine wave
DCT Properties
Energy Conservation
Energy Compaction
Frame-based coding
Lapped Transform +

MDCT (Modified
DCT)

MDCT Basis
Elements

Summary
> MATLAB routines

dct, idct

ODCT with optional zero-padding
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4: Linear Time
> Invariant Systems

LTI Systems

Convolution
Properties

BIBO Stability
Frequency Response
Causality +

Convolution
Complexity

Circular Convolution

f::‘:%f::?::i““‘“ 4: Linear Time Invariant Systems
Overlap A

Over|az Save

Summary

MATLAB routines
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LTI Systems

4: Linear Time

Invariant Systems x[n] % y[n]=%x[}’l])

> LTI Systems

Convolution
Properties

BIBO Stability

Fredusncy Response Linear Time-invariant (LTI) systems have two properties:
Complonity Linear: J7 (auln] 4+ Bv|n]) = ad (uln]) + B (v[n])
S Time Invariant: y|n| = 7 (z[n]) = yln —r] = 7 (z[n — r]) Vr
convolution
Smp L The behaviour of an LTI system is completely defined by its impulse
Summary response: hin] = S (6|n])
MATLAB routines
Proof:
We can always write z[n] =Y "~ z[r]d[n — ]
Hence A (xn]) = (32 x[r]é[n —r])

=2 e oo &[r] A (0[n — 1))
= e tlr]h[n — 7]
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Convolution Properties

e e s Convolution: z[n] xv[n] = > 7" x[rjvjn — 7]

LTI Systems

S go:vols_tion Convolution obeys normal arithmetic rules for multiplication:
roperties

Efq(z::b::::ponse Commutative: z[n] * v[n] = v[n] * z[n]

Causali i

Convol|:)t,.ion " Proof: > x[r]v[n —r] 0 x| — plv[p]

s G (i) substitute p=n —r

Frequency-domain

convelution Associative: xz[n] x (v[n| x w[n]) = (x[n] x v[n]) * wn

Overlap Add

Overlap Save = x[n] b S ’U[n] b S w[n] |S Unambiguous

Summary .

MATLAB routines Proof: . z[n —rlvlr — swls] U > p.q TPIV|g — plw|n — g

(i) substitute p=n—r, ¢g=n—s

Distributive over +:
z|n] x (av[n] + pw|n]) = (z[n] x awln]) + (z[n] * fw[n])
Proof: > x[n —r|(av|r| + fw[r]) =
a) yzln—ror]+ 8., xn —rjwlr]
ldentity: x[n] * d[n] = x[n] |
Proof: > d[r|zin — 7] U x[n] (i) all terms zero except r = 0.
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BIBO Stability

e e s BIBO Stability: Bounded Input, z|n] = Bounded Output, y[n]
LTI Systems
gonvc:;u_tion The following are equivalent:
> BIBO Stability (1) An LTI system is BIBO stable
e W (2) h[n] is absolutely summable, i.e. > |h[n]| < oo
Convolution 3) H(z) region of absolute convergence includes |z| = 1.
Complexity g g
Freancrdoman . Proof (1) = (2):
veria . 1 h - > O
Overiop Save Define x[n] = )2
Summary _]. h[_n] < O
MATLAB routines then y[O] — Zx[o L n]h[n] — Z |h[n]|

But |z|n]| < 1Vn so BIBO = y[0] = > |h|n]| < occ.

Proof (2) = (1):
Suppose > |h[n]| = 5 < oo and |z[n]| < B is bounded.

Then [y[n]| = [3272 . @ln — rlh[r]]

<D @[ = ][ R[r]]
< B2 L |h[r]|< BS < o0
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Frequency Response

4: Linear Time
Invariant Systems

LTI Systems

Convolution

Properties

BIBO Stability
Frequency
Response

Causality

Convolution
Complexity

Circular Convolution

Frequency-domain
convolution

Overlap Add
Overlap Save
Summary
MATLAB routines

For a BIBO stable system Y (e/%) = X (e/¥)H (e/%)

where H(e/%)is the DTFT of h[n] i.e. H(z) evaluated at z = /¥,

Example: hjn]=]1 1 1 |

H(e?%) =1+ 7% 4 e 72%
=e 7% (14 2cosw)

|H(e’)| = |1+ 2cosw)

W) 1—sgn(142cosw)
LH(eY) = —w + m—225

Sign change in (1 + 2cosw) at w = 2.1 gives
(a) gradient discontinuity in |H (e/%)|
(b) an abrupt phase change of +.

Group delay is —== ZH (e%) : gives delay of the
modulation envelope at each w.

Normally varies with w but for a symmetric filter it
is constant: in this case +1 samples.
Discontinuities of &k do not affect group delay.

]

[HI (dB)
o

0 H (rad)
/

DSP and Digital Filters (2017-10159)
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Causality 4

o e Causal System: cannot see into the future
LTI Systems i.e. output at time n depends only on inputs up to time n.

Convolution
Properties

BIBO Stability Formal definition:

B o S If v[n| = x[n] for n < ng then 7 (v|n]) = 7 (x[n]) for n < nyg.
g;mt’:i'&n _ The following are equivalent:

(F::Z,"uli:.;‘_’ﬁ;':::,'.°" (1) An LTI system is causal

;":;‘.’j,‘:,‘;:d (2) h[n] is causal & hln] =0 forn <0

Overlap Save (3) H(z) converges for z = oo

ummary

MATLAB routines Any right-sided sequence can be made causal by adding a delay.

All the systems we will deal with are causal.
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Conditions on h|n| and H(z)

Summary of conditions on h[n] for LTI systems:

Causal <~ hin] =0 forn <0
BIBO Stable < > __ |h[n]| < oo

Summary of conditions on H(z) for LTI systems:

Causal <~ H(o0) converges
BIBO Stable <  H(z) converges for |z| =1
Passive = |H(z)| < 1for|z] =1
Lossless or Allpass < |H(z)| =1 for |z] =1
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Convolution Complexity

o e y|n| = x[n] * h|n]: convolve z[0 : N — 1] with A[0 : M — 1]
LTI Systems
Convo|u_tion X T T h
;:;P;r;-::b“ity ? T a o * Lﬁ — Q yfl? ....... Q v[fl?
requency Response . %
e W Convolution sum: T T
. M-—-1

Convolution [n] — Z h[r]x[n — r,ﬂ] ? Q

Complexity Y r=0 © o
Circular Convolution . . l °
Frequency-domain y[n] is only non-zero in the range T
convolution
Overlap Add OSTLSM—I_N_2 (PJ)TG)J) J)Q
Overlap Save l
o S Thus y[n] has only
MATLAB routines M + N — 1 non-zero values

Algebraically: ]\N4= ?VM =3
+N—-1=10

zn—r]#0=0<n—-r<N-1
=n+1-—-"N<r<n

min(M—1,n
e yfn] = S htlafn

We must multiply each h[n| by each xz|[n| and add them to a total
= total arithmetic complexity (x or + operations) ~ 2M N
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Circular Convolution

o Linear Time Yo |n] = x|n] ®x h[n|: circ convolve z[0 : N — 1] with A[0 : M — 1]

Invariant Systems

LTI Systems

Convolution X T T h
Properties ¢ ? o @
BIBO Stability ° 5 ° N

F R .
comalite. o, Convolution sum:

Convolution

Complexity M—1
Circular y@N [n] — ZTZO h‘[r]x[(n o T)mod N]

> Convolution
Frequency-domain

convolution Y® N [n] haS peI’IOd N
Overlap Add = Yo |7 has N distinct values

Overlap Save

Summary
MATLAB routines

%

N=8 M=3

e Only the first M — 1 values are affected by the circular repetition:

Yon|n] =y[n]for M —1<n<N-1

e If we append M — 1 zeros (or more) onto z[n|, then the circular

repetition has no effect at all and:

Yoninm 1M =yn] for 0 <n <N+ M -2

Circular convolution is a necessary evil in exchange for using the DFT

DSP and Digital Filters (2017-10159)
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Frequency-domain convolution

4: Linear Time ldea: Use DFT to perform circular convolution - less computation

Invariant Systems

LTI Systems

Convolution (1) Choose L > M + N — 1 (normally round up to a power of 2)

Properties
.Efqlizayb::::ponse (2) Zero pad z[n] and h[n] to give sequences of length L: Z[n] and h[n]
Causality + ~ ~ ~

Convolution (3) Use DFT: g[n] = F~H(X[k|H[k]) = Z[n] ®, h[n]

Complexity

ey doman  (4) yln] = gln] for 0 <n < M+ N —2.

convolution

g::::: add Arithmetic Complexity:
Summary DFT or IDFT take 4L log, L operations if L is a power of 2

MATLAB routines

(or 16L log, L if not).
Total operations: ~ 12Llog, L ~ 12 (M + N)log, (M + N)
Beneficial if both M and N are >~ 70 .

Example: M =103, N = 10%*: o
Direct: 2M N = 2 x 107
with DFT: = 1.8 x 10° © 2l

But: (a) DFT may be very long if N is large o
(b) No outputs until all x[n] has been input. ol
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Overlap Add

Invariant Syssems It N is very large: e i————

I (1) chop z[n] into £ chunks of length K S

Properties (2) convolve each chunk with A[n] A
e (3) add up the results U S
Causality o -« 4KMl ———»
2;:%2’;:&" " Each output chunk is of length K + M — 1 and overlaps the next chunk
ﬁl%“c“u;it%‘;";‘l;:?;°" Operation.s: 7 % X 8 (M + K)log, (M + K)

> Ouerlan Add Computational saving if ~ 100 < M < K < N

o— Example: M = 500, K = 10%, N = 107

MATLAB routines Direct: 2M N = 1010

single DFT: 12 (M + N)logy (M + N) = 2.8 x 10°
overlap-add: % x 8 (M + K)log, (M + K) = 1.1 x 10° ®

Other advantages:

(a) Shorter DFT

(b) Can cope with N =

(c) Can calculate y[0] as soon as z[K — 1] has been read:
algorithmic delay = K — 1 samples
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Overlap Save

o e Alternative method: KM | | |
. : Al T | E—

T Sy (1) chop z[n] into 7 overlapping T

Properties ChunkS Of |ength K —|— M - ]. x[n]@h[n] :____I

IE:qu(zei::?/b::::ponse (2) ®K—|—M—1 each chunk with h[n] y[n] A

ga"sa'litV_ + (3) discard first M — 1 from each chunk «—— K —

onvolution

Complexity (4) concatenate to make y[n]

Circular Convolution

Frequency-domain . . . .

convolution The first M — 1 points of each output chunk are invalid

Overlap Add

Eu:;jr':" save Operations: slightly less than overlap-add because no addition needed to

MATLAB routines create y[n]
Advantages: same as overlap add

Strangely, rather less popular than overlap-add
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Summary

4: Linear Time
Invariant Systems

LTI Systems

Convolution
Properties

BIBO Stability
Frequency Response
Causality +

Convolution
Complexity

Circular Convolution
Frequency-domain
convolution

Overlap Add
Overlap Save
> Summary
MATLAB routines

LTI systems: impulse response, frequency response, group delay

BIBO stable, Causal, Passive, Lossless systems
Convolution and circular convolution properties

Efficient methods for convolution
o single DFT
o overlap-add and overlap-save

For further details see Mitra: 4 & 5.
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MATLAB routines

4: Linear Time
Invariant Systems

LTI Systems

Convolution
Properties

BIBO Stability
Frequency Response
Causality +

Convolution
Complexity

Circular Convolution
Frequency-domain
convolution

Overlap Add

Overlap Save
Summary

> MATLAB routines

fitfilt

Convolution using overlap add

z[n|®@yn]

real (ifft(fit(x). *fft(y)))

DSP and Digital Filters (2017-10159)
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D> 5: Filters

Difference Equations
FIR Filters
FIR Symmetries +

IIR Frequency
Response

Negating z
Cubing z
Scaling z
Low-pass filter
Allpass filters
Group Delay

5: Filters

+++++++

Minimum Phase
Linear Phase Filters

Summary
MATLAB routines
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Difference Equations

X[n],

Hz) |22

5: Filters Most useful LTI systems can be described by

Difference

> Equations a difference equation:
FIR Filters

FIR Symmetries + N

IIR Frequency [ ] Z [ ] [n — ’I“] — Zr:l a[r]y[’n - T]

& Y alrlyln —r] = zr:o blr]an — ] with a[0] = 1

Negating z
Cubing z
Scaling z
Low-pass filter
Allpass filters
Group Delay

+++++++
Q
| |

inimum ase Y — (Z) X
mnear Phapst Filters < (Z) A(Z) (Z)

Summary

MATLAB routines PN Y(ejw) — ig:jng(ejw)

(1) Always causal.

(2) Order of system is max(M, N), the highest r with a[r| # 0 or b[r] # 0.
(3) We assume that a[0] = 1; if not, divide A(z) and B(z) by a|0].

(4) Filter is BIBO stable iff roots of A(z) all lie within the unit circle.

Note negative sign in first equation.
Authors in some SP fields reverse the sign of the a[n]: BAD IDEA.
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FIR Filters

5: Filters

Difference Equations
> FIR Filters
FIR Symmetries +

IIR Frequency
Response

Negating z
Cubing z
Scaling z
Low-pass filter
Allpass filters
Group Delay

+++++++

Minimum Phase
Linear Phase Filters
Summary

MATLAB routines

A(z) = 1: Finite Impulse Response (FIR) filter: Y (z) = B(z2) X (2).
Impulse response is b[n] and is of length M + 1.

Frequency response is B(e’“) and is the DTFT of b[n].
Comprises M complex sinusoids + const:

b[0] 4 b[1]e 7 + - - - 4 D[ M]e~IM

Small M =-response contains only low “quefrencies”

JMw

Symmetrical b{n]=-H (e’“)e™ 2 consists of & cosine waves [+ const]

AREE o allls.,

“bd LYo

0.5 0.5 0.5

:
.
=

Rule of thumb: Fastest possible transition Aw > 2% (marked line)
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FIR Symmetries

5: Filters

Difference Equations
FIR Filters
> FIR Symmetries +

IIR Frequency
Response

Real + Symmetric bjn| =

Negating z +
Cubing z +
Scaling z +
Low-pass filter + Rea I :
Allpass filters +
Group Delay + [1, —1.28, 0.64]
Minimum Phase +
Linear Phase Filters o S—
Summary 05 " o
MATLAB routines 0
0.5 o:,:"':
1 o
1 0
z
2
o)
1
0— 0 2

w (rad/sample)

B(e?*) is determined by the zeros of 2 B(z) = S"M b[M — r]2"

Real bjn] =
Symmetric: b[n| = b[M — n]

r=0
conjugate zero pairs: z = z*
= reciprocal zero pairs: z = z7!
conjugate—+reciprocal groups of four
or else pairs on the real axis
Symmetric: Real + Symmetric:

[1, —1.64 4+ 0.275, 1] [1, —3.28, 4.7625, —3.28, 1]

1 e, 1f e —
0.5 :.:"' o ":.‘: 05 I 0"
| - o - :
-0.5 '-,".,... 05 O.f,..-'.-
.-.,,,,. ‘.-".: o .."~.~ ,,,,,,, Y
_ 1 ......... JR, _1 _______________
1 0 1 1 0 1
z z
3 10
@2 o
5
1
0 -2 0 2 0 -2 0 2

w (rad/sample)  (rad/sample)
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[FIR Symmetry Proofs]

In all of the proofs below, we assume that z = zg is a root of B(z) so that B(zg) = anw:o blr]zg " =0

and then we prove that this implies that other values of z also satisfy B(z) = 0.

(1) Real b[n]
B(z5) = Yo blr] (25) "
= 7{\/‘;0 b*[r] (ZS)_T since b[r]| is real
= (Zq{wzo b[r]zO_T) ) take complex conjugate
=0*=0 since B(z9) =0

(2) Symmetric: b[n] = b|M — n]

B(zy ') =M br]zp

=3>M b[M — n]z(])\/‘[_” substitute r = M — n
=2 5M b[M —n)z " take out z}! factor
=2 M binjzy " since b[M — n] = b[n]
=z} x0= since B(zg) =0
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IR Frequency Response

5: Filters M —1

: : . B(z) _ bOITIE, (1—qiz™")
Difference Equations Factorize H(z) = p—
FIR Filters ( ) A(z) Hf\le(l—piz_l)
FIR Symmetries + " " o .

lIR Frequency Roots of A(z) and B(z) are the “poles” {p;} and “zeros” {q;} of H(z)
esponse . . . .

Negating = +  Also an additional N — M zeros at the origin (affect phase only)
Cubing z +
Scaling z + . b[0]||z—M Aﬁ zZ—q; 1
Low-pass filter + |H(€Jw)| — ol HlN ‘J\]}_‘[z_ﬂ ' | 'For ~ = eJ¥
Allpass filters + |Z | Hz’:l |Z_p’b|
Group Delay +
Minimum Phase  + Example:

Linear Phase Filters

s H(z) = 2424571 _ 2(141.22 )
ummary T 1—-0.96z—140.642—2 (1—(O,48—O.64j)2_1)(1—(0.48+0.64j)2_1)

At w = 1.3: |H(e?¥)| = 25=-=5.6

/H(e1%) = (0.6 +1.3) — (1.7 +2.2) = —1.97

MATLAB routines

1 Py 039 1

R 0.5 162" R 0.5
N N

=g 5 °

-0.5 ‘ -0.5

1 T 1

1 0 1 -1 0 1
0(2) 0(z)
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Negating z

5: Filters

Difference Equations
FIR Filters
FIR Symmetries +

IIR Frequency
Response

> Negating z
Cubing z
Scaling z
Low-pass filter
Allpass filters
Group Delay

+++++++

Minimum Phase
Linear Phase Filters

Summary
MATLAB routines

Given a filter H(z) we can form a new one Hp(z) = H(—=2)
Negate all odd powers of z, i.e. negate alternate a[n| and b[n]

: _ 242.42" 1
Example. H(Z) ~ 1-0.96z—1+0.642—2
| B —
0.5 *
§ 0 (0] o
-0.5 )
A T——
1 0 1
0(2)
- —_— 2_2.42_1 dd ff- "
Negate 2 HR(Z) T 140.962-110.64z 2 Negate O coeftricients
1 )
0.5 il
§ 0 o o}
-0.5 5
-1 R
! 0 1 % 1 2 3
0(2) ©

Pole and zero positions are negated, response is flipped and conjugated.
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[Negating z]

Suppose that Hi(z) = H(—z). Then Hr(z) has the following two properties:
Pole and zero positions are negated

If zp is a zero of H(z), then Hr(—2z0) = H(29) = 0 so —zq is a zero of Hr(z). A similar argumnet
applies to poles.

The frequency response is flipped and conjugated

The frequency response is given by Hp(el%) = H(—el%) = H(e I x eI%) = H(e(W=7)). This
corresponds to shifting the frequency reponse by mrad/samp (or, equivalently by —m rad/samp).

If it is true that all the coefficients in a[n| and b[n] are real-valued (normally the case), then the
response of H(z) has conjugate symmetry, i.e. H(e™7%) = H*(e/¥). In this case we can write
Hp(el®) = H(e?@=m)) = H*(ed("=%)). This corresponds to a frequency response that has been
reflected around w = 7 (a.k.a. “flipped”) and then conjugated.

So, the transformation of the frequency can be viewed in one of two ways: (a) it has been shifted by
+mrad/samp or (b) it has been flipped around w = 7 and then conjugated. The first interpretation
is always true (even for filters with complex-valued coefficients) while the second interpretation is more

intuitive but is only true if the filter coefficients are real-valued.
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Cubing z 4

"[’;i;ei::'; Caamtions Given a filter H(z) we can form a new one H¢g(z) = H(23)
FIR Filters Insert two zeros between each a|n| and b[n| term

FIR Symmetries +

IIR Frequency

—1
Response Example: H(Z) — 1-0 9261*_%ij 6422

Negating z +
> Cubing z +
Scaling z + 1 e
Low-pass filter + 05 x 10
Allpass filters + T o o o =
Group Delay + ] 5
Minimum Phase + -0.5 . y
Linear Phase Filters 1 S
Summary 1 0 1 0 _-2 5 2
MATLAB routines 0(z) ® (rad/sample)
—3
Cube z: Ho(z) = =5 926?5%0 e Insert 2 zeros between coefs
1 J— Q
0.5 10
0 o o E)
: x — 5
05
1 R ¢ . | |
-1 0 1 -2 0 2
z w (rad/sample)

Pole and zero positions are replicated, magnitude response replicated.
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[Cubing Z]

Suppose that Ho(z) = H(23). Then Ho(2) has the following two properties:
Pole and zero positions are replicated three times

If zo is a zero of H(z), then Ho(3/zp) = H(z9) = 0 so any cube root of zg is a zero of Ho(z). A
similar argument applies to poles. Any zg has three cube roots in the complex plane whose magnitudes

all have the same value of {/|zo| and whose arguments are Zzg + {0, 2?”, 4?77}
The frequency response is replicated three times

The frequency response is given by Ho(e/¥) = H(e/3%). This corresponds to shrinking the response
horizontally by a factor of 3. Also H¢ (ej(wi%ﬁ)) = H (ej3(”i%ﬁ)) = H (ej?’”i%) = Hc (e7%)

meaning that there are three replications of the frequency response spaced 27” apart. Note that if you

only look at the positive frequencies, there are three replications of the positive half of the reponse but
alternate copies are flipped and conjugated (assuming the coefficients a[n]| and b[n| are real-valued).

All of this carries over to raising z to any positive integer power; the number of replications is equal to
the power concerned.
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Scaling z 4

e [l : Given a filter H(z) we can form a new one Hg(z) = H(%)
Difference Equations . (0%
FIR Filters Multiply a[n| and bn] by o™
FIR Symmetries +
IIR Frequency E I . H L 2+2.4Z_1
Respo.nse Xamp €. (Z) — 1—0.962_1—|—0.642_2
Negating z +
Cubing =z + W ,
D> Scaling z + o5 10
Low-pass filter + = =
Allpass filters + 59 ° T
Group Delay + o
Minimum Phase + iy S 0
Linear Phase Filters 1 D(g) ! 0 1 © 2 3
Summary
MATLARB routines —1
. _ Z ) 24-2.64z
Scale z2 Hs(z) = H({7) = 1=7056, 1 10774422
! T 20
0.5 ; 15 ]
1oL ] Fu | T 11T 9%
-0.5 x . | © J) d)(L J)O ohd
-1 0 1 0 1 2 3
z w (rad/s)

Pole and zero positions are multiplied by o, &« > 1 =peaks sharpened.
Pole at z = p gives peak bandwidth = 2 |log [p|| = 2 (1 — |p|)
For pole near unit circle, decrease bandwidth by ~ 2log «
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[Scaling z]

Suppose that Hg(z) = H (%) where « is a non-zero real number. Then Hg(z) has the following two
properties:

Pole and zero positions are multiplied by o

If zp is a zero of H(z), then Hg(az) = H(z9) = 0 so azg is a zero of Hg(z). The argument of the
zero is unchanged since Zazg = Zzg. The magnitude of the zero is multiplied by o.. A similar argument
applies to poles. If & > 1 then the pole positions will move closer to the unit circle. If « is large enough
to make any pole cross the unit circle then the filter Hg(z) will be unstable.

The bandwidth of any peaks in the response are decreased by approximately 2 log o

If H(z) has a pole, p, that is near the unit circle, it results in a peak in the magnitude response at

w = Zp whose amplitude is proportional to 1+|M and whose bandwidth is approximately equal to
—2log |p| = 2 (1 — |p|) (which is positive since |p| < 1). The corresponding pole in Hg(z) is at ap, so
its approximate bandwidth is now —2log |ap| = —2log |p| —2log a. Thus the bandwidth has decreased

by about 2log «.

If > 1 then loga is positive and the peak in Hg(z) will have a higher amplitude and a smaller

bandwidth. If a < 1, then loga is negative and the peak will have a lower amplitude and a larger
bandwidth.
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Low-pass filter

5: Filters

Difference Equations
FIR Filters
FIR Symmetries +

IIR Frequency
Response

Negating z
Cubing z

Scaling z

> Low-pass filter
Allpass filters
Group Delay

+++++++

Minimum Phase
Linear Phase Filters
Summary
MATLAB routines

1st order low pass filter: extremely common
y[n] = (1 — p)z[n] + pyln — 1]= H(z) = =2,

1—pz—1
Impulse response:
hln] = (1 —p)p" = (1 —ple™~
where 7 = —llnp is the time constant in samples.

1-p
\/1—2p cos w+p?
Low-pass filter with DC gain of unity.

Magnitude response: ]H(ejwﬂ =

3dB frequency is w3gp = cos™? (1 — M)% 21;19

1
1+jwr

Compare continuous time: He(jw) =

Indistinguishable for low w but H(e’%) is periodic, Ho(jw) is not

0 p
1 7 p=0.80 ~
05 o -10 H(jw) \/\
= o —
5 7 T -20 -
-0.5 -
e P TTTT = H ()
-1 TT??QQQOQO(\(\
-1 0 1 0.01 1t 01 2m
0(2) w (rad/sample)
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[3 dB frequency approximation]

To find the 3dB frequency we require |H (e7%3)| = \/g & |H(e7w0)|? = % :

(1—p)? _ 1
1—2pcoswz+p?2 ~ 2
= 2(1 _p)2 =1—2pcosws -I—p2

=2(1—p)?=(1—-p)?+2p(1 - cosws)

_ (1—p)*

= coswgz = 1 — BT

— ee—1 (1—p)?
= W3 = COS (1 — T)

2

Expressing cosw = x as a Taylor series gives v &~ 1 — - = w &~ /2 —2x. So replacing x by the

an i - ~ [(=p)? _ 1-p
expression in parentheses gives w3 ~ P

1

Writing d = 1 — p and assuming d is small, we can write \/p = (1 -d)2 =~ 1 — %d = %(1 + p).
Substituting this into the previous expression gives w3 = 2};—5.
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Allpass filters +

5: Filter B . .
Difference Equations It H(z) = AE;; with b[n] = a*[M — n] then we have an allpass filter:
FIR Filters
FIR Symmetries + . ZM a*[M_T]e—jWT oM ZM CL*[S]ejws
IIR Frequen = H(el¥) = &x=0 : — e IV s=0 : s=M—r
Respo:::ee < ( ) 7{\/[:0 a[r]e—Jw”’ 7]%:0 a[r]e—gwr [ ]
Negating z + . ]
Cubing z + The two sums are complex conjugates = they have the same magnitude
Scaling z + y T 1
Lowonaes flter 1 Hence |H(eﬂw)| = 1Vw < “allpass
D> Allpass filters  + . _ )
Group Delay i However phase is not constant: /H (&%) = —wM — 2/ A(e?%)
Minimum Phase +
Linear Phase Filters —1 —-1_-—1
— 1—
Summary Ist order allpass: H(z) = %z —p 1fpzfl

MATLAB routines

1. “reflected in unit circle”

ej“’—l‘Vw
p

Pole at p and zero at p—

Constant distance ratio: |e/“ — p| = |p|

0
1
1
o 1 1 ] 05f
_ ) ﬁ
T 06 = o
] 2 |
0.4 -
0 | 2 R L
-3 | ] S —
% 1 2 3 0 1 > 3 ) - -
) ¢ @)

In an allpass filter, the zeros are the poles reflected in the unit circle.
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[Allpass Filter Properties]

An allpass filter is one in which H(z) = igzg with b[n] = a*[M — n]. Of course, if the coefficients

a[n] are all real, then the conjugation has no effect and the numerator coefficients are identical to the
numerator coefficients but in reverse order.

If A(2) has order M, we can express the relation between A(z) and B(z) algebraically as
B(z) = 27 M A(2z~1) where the coefficients of A(z) are the conjugates of the coefficients of A(z).

If the roots of A(z) are p;, then we can express H(z) in factorized form as

M * —1 M *

—pi + z 1—piz
) |
We can therefore write
(1—pi=z (1—p Mo piz* —piz 4+ piplzz*
2 l
[ H (2)] | | i = 1] —

(z —pi) (2* S 22t —pizt —plz+pip)

M 1= 121?) (1= Imil?)
1 . ( Ds
( +pipfzzt — 2z pzpl> .

* —piz* — plz+ pip} bl 2 — pi|?

I
i :]g

If all the |p;| < 1, then each term in the product is %1 according to whether |z| = 1.

VIIA

It follows that, provided H(z) is stable, |H(z)] % 1 according to whether |z| § 1.
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Group Delay +

5: Filters . ds/ H Jw ]
EHimees B Group delay: 74 (e?¥) = —% = delay of the modulation envelope.
FIR Filters

FIR Symmetries  + Trick to get at phase: In H(e’%) = In ’H(ejw)’ +jZH ()

IIR Frequency

Response ] .
Negating =+ _ A EE) (o1 dHE)\ g (—z dn
Cubing z + TH - dw - H(ejw) dw H(Z) dz i
Scaling z + z=e’
Low-pass filter + . s
g"pass filters + H(e'jw) = ZZO:O h[n]e Jnw — g(h[n]) [ﬁ = DTFT]
Group Delay + dH (el% 0O ) o )
Minimum Phase  + % =) .. _g—Jjnhnle7 /"= —j.F (nh|n|)
Linear Phase Filters
Summary — dH (%) | F (nh(n]) F (nh[n)])
) e 1 QN | —
MATLAB routines TH — $ (H(ejw) do )— NS5 ( Z(hn]) ) R Z (h[n])
_ 1 _ _ —pe 7%
Example. H(Z) = 1_2)7? TH — —7'[1 —p]— — (m)
0
1 02 p=0.80 _3 5=0.80
0.5 Q
T o ! o T 04 £ 2
) 05 ) "0 %1
-1 -0.8 1 i 0
-1 0 1 0 1 2 3 0 1 2 "3
02 ) )

Average group delay (over w) = (# poles — # zeros) within the unit circle
Zeros on the unit circle count =5
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|Group Delay Properties]

The group delay of a filter H(z) at a frequency w gives the time delay (in samples) of the envelope

of a modulated sine wave at a frequency w. It is defined as 75 (e/%) = —CMIZ—SN). For example,
H(z) = z—F defines a filter that delays its input by k samples and we can calculate the group delay by
evaluating
. d/H(el* d : d
r(eiey = J9LHET) __d (Ze77h) = === (—kw) = k
dw dw dw

which tells us that this filter has a constant group delay of £ samples that is independent of w.

The average value of 77 equals the total change in —ZH (e7“) as w goes from — to + divided by
27. If you imagine an elastic string connecting a pole or zero to the point z = 7%, you can see that
as w goes from —7 to +7 the string will wind once around the pole or zero if it is inside the unit circle
but not if it is outside. Thus, the total change in ZH(e’¥) is equal to 27 times the the difference
between the number of poles and the number of zeros inside the unit circle. A zero that is exactly on
the unit circle counts % since there is a sudden discontinuity of 7 in ZH (e7*) as w passes through the
Zzero position.

When you multiply or divide complex numbers, their phases add or subtract, so it follows that when

you multiply or divide transfer functions their group delays will add or subtract. Thus, for example,
B(z)
A(z)’
can determine the group delay of a factorized transfer function by summing the group delays of the

individual factors.

the group delay of an IIR filter, H(z) = is given by 7y = 73 — 74. This means too that we
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|Group Delay from h[n| or H(z)]

The slide shows how to determine the group delay, 7, from either the impulse response, h[n], or
the transfer function, H(z). We start by using a trick that is very common: if you want to get at
the magnitude and phase of a complex number separately, you can do so by taking its natural log:
In (reje) = In|r| + jO or, in general, In H = In|H| 4+ jZH. By rearranging this equation, we get
/ZH = & (In H) where () denotes taking the imaginary part of a complex number. Using this, we can

write
_— —d(S(nH(e))) _ <—d(1nH(er))> _q (H—1 dH(er)> | )

dw dw (e9¢)  dw

By going back to the definition of the DTFT, we find that H(e/*¥) = Z(h[n]) and “L7) —
—j3.% (nh[n]) where % () denotes the DTFT. Substituting these expressions into the above equation
gives us a formula for 77 in terms of the impulse response h[n].

B F (nh[n])
=% (S500) )
dz

In order to express Tz in terms of z, we first note that if 2 = e7“ then 2= = jz. By substituting
z = eJ¥ into equation (1), we get

= (H_<1> dgf)) - (H_<1> S i) - (11) djjiz>) - (H_<> dZiZ)>

z:ejw
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|Group Delay Example]

1
1—pz

if H(z) = igi% then Ty =75 — 74. In this case T = 0 s0 Ty = —7[1 _y-

As an example, suppose we want to determine the group delay of : H(z) = —. As noted above,

Using equation (2) gives 7y = —R (%) since nh(n] = [0 1] x [1 — p].

Applying the definition of the DTFT, we get

§R( —peIw ) §R( D ) §R(p (e_j“’ —p)) pcosw — p2
Ty — — - = ; == ; ; -
H 1 — pe—Ivw eJ¥ —p (e9% —p)(e7I¥ —p) 1 —2pcosw + p?

As demonstrated above, the average value of 75 is zero for this filter because there is one pole and one
zero inside the unit circle.
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Minimum Phase +
"[’”Z'::e I Average group delay (over w) = (# poles — # zeros) within the unit circle
FIR Filters . . 1 4
I G e zeros on the unit circle count — )

IIR Frequen
Response Reflecting an interior zero to the exterior 2
Negating z + L. )
Cubing = + multiplies ]H(ejwﬂ by a constant but ;
Scaling z + . ; . A .
o e thee L Increases average group delay by 1 sample. w
Allpass filters +
Group Delay + 1 o 0
> Minimum Phase + N 0.5 ;_:o i i
Linear Phase Filters = 0 " + x . -
Summary -0.5 '1.9.... Q -
MATLAB routines R o ?UTAQcLOé?O?OOé w0
! 0 1 0 1 2 3
O(z) ©
30
0.; O *O [ T !
%‘, 0 x +  x 10
05 0 » T TT ?TT% &UTT 0
7] SR — lll l 2 |
! 0 1 0 1 2 3
0@ "

A filter with all zeros inside the unit circle is a minimum phase filter:
e Lowest possible group delay for a given magnitude response
e Energy in h|n] is concentrated towards n = 0

DSP and Digital Filters (2017-10159)
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[Energy Concentration Property]

This proof is not examinable
Suppose H(z) has a zero inside the unit circle at z = zg so that we can write H(z) = (1 — 202~ 1) F(2).

If we flip this zero outside the unit circle, we can write G(z) = (27! — z%) F(z) which has the same
magnitude response as H(z).

Taking inverse z-transforms, we can write the corresponding time domain equations:

hin] = fln] — zof[n — 1] and g|n] = f[n — 1] — 25 f[n].

Now, defining f[—1] £ 0, we sum the energy in the first K + 1 samples of the impulse response:
K K

> |nlk] Z fIK] = zoflk = 111" = > _ (f[K] — =0 f[k — 1]) (f[K] — 20 f[k — 1])"

k=0

k=0

—Z|f 2 — z0flk — 1f*[k] — 25 £* [k — 1 f[k] + |z0]? [ f[k — 1]
= Z 20| | FIKI* = z0f [k — 1 f*[K] — 25 f* [k — 1 f[K] + | f[k — 1]|?
k=0

£ 3 (1= leof?) (171907 = 1515 = 10°)

k=0
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[Energy Concentration Property (continued)]

So, repeating the previous line,

K K
> IR = D l=o” If[KII® — 20 [k = 1]£[K] = 26 " [k — 11f[K] + | [k — 1]I°
k=0 k=0
K
+ 3 (1= o) (1P = 15Tk = 1))
k=0
P K
= " (lb =11 = £ (Flb — 11— 25 71D + (1= [202) 3 (1P — 10— 1))
—0 k=0

-

glk)l* + (1 = I20/?) (I£1K]1> = [£1=1]?)

k=0

K K
=3l + (1= 1201 IFIKI? > 3 Iglk]l?

k=0 k=0

since |zg| < 1 implies that (1 — |Z()|2) > 0. Thus flipping a zero from inside the unit circle to outside

never increases the energy in the first K + 1 samples of the impulse response (for any K). Hence the
minimum phase response is the one with the most energy in the first K + 1 samples for any K.
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Linear Phase Filters

=2 Hlie The phase of a linear phase filter is: ZH(e’%) = 0y — aw

Difference Equations

FIR Filters i/ H jw)
FIR Symmetries + ! . — e _
R pemme Equivalently constant group delay: 7x = =a

Response
Negating z

_ A filter has linear phase iff h|n| is symmetric or antisymmetric:
e = hin] = h[M —n] Vnorelse h[n] = —h[M —n] Vn

ow-pass filter
A M can be even (= 3 mid point) or odd (= 3 mid point)

Allpass filters
Group Delay

+++++++

Minimum Phase

: Proof «:
> Fivere joy — M —jwn M — nle=dw(M=n)
2H(e?) =32y hln]e™*" + 37" h[M —nle

Summary ) .
MATLAB routines — e—jw% Zéw h[n]e_]w(n_%) _I_ h[M — rn}]ejw(n_%)
h|n] symmetric:
2H (e9%) = 2¢~9% % Zéw hin]cos (n — &) w
h|n| anti-symmetric:
2H (eI%) = —2je Iz Zéw hin]sin (n — &) w

= 26_‘7(%“’%) Zéw h|n] sin (n — %) W
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Summary

B Filters e Useful filters have difference equations:
ITTérence quations
ilters . ..
ik zy:,,metr;es + o Freq response determined by pole/zero positions
e requency o N — M zeros at origin (or M — N poles)
Negating 2 o Geometric construction of |H(e/%)|
ubing z .
Scaling z > Pole bandwidth = 2 |log |p|| =~ 2 (1 — |p|)

Low-pass filter

o Stable if poles have |p| < 1

e Allpass filter: ajn] = b|M — n] |
o Reflecting a zero in unit circle leaves |H (e’*)| unchanged

Allpass filters
Group Delay

+++++++

Minimum Phase
Linear Phase Filters
> Summary
MATLAB routines .
le(er)
dw

o Symmetrical h[n] < 15 (e7¥) = &Vw

e Group delay: 7 (/%) = samples

o Average Ty over w = (# poles — # zeros) within the unit circle

e Minimum phase if zeros have |¢| < 1
o Lowest possible group delay for given |H (e’))|

e Linear phase = Constant group Delay = symmetric/antisymmetric h[n]

For further details see Mitra: 6, 7.
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MATLAB routines

5: Filters filter filter a signal

Difference Equations

FIR Filters impz Impulse response
FIR Symmetries + - . . "
IR Frequency residuez partial fraction expansion
Response

grpdelay Group Delay

freqz Calculate filter frequency response

Negating z

Cubing z

Scaling z

Low-pass filter
Allpass filters
Group Delay

+++++++

Minimum Phase
Linear Phase Filters
Summary

> MATLAB routines
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6: Window Filter
> Design

Inverse DTFT
Rectangular window
Dirichlet Kernel +
Window relationships
Common Windows
Order Estimation
Example Design
Frequency sampling
Summary

MATLAB routines

6: Window Filter Design

DSP and Digital Filters (2017-10159)
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Inverse DTFT

Design For any BIBO stable filter, F/(e’“) is the DTFT of h[n]

> Inverse DTFT

. Jwy o0 —Jwn _ 1 (7 Jw) ,Jwn
e H() = 2 S hlple™ N e hin] = op [ H(eM)eR N du
Window relationships

Common Windows If we know H (e’%) exactly, the IDTFT gives the ideal h[n]
Order Estimation
Example Design Example: Ideal Lowpass filter
Frequency sampling
Summary 1 | | <
MATLAB routines . Wl >~ Wo :
H(el?) = & hln| = PR
0 |w\ > Wo
1 2Tdco§
2w,
T 05 < >
0 0

Note: Width in w is 2wq, width in n is =&: product is 47 always
Sadly h[n]| is infinite and non-causal. Solutlon multiply h|n] by a window

DSP and Digital Filters (2017-10159) Windows: 6 —2 / 11



Rectangular window

6: Window Filter
Design

Inverse DTFT

Rectangular
window

Dirichlet Kernel +
Window relationships
Common Windows
Order Estimation
Example Design
Frequency sampling
Summary

MATLAB routines

Truncate to £ to make finite; h1[n] is now of length M + 1

MSE Optimality:
Define mean square error (MSE) in frequency domain
E=5 " |H(ev) Hl(ej“)|2dw

= i 1; H(e) = 52, h[n)e
Minimum E is when hq[n] = h[n]
M
Proof: From Parseval: £ =322, [h[n] — hi[n]|” + 3,5 u [B[n]|’

However: 9% overshoot at a discontinuity even for large n.

Q
Q10

2
dw

h;[n]
M=14

e P

0 1 2 3

Normal to delay by & to make causal. Multiplies H(e’*) by eI T
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Dirichlet

Kernel +

6: Window Filter
Design

Inverse DTFT
Rectangular window
> Dirichlet Kernel +
Window relationships
Common Windows
Order Estimation
Example Design
Frequency sampling
Summary

MATLAB routines

Truncation < Multiply h[n] by a rectangular window, w[n| = d_ M<n<h
& Circular Convolution Hpyp1(e7%) = 5= H(e?*) ® W (e?*)

M

W(e‘jw) = Z_QM

Proof: (i) e ~jo(=n) 4 e77w(Hn) = 2 cos (nw) (ii) Sum geom. progression

_jwn() 1492 ZO 5M COS (nw)(") sin 0.5(M+1)w

sin 0.5w

Effect: convolve ideal freq response with Dirichlet kernel (aliassed sinc)

1 1 1

05 05 4TU(M+1) 05

-2 0 2 -2 0 2 -2 0 2
w w w

1} esa Provided that M+1 < g = M+1 >>
: 4
_os Passband ripple: Aw ~ Mil , stopband M+1
RPN Transition pk-to-pk: Aw = ML
’ o 2 Transition Gradient: % ~ M2;L1
wW=wyo

DSP and Digital Filters (2017-10159)
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[Dirichlet Kernel]

Other properties of W (e/%):

. M .
The DTFT of a symmetric rectangular window of length M + 1 is W(el¥) = > 2, 779" =
2
ejw% Z(])\/[ o—jwn _ ejw% 1_e—dw(M+1)  j0.5w(M+1)_ —350.5w(M+1) _ SinO.5(M—{—1)w.

1l—e—Jw T eJ0.5w _—70.5w sin 0.5w
For small  we can approximate sinx =~ x; the error is < 1% for x < 0.25. So, for w < 0.5, we have
W(ed*) ~ 2w 1sin0.5(M + 1)w.

The peak value is at w = 0 and equals M + 1; this means that the peak gradient of Hj;,1(e/%) will

be M;'l.
T

The minimum value of W (e7%) is approximately equal to the minimuum of 2w =1 sin 0.5(M +1)w which

is when sin0.5(M + 1)w = —1 i.e. when w = % = ]\;’11

Hence min W (e/%) ~ min 2w~ !sin 0.5(M + 1)w = — 114;%1

Passband and Stopband ripple:

The ripple in W (el¥) = Sins?r'l%("gi)w has a period of Aw = #11) = ]\21_7;1 and this gives rise to

ripple with this period in both the passband and stopband of Hp;1(e’%).

However the stopband ripple takes the value of Hj;.1(e/%) alternately positive and negative. If you

plot the magnitude response,}HM+1(ejw)‘ then this ripple will be full-wave rectified and will double in

27

frequency so its period will now be SR
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Window relationships

ge:y;:dw AT When you multiply an impulse response by a window M + 1 long

Inverse DTFT HM—|—1(63 ) 1 H(ejw) ® W(63w>

Rectangular window
Dirichlet Kernel +

Window
> relationships

20r M=20 1 ANWANA
\YARVY)

Common Windows 10

. . T 05 = ~ 0.5
Order Estimation *

Example Design

0
Frequency sampling 0 0

Summary -2 0 2 2 0 2 -2 0 2
w w w
MATLAB routines

(a) passband gain ~ w[0]; peak~ = [ | + 92 [ o W (ed)dw
rectangular window: passband galn = 1; peak gain = 1.09

(b) transition bandwidth, Aw = width of the main lobe
transition amplitude, AH = integral of main lobe+27

rectangular window: Aw = M+1' AH ~ 1.18

(c) stopband gain is an integral over oscillating sidelobes of W (e/*)

rect window: }min H(ejw)} = 0.09 <« }min W(ij)} — ]K;wl

(d) features narrower than the main lobe will be broadened and
attenuated
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Common Windows

6: Window Filter
Design

Inverse DTFT
Rectangular window
Dirichlet Kernel +
Window relationships
> Common Windows
Order Estimation
Example Design
Frequency sampling
Summary

MATLAB routines

Rectangular: win] =1
don’t use

Hanning: 0.5 4 0.5¢4
Cr = COS %ﬁ_”i‘
rapid sidelobe decay

Hamming: 0.54 + 0.46¢;
best peak sidelobe

Blackman-Harris 3-term:
0.42 + 0.5¢1 + 0.08¢s
best peak sidelobe

(o)
Io(B)

[ controls width v sidelobes
Good compromise:
Width v sidelobe v decay

Kaiser:

6.27/(M+1). -13dB

W (dB)

1 2 3
)

12.56/(M+1)

W (dB)

W (dB)

W (dB)

13.25/(M+1)
-40 dB

W (dB)

W (dB)

(
Wﬂf\f\f
1 2 3

21.27/(M+1)

-70 dB

AWaN

DSP and Digital Filters (2017-10159)

Windows: 6 — 6 / 11



Order Estimation

o mcow Filter Several formulae estimate the required order of a filter, M.

Inver DTFT .

Rectangular window E.g. for lowpass filter

Dirichlet Kernel + ] . 146

Window relationships Est|mated Order IS 1

Common Windows 1-6

Example Design ~ wo —w1 ~ 2.2Aw |H(e]m)|

Frequency sampling ] ] ]

Summary Required M increases as either the e e

MATLAB routines . . . .
transition width, ws — wq, or the gain 0 | .

w T

tolerances § and e get smaller. 0 !

Only approximate.

Example:
Transition band: f; = 1.8 kHz, fo = 2.0 kHz, f, = 12 kHz,.

Wy = ﬂ — (0.943, Wy = % — 1.047

Ripple: 20log, (1 +d) = 0.1 dB, 20log;, e = —35 dB
§=10% —1=0.0116 ¢ = 10730 = 0.0178

M =~ 1.047—0.943 = 0.1085 — I8 O 5on,s — 117
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Example Design

6: Window Filter
Design

Inverse DTFT
Rectangular window
Dirichlet Kernel +
Window relationships
Common Windows
Order Estimation

> Example Design
Frequency sampling
Summary

MATLAB routines

Specifications:
Bandpass: w; = 0.5, wy =1
Transition bandwidth: Aw = 0.1
Ripple: 6 = ¢ = 0.02
20logp e = —34 dB
20log,o (1 +6) =0.17 dB

Order:
M ~ —5.6—4.31og,(d€) — 99

W2 —wi

Ideal Impulse Response:

Difference of two lowpass filters
__ sinwgn _ sinwin
h[n] T ™n

Kaiser Window: 8 = 2.5

T 05
0 T
0 1 2 3
w
1 == M=92
B=25
T 05
0 b -
0 1 2 3
(V]
0 M=92
=25
__-20
m
2 | \
I

-40

-60
0
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Frequency sampling

o mcow Filter Take M + 1 uniform samples of H(e’%); take IDFT to obtain h[n]

Inverse DTFT

Rectangular window Adva nta ge:

Dirichlet Kernel + .

Window relationships exact match at sample points

Common Windows

Order Estimation D|Sadva ntage:

Example Design . . . . . . . .
R poor intermediate approximation if spectrum is varying rapidly
sampling

SOl Solutions:

MATLAB routines ] o ]
(1) make the filter transitions smooth over Aw width

(2) oversample and do least squares fit (can't use IDFT)
(3) use non-uniform points with more near transition (can't use IDFT)

'M+1=93 1 N A
v M+1=93
I 05 T 05
0 ............................................................................. o_.ﬂw M—
2 0 2 0 1 2 3
w w
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Summary

6 Window Filter e Make an FIR filter by windowing the IDTFT of the ideal response
Inverse DTFT __ sinwgn

Rectangular window © Ideal |0WpaSS has h[n] o ™

e e hinn, o Add/subtract lowpass filters to make any piecewise constant
Common Windows response

Order Estimation

xample Design . . . .

Example Design e Ideal filter response is ® with the DTFT of the window

Frequency sampling p . o

D> Summary o Rectangular window (W (z) = Dirichlet kernel) has —13 dB
MATLAB routines

sidelobes and is always a bad idea
o Hamming, Blackman-Harris are good
o Kaiser good with 3 trading off main lobe width v. sidelobes

e Uncertainty principle: cannot be concentrated in both time and
frequency

e Frequency sampling: IDFT of uniform frequency samples: not so great

For further details see Mitra: 7, 10.
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MATLAB routines

z indow Filter . . P v
e meiow Filte diric(x,n Dirichlet kernel: s0.5nz
- - : sin 0.5x
:';’::::g'z,::indow hanning Window functions
Dirichlet Kernel + hamming (Note ’periOdiC’ Option)

Window relationships

Common Windows kalser
Order Estimation kaiserord Estimate required filter order and 3

Example Design

Frequency sampling
Summary
> MATLAB routines
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7: Optimal FIR
D> filters

Optimal Filters

Alternation Theorem
Chebyshev
Polynomials

Maximal Error
Locations

Remez Exchange
Algorithm

Determine Polynomial
Example Design

FIR Pros and Cons
Summary

MATLAB routines

7: Optimal FIR filters
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Optimal Filters

7 Optima] FIR bleers We restrict ourselves to zero-phase filters of odd length M + 1, symmetric
ptimal Filters

Alternation Theorem around h[O], l.e. h[_n] — h[n]
Chebyshe.v - . M o M
i H(w) = H(e) = X%y hlale= hjo] + 2 523 hfn]cos ne
Ramer, Exchange H (w) is real but not necessarily positive (unlike |H (e“)]).
Algorithm
E:::;i":,:s?z,mmia' Weighted error: e(w) = s(w) (H(w) — d(w)) where d(w) is the target.
FIR Pros and Cons Choose s(w) to control the error variation with w.
ummary
MATLAB routines Example: lowpass filter
) 145
]l 0fw<w 17
d(w) = 1 - = 1-5
\O wr <w< T
[H (")
01 0<w<w
s(w)=1 _; £
€ wo <w <7 0 | |
0 W, T

e(w) = =1 when H(w) lies at the edge of the specification.

Minimax criterion: h|n] = arg miny,(,) max,, |e(w)|: minimize max error

DSP and Digital Filters (2017-10122) Optimal FIR: 7 -2 / 11



Alternation Theorem

7: Optimal FIR filters

Optimal Filters

Alternation
> Theorem

Chebyshev
Polynomials

Maximal Error
Locations

Remez Exchange
Algorithm

Determine Polynomial
Example Design

FIR Pros and Cons
Summary

MATLAB routines

Want to find the best fit line: with the smallest maximal error.

Best fit line always attains the .
maximal error three times with ;
alternate signs

N B OO @

Proof:

Assume the first maximal deviation from the line is negative as shown.
There must be an equally large positive deviation; or else just move the line
downwards to reduce the maximal deviation.

This must be followed by another maximal negative deviation; or else you
can rotate the line and reduce the deviations.

Alternation Theorem:

A polynomial fit of degree n to a set of bounded points is minimax if and
only if it attains its maximal error at n 4+ 2 points with alternating signs.
There may be additional maximal error points.

Fitting to a continuous function is the same as to an infinite number of
points.

DSP and Digital Filters (2017-10122)
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Chebyshev Polynomials

7: Optimal FIR filters

Optimal Filters

Alternation Theorem
Chebyshev
> Polynomials

Maximal Error
Locations

Remez Exchange
Algorithm

Determine Polynomial
Example Design

FIR Pros and Cons
Summary

MATLAB routines

H(w) = H(e’%) = h[0] + 221% h|n] cos nw
But cosnw = T, (cosw): Chebyshev polynomial of 1st kind

cos 2w = 2cos?w — 1 = Ty(cosw)
cos 3w = 4 cos® w — 3cosw = T3(cosw)

To(z) = 22° — 1
T3(x) = 42° — 3z

Recurrence Relation:
Thit(z) =22T,(x) — Th_1(x) with To(z) =1, Ti(z) ==

Proof: cos (nw + w) + cos (nw — w) = 2 cos w cos nw

So H(w) is an % order polynomial in cosw: alternation theorem applies.

Example: Symmetric lowpass filter of orderM = 4
H(z) = 0.17662% + 0.4015z + 0.2124 + 0.401527 + 0.17662 2

O L N N . . . N E
0 0.5 1 1.5 2 25 3 3.5

DSP and Digital Filters (2017-10122)
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Maximal Error Locations

7: Optimal FIR filters Maximal error locations occur either at band
Optimal Filters dH
Alternation Theorem edges or When do = O
Chebyshev w
Polynomials L M
imal — 2
e H(w) = h[0] +2>_* hn]cosnw
Remez Exchange — P(COS w)
Algorithm
Determine Polynomial . .
Example Design where P(x) is a polynomial of order %
FIR Pros and Cons
Summary dﬁ .
MATLAB routines do —P’(COS w) S111 W

=0atw =0, 7 and at most &£ — 1 zeros of polynomial P'(z).

.. With two bands, we have at most % + 3 maximal error frequencies.
We require % + 2 of alternating signs for the optimal fit.

Only three possibilities exist (try them all):

(a) w =0 + two band edges + all(%L — 1) zeros of P'(z).
(b) w = 7 + two band edges + all(& — 1) zeros of P'(z).

(¢) w={0and 7} + two band edges + (& — 2) zeros of P'(x).
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Remez Exchange Algorithm

7: Optimal FIR filters

Optimal Filters

Alternation Theorem

Chebyshev
Polynomials

Maximal Error
Locations

Remez Exchange
> Algorithm

Determine Polynomial
Example Design

FIR Pros and Cons
Summary

MATLAB routines

1. Guess the positions of the % + 2 maximal error frequencies and give
alternating signs to the errors (e.g. choose evenly spaced w).

2. Determine the error magnitude, ¢, and the % + 1 coefficients of
the polynomial that passes through the maximal error locations.

3. Find the local maxima of the error function by evaluating
e(w) = s(w) (H(w) — d(w)) on a dense set of w.

4. Update the maximal error frequencies to be an alternating subset of
the local maxima + band edges + {0 and/or 7}.
If maximum error is > €, go back to step 2. (typically 15 iterations)

5. Evaluate H(w) on M + 1 evenly spaced w and do an IDFT to get h|n].

15l M=4 | \ M=4 M=4

’ Iteration 1 Iteration 2 Iteration 3
1 1 1 1
1 1 \

X @ \ g \

L ] 205F 1 205}
0.5 \\ I N 1t K
O L

0 L
05} 4

H-bar
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Remex Step 2: Determine Polynomial

7: Optimal FIR filters

For each extremal frequency, w; for 1 <i < &L 42

Optimal Filters
Alternation Theorem

gtﬁrl:uy:rl::;lls d(wz) = F(wz) -+ % — h[O] + ) 27?21 h[n] COS Nw; + (_1)1.6

s(wi)

Maximal Error
Locations
Remez Exchange

Algorithm Method 1: (Computation time oc M/*)

Determine

> Polymomial Solve % + 2 equations in % + 2 unknowns for h[n| + €.
Example Design

_ M
FIR Pros and Cons In step 3, evaluate H(w) = h[0] +2) .2 | h[n] cos nw;

Summary
MATLAB routines

Method 2: Don't calculate h|n] explicitly (Computation time oc M?)
Multiply the w; equation by ¢; = | ] : and add them:

JF1 cOS w; —COS W
M M i M
1 e (RIO] + 250, bl cosnw + S5 ) = S cad(wi)
All terms involving h[n] sum to zero leaving

M ; M

H+2 ()i A2

2 ie— § 2 d(w:
i=1  s(wg) € Zui=1 cid(w;)

Solve for € then calculate the H(w;) then use Lagrange interpolation:
_ o N grang
H(w) — P(COS (U) = 12:;_2 H(wz) H COS W —COS W

J7F1 oS w; —Cos wj
(& + 1)-polynomial going through all the H (w;) [actually order L]
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Example Design

7: Optimal FIR filters

Optimal Filters

Alternation Theorem
Chebyshev
Polynomials

Maximal Error
Locations

Remez Exchange
Algorithm

Determine Polynomial
> Example Design
FIR Pros and Cons
Summary

MATLAB routines

Filter Specifications:
Bandpass w = [0.5, 1], Transition widths: Aw = 0.2
Stopband Attenuation: —25 dB and —15 dB
Passband Ripple: +0.3 dB

Determine gain tolerances for each band:
—25 dB = 0.056, —0.3 dB =1 —0.034, —15 dB = 0.178

Predicted order: M = 36
% + 2 extremal frequencies are distributed between the bands
Filter meets specs ®; clearer on a decibel scale

Most zeros are on the unit circle + three reciprocal pairs
Reciprocal pairs give a linear phase shift

DSP and Digital Filters (2017-10122) Optimal FIR: 7 -8 / 11



FIR Pros

and Cons

7: Optimal FIR filters

Optimal Filters

Alternation Theorem
Chebyshev
Polynomials

Maximal Error
Locations

Remez Exchange
Algorithm

Determine Polynomial
Example Design

> FIR Pros and Cons
Summary

MATLAB routines

Can have linear phase
o no envelope distortion, all frequencies have the same delay ®

o symmetric or antisymmetric: h|n] = h|—n]Vn or —h|—n|Vn
o antisymmetric filters have H(ejo) H((e?™) =0
o symmetry means you only need ¥ 5 + 1 multiplications

to implement the filter.
Always stable ©
Low coefficient sensitivity ®
Optimal design method fast and robust ®

Normally needs higher order than an IIR filter ®

o Filter order M = %ngen where Aw is the most rapid transition

o Filtering complexity oc M x fg =~ —%ngfu“ fs = %B;Kgl f2

o f2 for a given specification in unscaled € units.

DSP and Digital Filters (2017-10122)
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Summary

7: Optimal FIR filters

Optimal Filters

Alternation Theorem
Chebyshev
Polynomials

Maximal Error
Locations

Remez Exchange
Algorithm

Determine Polynomial
Example Design

FIR Pros and Cons
> Summary
MATLAB routines

Optimal Filters: minimax error criterion

use weight function, s(w), to allow different errors

in different frequency bands

symmetric filter has zeros on unit circle or in reciprocal pairs
Response of symmetric filter is a polynomial in cosw

Alternation Theorem: % + 2 maximal errors with alternating signs

Remez Exchange Algorithm (also known as Parks-McLellan Algorithm)

multiple constant-gain bands separated by transition regions
very robust, works for filters with M > 1000

Efficient: computation oc M?

can go mad in the transition regions

Modified version works on arbitrary gain function

Does not always converge

For further details see Mitra: 10.
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MATLAB routines

7: Optimal FIR filters

Optimal Filters

Alternation Theorem
Chebyshev
Polynomials

Maximal Error
Locations

Remez Exchange
Algorithm

Determine Polynomial
Example Design

FIR Pros and Cons
Summary

> MATLAB routines

firpm optimal FIR filter design
firpmord estimate require order for firpm

cfirpm arbitrary-response filter design

remez [obsolete] optimal FIR filter design

DSP and Digital Filters (2017-10122)
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8: IIR Filter
> Transformations

Continuous Time
Filters
Bilinear Mapping
Continuous Time
Filters

Mapping Poles and
Zeros

Spectral
Transformations

Constantinides
Transformations

Impulse Invariance

Summary
MATLAB routines

8: IIR Filter Transformations
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Continuous Time Filters

8: IIR Filter Classical continuous-time filters optimize tradeoff: ;
> Continuous Time passband rlpplfe v stopband ripple v tranS|t|or.1 Wldth B
Bilinear Mapping There are explicit formulae for pole/zero positions. =0
Continuous Time
Fﬁters ° 9 02
L ing Pol nd ~ IT( o oz 05 1 2 5 10
Zearz: e o Butterworth: GZ(Q) = ‘H(]Q)‘ = W T Frequency (radis)
Spectral |
Transformations .
Const?ntinides e Monotonic \V/Q 08
Transtormations ~ 1 oN 3 VAN f0.6
Impulse Invariance G(Q) — _ 59 + gQ —l_ e Y
SO “Maximally flat™: 2N — 1 derivatives are zero
MATLAB routines 0
Cheb Shev: 62 Q — 1 Frequency (rad/s)
y ( ) 1+€2TZ%T(Q) 1
where polynomial Ty (cosx) = cos Nz _os
e passband equiripple + very flat at oo
Inverse Chebyshev: G?(Q) = L — ey "
1+(e2T% (1)) 1
\/V
e stopband equiripple + very flat at 0 oo
Elliptic: [no nice formula] o
e Very steep + equiripple in pass and stop bands R R

Frequency (rad/s)
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Bilinear

Mapping

8: IIR Filter
Transformations

Continuous Time
Filters

D> Bilinear Mapping
Continuous Time
Filters

Mapping Poles and
Zeros

Spectral
Transformations
Constantinides
Transformations
Impulse Invariance
Summary
MATLAB routines

Change variable: z =

a-+s PN z—1.
o —

> = aZ77! a one-to-one invertible mapping

e R axis (s) «» R axis (2)
o axis (s) <> Unit circle (2)
: _ jw N e R e i R w__ g
Proof: z = e/“es =afz5 = G =g = jatan $= jQ
e Left half plane(s) <+inside of unit circle (z)
Proof: s =« z [(ata)+iyl”
+iy e lof” = 5 2)=iuP
_ +2oz:1:+x2+y — 1+ dax
o —2ax+x2+y2 (a—x)2+y?
r<0& |z <1
e Unit circle (s) +» & axis (2)
4 s-plane| 25 z-plane| 3
3 1; oo 25
1 2
0 0.2 f\\ s 15
- '0_'? %‘S\S‘/ﬁ/ 1
:23 -1.5 0.5
4 2 0 2 ! '2-'5 2 1 0 1 2 % 2 4 6 8 10
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Continuous Time Filters

8: IIR Filter
Transformations

Continuous Time

Filters

Bilinear Mapping
Continuous Time

> Filters

Mapping Poles and

Zeros

Spectral
Transformations

Constantinides
Transformations

Impulse Invariance
Summary
MATLAB routines

Take H(s) = s2+0%23+4 and choose o = 1
Substitute: s = ozzjr} [extra zeros at z = —1]
H(z) = 1
)= ot
_ (24+1)”
T (2—=1)%40.2(2—1)(2+1)+4(2+1)?
— 22—|—22—|—1 — 019 1+22_1+z_2

5.222462+4.8 14+1.152—140.922—2

Frequency response is identical (both magnitude and
phase) but with a distorted frequency axis:

Frequency mapping: w = 2tan™! %

Q:[oz 200 3o 4o 504]
—w=1[16 22 25 265 2.75 |

- . _ _ Qo
Choosing a: Set o = tan 10 to map Qo — wo

L
2

[HI

1 2 3 4 5 6
Frequency (rad/s)

0 0.5 1 1.5 2 25 3
® (rad/sample)

Set a = 2f, = % to map low frequencies to themselves

DSP and Digital Filters (2019-6707)
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Mapping Poles and Zeros

8: IIR Filter . i
Transform:tions A|tel’natlve methOd H(S) = 1 25

2
Continuous Time s°+0.25+4 2
Filters
Bilinear Mapping

Find the poles and zeros: py, = —0.1 &+ 23

[HI

Continuous Tim : _ Qa+s — ;
Continuous Time Map using z = == = p, = —0.58 £ 0.77j
Mapping Poles and ] ] ) % 5 &
SD Zeros After the transformation we will always end up with Py (20
pectra 2 p
Transformations the same number of poles as zeros:
Constantinides 1
Transformations Add extra poles or zeros at z = —1 ;
Impulse Invariance
Summary . (1+Z_1)2 1
MATLAB routines H(z) = g x (14(0.58—0.775)z~ 1) (1+(0.58+0.775) 2~ 1) T
_ 1+2z_1—|—2_2 °
=9 X 171.15.-110.92.2 =
Choose overall scale factor, g, to give the same gain
at any convenient pair of mapped frequencies:
AtQO:O:>30:O:>|H(30)‘:O.25 -

:>w0:2tan_1%:():>zozejw0:1
= |H(20)] = g X 555 = 0.25 = g = 0.19

_ 1—|—22_1+z_2
H(2) = 01975 75,17 0.00:=

0 0.5 1 1.5 2 25 3
® (rad/sample)
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Spectral Transformations

8: IIR Filter
Transformations

Continuous Time
Filters

Bilinear Mapping
Continuous Time
Filters

Mapping Poles and
Zeros

Spectral
> Transformations

Constantinides
Transformations

Impulse Invariance
Summary
MATLAB routines

We can transform the z-plane to change the cutoff

frequency by substituting

_Z=A sz
=132 %= 1tas

Frequency Mapping:
If 2 =e7%, then 2 = z% has modulus 1
since the numerator and denominator are
complex conjugates.
Hence the unit circle is preserved.

= el = fj’:;\;é)
Some algebra gives: tan % = (%) tan%
Equivalent to:
o s=ig o Es s — A=

Lowpass Filter example:

Inverse Chebyshev

wo =T =1.57"=% &y =049

N

0 0.5 1 1.5 2 25 3
® (rad/s)

1 =06

0 0.5 1

1.5 2 25 3
A (rad/s)
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Constantinides Transformations

Transform any lowpass filter with cutoff frequency wy to:

Target Substitute Parameters
1 27l _ sin( P05 )
LAOsziss zZ — 133-1 A= sin(wo—gwl)
w < W1
woT+wq
: —1 27 h _ COS( = )
HAlghp?ss 2T =~ A= cos( 2, 21)
w > wq
. _ watwq
_ —1)—2Xpz 1+ (p+1)272 COS( 25 >
Ban 1 _(p 2 : — 2
) i ‘fpisi “ (pF1)—2ap2 1+ (p—1)5 2 cos( 22521 )
w1 w w9 Wo—wW1 wo
p = cot (#25) tan (%)
_ . watwq
1 _ (1=p)=222" "4 (p+1)2~" _ cos(=251)
. B;”‘E'St;‘{ © T FD—E TH 1)z 2 T cos(22551)
w1 w w9 A
p = tan (2221 tan ()

Bandpass and bandstop transformations are quadratic and so will double the order:

1 Lowpass ' ' 1 Bandpags
T 0.5 $05
Oks : : : : : Oks - !
-3 -2 -1 0 1 2 3 -3 -2 - 2 3
o (rad/s) ! oA (rad/s)
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Impulse

Invariance

8: IIR Filter
Transformations

Continuous Time
Filters

Bilinear Mapping
Continuous Time
Filters

Mapping Poles and
Zeros

Spectral
Transformations
Constantinides
Transformations

> Impulse Invariance
Summary

MATLAB routines

Bilinear transform works well for a lowpass filter but the non-linear
compression of the frequency distorts any other response.

Alternative method: H(s) = h(t) 28 h[n] = T x h(nT) = H(2)
Express H(s) as a sum of partial fractions H(s) = Zfil 3

= u(t) X Z,‘Z\Ll g;ePit

Zz—l —— = has identical impulse response

Poles of H(z) are p; = ePil’ (where T =
Zeros do not map in a simple way

Impulse response is h(t )
Digital filter (Z)

j} is sampling period)

Properties:
© Impulse response correct.
@ Frequency response is aliased.

© No distortion of frequency axis.

Example: Standard telephone filter - 300 to 3400 Hz bandpass

1 = 1
Ax 0.8
— 06
T
Bilinear (fs =8 kHz) T 04
Matched at 3.4 kHz 0.2 Impulse Invariance (f = 8 kHz)
0 5 10 15 20 25 0

Analog Filter
0 0.5 1 15 2 25 3
Frequency (krad/s) ® (rad/sample)

® (rad/sample)
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Summary

8: IIR Filter
Transformations

Continuous Time
Filters
Bilinear Mapping
Continuous Time
Filters

Mapping Poles and
Zeros

Spectral
Transformations
Constantinides
Transformations
Impulse Invariance
> Summary
MATLAB routines

Classical filters have optimal tradeoffs in continuous time domain

O

©)

Order <> transition width<» pass ripple<> stop ripple
Monotonic passband and/or stopband

Bilinear mapping

©)

O

O

Exact preservation of frequency response (mag + phase)
non-linear frequency axis distortion
can choose « to map g — wqp for one specific frequency

Spectral transformations

O

©)

lowpass — lowpass, highpass, bandpass or bandstop
bandpass and bandstop double the filter order

Impulse Invariance

©)

O

Aliassing distortion of frequency response
preserves frequency axis and impulse response

For further details see Mitra: 9.
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MATLAB routines

8: IIR Filter
Transformations

Continuous Time
Filters

Bilinear Mapping
Continuous Time
Filters

Mapping Poles and
Zeros

Spectral
Transformations

Constantinides
Transformations

Impulse Invariance
Summary
> MATLAB routines

bilinear Bilinear mapping
impinvar Impulse invariance
butter Analog or digital
butterord Butterworth filter
chebyl Analog or digital
chebylord Chebyshev filter
cheby?2 Analog or digital
cheby?2ord Inverse Chebyshev filter
ellip Analog or digital
ellipord Elliptic filter

DSP and Digital Filters (2019-6707)
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9: Optimal IIR
> Design

Error choices

Linear Least Squares
Frequency Sampling
Iterative Solution
Newton-Raphson
Magnitude-only
Specification

Hilbert Relations

Magnitude <+ Phase
Relation

Summary
MATLAB routines

9: Optimal IIR Design
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Error choices

9: Optimal IIR
Design

D> Error choices
Linear Least Squares
Frequency Sampling
Iterative Solution
Newton-Raphson
Magnitude-only
Specification

Hilbert Relations

Magnitude <+ Phase
Relation

Summary
MATLAB routines

We want to find a filter H(e/¥) = Zgzjzg that approximates a target

response D(w). Assume A is order N and B is order M.

Two possible error measures:

Solution Error: Eg(w) = Wg(w) (ig:i:; — D(w))

Equation Error: Eg(w) = Wg(w) (B(e?¥) — D(w)A(e?))
We may know D(w) completely or else only |D(w)|

We minimize [” |E,(w)|” dw
where p = 2 (least squares) or co (minimax).

Weight functions W, (w) are chosen to control relative errors at different
frequencies. Wg(w) = |D(w)| ™" gives constant dB error.

We actually want to minimize E's but Eg is easier because it gives
rise to linear equations.

However if Wg(w) = 2S&) then |Ep(w)| = | Eg(w
| A(ed«)]

DSP and Digital Filters (2015-7197)
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Linear Least Squares

9: Optimal IIR
Design

Error choices
Linear Least
Squares

Frequency Sampling
Iterative Solution
Newton-Raphson
Magnitude-only
Specification

Hilbert Relations

Magnitude <+ Phase
Relation

Summary
MATLAB routines

Overdetermined set of equations Ax = b (#equations > #unknowns)
We want to minimize ||e||> where e = Ax — b
le||* = eTe= (x'AT — b)) (Ax — D)

Differentiate with respect to x:
d(ele) = dxT AT (Ax — b) + (xT' AT — b)) Adx
[since d (uv) = du v + u dv]
[since ul'v = viy]

= 2dxTAT (Ax — b)
= 2dx"T (ATAX — ATb)

This is zero for any dx iff ATAx = A”b
Thus ||e||* is minimized if x = (ATA)_1 A'b
These are the Normal Equations (“Normal” because Al'e = 0)

The pseudoinverse x = ATb works even if AT A is singular and finds the x
with minimum ||x||? that minimizes ||e]||?.

This is a very widely used technique.

DSP and Digital Filters (2015-7197)
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Frequency Sampling

9: Optimal IIR
Design

Error choices

Linear Least Squares
Frequency

> Sampling

Iterative Solution

Newton-Raphson

Magnitude-only

Specification

Hilbert Relations

Magnitude <+ Phase
Relation

Summary
MATLAB routines

For every w we want: 0 = W(w) (B(e/*) — D(w)A(e?*))
= W(w) (SH blmle=™ — D(w) (1+ S0, afnje=im))

where u(w)T _ —W(w)D(w) [ e—Iw  e—J2w .. e—JNw ]
v(w)l =W (w) [ 1 e Jw e J2w ... gTiMw }
Choose K values of w, { w; WK | [with K > AN+

|K equations, M 4+ N + 1 unkowns]

(UT VvT) ( . ) —d
where U = | u(w)
V = [ V(wl)

d=| W(wi)D(w)

u(wK) },
V(wK) },
W(wi)D(wi) |

We want to force a and b to be real; find least squares solution to

(stor) siv) ) (5)=(5)

DSP and Digital Filters (2015-7197)
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Iterative Solution

9: Optimal IIR Least squares solution minimizes the E'r rather than Eg.

Design

Error choices

. %1%
Linear Least Squares However EE — ES |f WE (w) — |A(S€§i'j;| )
Frequency Sampling

D> Iterative Solution

oy e We can use an iterative solution technique:

Magnitude-only

Specification : :

o, 1 Select K frequencies {wy} (e.g. uniformly spaced)
Magnitude <+ Phase C .

Relation 2 Initialize Wg(wi) = Wg(wg)

Summary

MATLAB routines 3 Find least squares solution to

Weg(wg) (B(e?“F) — D(wi)A(e?¥")) = OVk

4  Force A(z) to be stable
Replace pole p; by (102‘)_1 whenever [p;| > 1

5 Update weights: Wg(wi) = %

6 Return to step 3 until convergence

But for faster convergence use Newton-Raphson ...
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Newton-Raphson

9: Optimal IIR
Design

Error choices

Linear Least Squares
Frequency Sampling
Iterative Solution
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Magnitude <+ Phase
Relation

Summary
MATLAB routines

Newton: To solve f(x) = 0 given an initial guess =, we write

f(@) = f(xo) + (x — o) f'(x0) = 7 = @0 — LE
Converges very rapidly once xg is close to the solution

So for each wy,, we can write (omitting the w and e/“ arguments)
Fg ~ WS (& _ D) + e (B - By) — Wsbe (4 AO)

(BO—AOD+B By — —O(A—l) Bo | B, )
From which we get a linear equation for each wy, :

( DBXOuT vl ) ( la) > =W(AOD—I—§—8—BO)

where W = VX—? and, as before, u,(w) = —W (w)D(w)e™I"
forne1: N and v, (w) = W(w)e ™7™ form € 0: M.

At each iteration, calculate Ag(e’“*) and By(e’“*) based on a and b from

the previous iteration.

Then use linear least squares to minimize the linearized E's using the above

equation replicated for each of the wy.

DSP and Digital Filters (2015-7197)
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Magnitude-only Specification
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Design
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Linear Least Squares
Frequency Sampling
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Magnitude-only
D> Specification
Hilbert Relations

Magnitude <+ Phase
Relation

Summary
MATLAB routines

If the filter specification only dictates the target magnitude: |D(w)|, we
need to select the target phase.

Solution:
Make an initial guess of the phase and then at each iteration

update /D(w) = Lﬁgzjzg

Initial Guess:
If H(e*) is causal and minimum phase then the magnitude and
phase are not independent:

ZH(e?) = —In |H(e?)| ® cot &
In |H(e/¥)| = In|H(c0)| + ZH(e?) ® cot %

where ® is circular convolution and cot z is taken to be zero for
—e < x < € for some small value of € and we take the limit as ¢ — 0.

This result is a consequence of the Hilbert Relations.
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Hilbert Relations

9: Optimal IIR
Design

Linear Least Squares
Frequency Sampling
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Specification
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Magnitude <+ Phase
Relation

Summary
MATLAB routines

We define t|n| =
Error choices T(Z)

T(el¥) =

so R (H(e?V)) = He'(ej“’)

.z 1 z 1+z*1
— 1—2"1 1—z T 1—2-1
—jw j¥ —i%
14-€ el 2 +e 72
1l—e—Jw ej%_e—j%
2cos & .
. 2 o w
27 sin & J cot 2

h[n]—even/odd parts: he[n| = %(f(L[n] + h|—n])

holn| =

S (H(e?¥)) = —jH,(e?*)
[

If h|n| is causal: h,[n] =h

e[n]t[n]
heln| = h[0]o[n] + ho|n]t[n]

Hence, for causal h[n|:

R (H(ejw))

R (H(e’)) = H(c0) + 5SS (H(ejf))) ® —jcot &
= H(o0) + S (H(e?¥)) ® cot ¥

= —j (R(H(e?¥)) ® —j cot £)

= —R (H(e!)) ® cot ¥

oQ‘P‘???TTTTO TTT???‘P‘PO

h,nl

TTTT????Q

T
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Magnitude <+ Phase Relation

9: Optimal IIR
Design
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Linear Least Squares
Frequency Sampling
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Newton-Raphson
Magnitude-only
Specification

Hilbert Relations

Magnitude <«
> Phase Relation

Summary
MATLAB routines

_ H0=am="")
~IT=pnz D)
InH(z) =In(g) + > In (1 — gpnz~!)

—> In(1-ppzt)
=1In|H(2)| +j£H(2)

Given H(z)

Taylor Series:
In (1 — az_l) = —az ! — “2—22_2 a’ =3
causal and stable provided |a| < 1
So, if H(z) is minimum phase (all p,, and g, inside
unit circle) then In H(z) is the z-transform of a
stable causal sequence and:

ZH(e?) = —In |H(e?¥)| ® cot &
In |H(e/*)| =In|g| + ZH(eI¥) ® cot &

10—72"1
100—40z—1—112—"2+4+68z—3

Example: H(z) =

Note symmetric dead band in cot & for |w| < €

-05

1 I
0.5

0

-1 i

-5 -1 -0.5 0 0.5 1
z

-3 -2 -1 1 2 3

0
w (rad/s)

-3 -2 -1 1 2 3

0
w (rad/s)

-3 -2 -1 0 1 2 3
w (rad/s)
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Summary
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Magnitude-only
Specification
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Magnitude <+ Phase
Relation

> Summary
MATLAB routines

Want to minimize solution error, Eg, but E'r gives linear equations:
o FEg(w)=Wg(w) (igzng — D(w))
o Fg(w)=Wg(w) (B(ejw) — D(w)A(ejw))

o use W,(w) to weight errors at different w.

Linear least squares: solution to overdetermined Ax = b
. —1
o Least squares error: x = (ATA) A'b

Closed form solution: least squares Ep at {wy}

o use Wg(w) = &V(Seg“jg' to approximate Eg

o use Taylor series to approximate Eg better (Newton-Raphson)

Hilbert relations
o relate R (H (e7“)) and S (H (e?“)) for causal stable sequences

o = relate In|H (e/*)| and ZH (e?*) for causal stable minimum
phase sequences

For further details see Mitra: 9.
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MATLAB routines
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Design

Error choices
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Summary
> MATLAB routines

invfreqz

lIR design for complex response
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10: Digital Filter Structures
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Filter: H(z) = igi; with input z[n| and output y[n]

y[n] = 3plo blklaln — k] — 3, alkly[n — K
Direct forms use coefficients alk] and b|k| directly

Direct Form 1:
e Direct implementation of difference equation
e Can view as B(z) followed by ﬁ

Direct Form II:
e Implements ﬁ followed by B(z)

e Saves on delays (= storage)

DSP and Digital Filters (2017-10122)

Structures: 10 -2 / 19



Transposition
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State Space +
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Implementation
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Lattice Stage +
Example
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Allpass Lattice
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Lattice Example

Lattice Example
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Summary
MATLAB routines

Can convert any block diagram into an equivalent transposed form:

e Reverse direction of each interconnection
Reverse direction of each multiplier

[
e Change junctions to adders and vice-versa
[

Interchange the input and output signals

Example:

Direct form Il — Direct Form I,
Would normally be drawn with input on the left

Note: A valid block diagram must never have any feedback loops that don't

go through a delay (27! block).

|

<y[n

DSP and Digital

Filters (2017-10122)
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State Space +

10: Digital Filter v|n| is a vector of delay element outputs x[n] bO] Ml
irect Forms (1) *

Eransp:sition Can write: v[n + 1] = Pv|n] + qx|n] +V1 g

A y[n] = r'vn] + sz[n] Z!

Coefficient Sensitivity ] b[l] _a[l]
Cascaded Biquads {P, q,r’, 3} is the state-space '—D—ﬁr}—ﬁ—'
ole-zero . .

2 representation of the filter structure. Y2

Pairing/Ordering

—1

Linear Phase Z
e e The transfer function is given by: b[2|>] @ _%2]
Allpass Filters T
attice Stage _ B(2») _ det(zI—P—|—qr )
Ex(ar?"';;( ) ' H(2) = 32y = —dacrpy ~ T8~ 1
Allpass Lattice The transposed form has P — P? and q < r = same H(z)
Lattice Filter
t::::: E::::: Example: Direct Form Il;
Numerator
IO _( —a[l] 1 _ ( bl1] = b[0]a[1]
MATLAB routin P = ( —CL[Q] 0 ) q= ( 62] B b[O]CL[Q]

r'=(1 0) s = b[0]

From which H(z) = b[g]zzjczl{][i]j:[g[]ﬂ
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[State-Space — Transfer Function]

[This is not examinable]

We start by proving a useful formula which shows how the determinant of a matrix, A, changes when
you add a rank-1 matrix, qu, onto it. The formula is known as the Matrix Determinant Lemma. For
any nonsingular matrix A and column vectors q and r, we can write

1 T 1+rTA=1q 0T \ 1 of 1 r’
0O A —AIq | o —q 1 0 A+qr?l /)

It is easy to verify this by multiplying out the matrices. We now take the determinant of both sides
making use of the result that the determinant of a block triangular matrix is the product of the
determinants of the blocks along the diagonal (assuming they are all square). This gives:

I'T
det (A) x (1+rT’A~1q) =det (A +qr’) = r’'A—1q = det(Atar’) 1

det(A)
Now we take the z-transform of the state space equations
v[n + 1] = Pvn| 4+ qz[n] A 2V =PV 4+ qgX
Z—1Transiorm
y[n] = rTv[n] + sz[n] Y =rTV 4 sX

The upper equation gives (z2I — P)V = qX from which V = (zI — P)_1 qX and by substituting this
det(zI—P+qu)

in the lower equation, we get % =T (zI-P) lq+s = deeei Py~ Ts— L

DSP and Digital Filters (2017-10122) Structures: 10 — note 1 of slide 4
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Summary
MATLAB routines

If all computations were exact, it would not make any difference which of
the equivalent structures was used. However ...

e C(Coefficient precision
Coefficients are stored to finite precision and so are not exact.
The filter actually implemented is therefore incorrect.

e Arithmetic precision
Arithmetic calculations are not exact.
o Worst case for arithmetic errors is when calculating the
difference between two similar values:
1.23456789 — 1.23455678 = 0.00001111: 9 s.f. — 4 s.f.
Arithmetic errors introduce noise that is then filtered by the transfer
function between the point of noise creation and the output.
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Coefficient Sensitivity

10: Digital Filter
Structures

The roots of high order polynomials can be very sensitive to small changes

Direct Forms
Transposition
State Space

Precision Issues
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> Sensitivity

Cascaded Biquads

Pole-zero
Pairing/Ordering
Linear Phase

Hardware
Implementation

Allpass Filters
Lattice Stage
Example

A(z) + D(=z)
Allpass Lattice
Lattice Filter
Lattice Example

Lattice Example
Numerator

Summary
MATLAB routines

in coefficient values.

T Wilkinson's polynomial: (famous example)

f(x) = Hiozl (x —n) = 220 — 2102 + 20615218 — ...

has roots well separated on the real axis.
Multiplying the coefficient of 21 by 1.000001 moves the roots a lot.

+ “Speaking for myself | regard it as the most traumatic experience in
my career as a numerical analyst”, James Wilkinson 1984

5 5

0} ©0000000000000000000 1 o-®®®®®®o"ooooooooooooo

5 5

0 5 10 15 20 25 0 5 10 15 20 25

Moral: Avoid using direct form for filters orders over about 10.
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Avoid high order polynomials by factorizing into quadratic terms:

where K = max ([%W :

The term

H(1+bk 12

Ybp oz )

14+bg 12" by 22

H(1+ak 127 tag 2272)

2 1)

14+ar 12

We need to choose:

1‘|‘CLk, z

91T

1+bk,1z_

1 —2
+b 22

l4+ak 127 +ak 2272

—2
— is a biquad (bi-quadratic section).

(a) which poles to pair with which zeros in each biquad
(b) how to order the biquads

Direct Form Il
Transposed

x[n]

AT

z

bl,l —al,l
L p

—1
z

b1,2 —ai12

e

z

-1
z

bK,l —aK’l

bf,z —Aagp

y[n]
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Example: Elliptic lowpass filter I o
2 pole pairs and 2 zero pairs - -
need 2 biquads 05 .
. g
Noise introduced in one biquad is amplified T o 1

by all the subsequent ones:

e Make the peak gain of each biquad as small as possible
o Pair poles with nearest zeros to get lowest peak gain
begin with the pole nearest the unit circle
o Pairing with farthest zeros gives higher peak biquad gain

e Poles near the unit circle have the highest peaks and introduce most
noise so place them last in the chain

Nearest | 20 Farthest |

Gain (dB)

Gain (dB)
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Implementation can take advantage of any symmetry in the coefficients.

Linear phase filters are always FIR and have symmetric (or, more rarely,
antisymmetric) coefficients.

H(z) = S0y hlm]z ™ MM = m] = hlm]
= [M] ¥ 4 020 Blm] (=7 2 M)

For M even, we only need % + 1 multiplies instead of M + 1.
We still need M additions and M delays.

[m even]

For M odd (no central coefficient), we only need - multiplies.

DSP and Digital Filters (2017-10122)
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Software Implementation:
All that matters is the total number of multiplies and adds

Hardware Implementation:
Delay elements (27 1) represent storage registers
The maximum clock speed is limited by the number of sequential
operations between registers

Example: Symmetric Linear Phase Filter

Direct form: Maximum sequential delay = 4a + m
Transpose form: Maximum sequential delay = a + m ©
a and m are the delays of adder and multiplier respectively

h[3] h[2] h[1] h[0]
o 1 =
1 e = yin]
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Allpass filters have mirror image numerator and denominator coefficients:
bn] = a|N — n| & B(z) =2NA(z71)
= |H (/)| = 1Vw

There are several efficient structures, e.g.

e First Order: H(z) = ﬂﬂﬁfz__ll

e Second Order: H(z) = 1“+[2;[+1§1]1i;[+2f;_22

Allpass filters have a gain magnitude of 1 even with coefficient errors.
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Suppose G is allpass: G(z) = Z_NAf‘éS_l)
V(Z) = X(Z) — kGZ_l‘/(z)
= V(2) = mpe=r X (2)

k+2" '@ X

Y(2)=kV(2)+Gz71V(z) = B Tepety (2)

Y(2) _ kA()+z2 N 71AGETYH a 2~V DT

X(2) — A(z) k2 N-TA(z-1) D(2)
Obtaining {d|n]} from {a[n|}:
(1 n=~0
dn|=4qa[n|+ka[N+1—n] 1<n<N
G n=N-+1
Obtaining {a[n]} from {d|n]}:
k=d[N +1 afn] =
Y(z) -

If G(z) is stable then X () Is stable if and only if |k| < 1 (see note)

DSP and Digital Filters (2017-10122)
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[Proof of Stability Criterion]

—1
We want to show that if G(z) is a stable allpass filter then };22 = 1k:kzz_1%((?)

k| < 1.

is stable if and only if

We make use of a property of allpass filters (proved in a note in lecture 5) that if G(z) is a stable allpass

filter, then |G(2)] % 1 according to whether |z § 1.

If z is a root of the denominator 1 4+ k2~ 1G(z), then

kz"1G(z) = -1

= |kl x 27 x|G(z)] = 1
]
= |k
G (2)]
It follows from the previously stated property of G(z) that |z| § 1 & % § 1 & |k § 1

DSP and Digital Filters (2017-10122) Structures: 10 — note 1 of slide 12
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Suppose N =3, £ = 0.5 and

A(z) =144zt — 6272+ 10277
A(z) = D(z2)
P I A A N B
A(z) 1 4 | —6 | 10
24 A(z7Y) 10 | —6 | 4 1
D(z) = A(2) + kz"*A(z7%) | 1 9 | =9 | 12 | 0.5
D(z) = A(z)
2V | 272 23]
D(z) 1 9 -9 12 | 0.5
k=d|N +1] 0.5
z74D(z7 1) 0.5 | 12 | -9 9 1
D(z) —kz"*D(z™%) 0.75 3 —4.5 | 7.5
A(z) = 2=k D) | g | g | 6 | 10 | 0
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z_MA(z_l)
A(2)

We can implement any allpass filter H(z) = as a

with M stages:

e Initialize Ay/(2) = A(2)
e Repeatform=M:-1:1

o  klm] = am|m]

O Am_1|n] = “m[”l—l’f_[zg]m[m—”] for0<n<m-1

AWL(Z)_k‘[m]ZimAWL(Zil)
1—k2[m]

equivalently A,,_1(z) =

A(z) is stable iff |k[m]| < 1 for all m (good stability test)

lattice filter

x[n] + H - —(F
—k[M] —k[M-1] —k[1]
k[M] k[M—1] k[1]
y[n] ! P z!

DSP and Digital Filters (2017-10122)
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Lattice Filter

upn] uy1[n] ui[n] up[n]
x[n] ¥ i/—I--\ ¥ *
k[ M] HM-1] K1]
k[M] k[M-1] k[1]
y[n] ! P —— z!
vuln] Vai[n] vi[n] vo[n]
. Vo (2 27T™A, (271
Label outputs u,,[n] and v,,[n] and define H,,(z) = UmEz; = Am(i) )
From earlier slide (slide 12):
U’m,—l(z) — 1 — Am—l(z) — Am—l(z)
Unm(2) 1+k[m]z—'H,,_1(2) Am—1(2)+k[m]z—mA,,_1(z—1) A (2)
Hence:
Un(z) _ Amn(2) Vi (2) _ Umn(2) Vin(z) z_mAm(z_l)
X(z) — A(2) and X(z) — X(2) X Un(z) A(z)

The numerator of \;?(22)) is of order m so you can create any numerator of order M by

summing appropriate multiples of V,,,(2):

M M e 2T™A (2t
wln] = Yon_g cmtm[n] = W(z) = L= Az) o

DSP and Digital Filters (2017-10122) Structures: 10 — 15 / 19



Lattice Example

upn] up1[n] u[n] uo[n]
x[n] ¥ t@\ i@\ T
—k{3] —k(2] —k[1]
k[3] k[2] k(1]
y[n] ! ! z !
v3[n] vo[n] vi[n] vo[n]

A(z) = A3(2) =1+0.2271 —0.23272 + 0.2273

[1, 0.2, —0.23]—0.2[0.2, —0.23, 0.2]

o k3 =02=as]]= —0.2(0 — [1, 0.256, —0.281]
o k2 — _0.981 :>CL1[] _ 1, O.256]-|—(1)fg.12[8—102.281, 0.256] _ [1’ 0357]
o k[1]=0.357T=ap[| =1

Vo(z) _ 1 Vi(z) _ 0.3574z "

X(z)  140.2271-0.2327240.22—3 X(z) = 140.2271-0.2327240.2273

Va(z) _ _ —0.28140.2562" "42—7 Va(z2) _ 0.2-0.2327"40.25" %4277

X(z) = 140.22=1-0.23272+40.22—3 X(z) = 140.22=1-0.2327240.22—3

Add together multiples of

Vim (2)

B(z)

to create an arbitrary TT035-T-095: 270353

DSP and Digital Filters (2017-10122)
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Lattice Example Numerator

Form a new output signal as w[n| = Z%:o Crn U 1]

N—"
= X
|
=
SEEEJS
|
==
BN»
H ==&
| <
= I A
2 Q=E=0
==
N\
S T 5
5 ey

M B(z i
W(z) = 2 im0 CmVim(2) = 1—|—O.2z—1—0.§3)z_2—|—0.2z—3X(z) 2
vs[n] [n] [ 1
Vo(2) _ 1 Vi(z) _ 0.3574+2""1
X(z)  140.22—1-0.23272+40.22—3 X(z)  140.2271-0.2327240.22—3
Vo(2) _  —0.28140.2562 ' 422 Vi(z) _ 0.2-0.232"'40.22" 24273
X(z) = 140.22=1-0.23272+40.22—3 X(z) — 140.22=1-0.2327240.22—3
b|0] 1 0357 —0.281 0.2 Co
b[1] 10 1 0.256 —0.23 C1
Wehavel yor [=1 0 o0 1 0.2 co
b[3] 0 0 0 1 C3
co 1 0.357 —0.281 0.2 )
Hence choose ¢, as | <1 | = 0 ! 0.256 —0.23 blL
c3 0 0 0 1 b|3]
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Summary

10: Digital Filter
Structures

Direct Forms
Transposition

State Space +
Precision Issues
Coefficient Sensitivity
Cascaded Biquads

Pole-zero
Pairing/Ordering
Linear Phase

Hardware
Implementation

Allpass Filters

Lattice Stage +
Example

A(z) + D(z)
Allpass Lattice
Lattice Filter

Lattice Example

Lattice Example
Numerator

> Summary
MATLAB routines

Filter block diagrams
o Direct forms
o Transposition
o State space representation

Precision issues: coefficient error, arithmetic error

o cascaded biquads

Allpass filters

o first and second order sections

L attice filters

o Arbitrary allpass response

o Arbitrary IIR response by summing intermediate outputs

For further details see Mitra: 8.
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MATLAB routines

10: Digital Filter
Structures

Direct Forms
Transposition

State Space +
Precision Issues
Coefficient Sensitivity
Cascaded Biquads

Pole-zero
Pairing/Ordering
Linear Phase
Hardware
Implementation

Allpass Filters

Lattice Stage +
Example

A(z) + D(z)
Allpass Lattice
Lattice Filter

Lattice Example

Lattice Example
Numerator

Summary
> MATLAB routines

residuez

b(z_l) ’r‘k
a(z—1) — Zk 1—prz—1

tf2s0s,sos2tf

b(z_l) bo,1+b1,12
<11

_1-|-b2,lz_

a(z—1) 1—}—a1,lz_1—|—a%,lz_2
b b1z "+by 2z~
zp2s0s,5052zp | {Zm, Pk, 9} < [, 104;1;;1,;;_1ia22,’;z_2
= Ax + Bu
Zp2ss,5527 ZmsPks G
P P {2 Pr: 9} y=Cx+ Du
=1 =A B
tf2ss,ss2tf bg—_i) YRS v bu
az y=Cx+ Du
poly poly(A) = det (2I—A)
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11: Multirate
> Systems

Multirate Systems
Building blocks
Resampling Cascades
Noble Identities
Noble Identities Proof
Upsampled
z-transform

Downsampled
z-transform

Downsampled
Spectrum

Power Spectral
Density +

Perfect
Reconstruction

Commutators
Summary
MATLAB routines

11: Multirate Systems
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Multirate Systems

11: Multirate Systems Multirate systems include more than one sample rate

> Multirate Systems
Building blocks

Resampling Cascades Why bOther?

Noble Identities

Noble Identities Proof e May need to change the sample rate

psample . .

z-transform e.g. Audio sample rates include 32, 44.1, 48, 96 kHz

Downsampled

z-transform . . . .

Downsampled e Can relax analog or digital filter requirements

Spectrum . . . .
Power Spectral e.g. Audio DAC increases sample rate so that the reconstruction filter
oo * can have a more gradual cutoff

Reconstruction .

Commutators e Reduce computational complexity

Summary . . . .

MATLAB routines FIR filter length o if where Af is width of transition band

Lower f, = shorter filter + fewer samples =-computation oc f?
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Building blocks

11: Multirate Systems

Multirate Systems
D> Building blocks

Resampling Cascades
Noble Identities
Noble Identities Proof
Upsampled
z-transform
Downsampled
z-transform
Downsampled
Spectrum

Power Spectral
Density +

Perfect
Reconstruction

Commutators
Summary
MATLAB routines

Downsample
Upsample

Example:

Dl L yfm] = o {Km)
u[m] 1K v[n] U[n] _ g[%} ll( | n
else

Downsample by 3 then upsample by 4

wln] x[m]

3:1

1:4

yir]

PSS T N
T 7T T

e We use different index variables (n, m, r) for different sample rates

e Use different colours for signals at different rates (sometimes)

e Synchronization: all signals have a sample at n = 0.

DSP and Digital Filters (2017-9045)
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Resampling Cascades

11: Multirate Systems

Multirate Systems
Building blocks
Resampling
Cascades
Noble Identities
Noble Identities Proof
Upsampled
z-transform
Downsampled
z-transform
Downsampled
Spectrum
Power Spectral
Density +
Perfect
Reconstruction
Commutators
Summary
MATLAB routines

Successive downsamplers or up-
samplers can be combined

Upsampling can be exactly inverted

Downsampling destroys information
permanently = uninvertible

Resampling can be interchanged
iff P and Q are coprime (surprising!)

@’n

[=

P:10:1—
1:P—1:0—
1:P—P:1—
Pl1—1:P—
P10 =

= —PO:1|—
= —1:PO——
=+

Lo P

Proof: Left side: y[n] = w {1 ] =x {gn} if Q| n else y[n] =0.

Right side: v[n] =u[Pn] ==z [gn] if Q| Pn.

But {Q | Pn = @ | n} iff P and @ are coprime.

[Note: a | b means “a divides into b exactly”]
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Noble Identities

11: Multirate Systems

Multirate Systems
Building blocks
Resampling Cascades
> Noble Identities
Noble Identities Proof
Upsampled
z-transform
Downsampled
z-transform
Downsampled
Spectrum

Power Spectral
Density +
Perfect
Reconstruction
Commutators

Summary
MATLAB routines

—1:QHHE?) -

Resamplers commute with addi- }}P:Q_ -
tion and multiplication

AP0 =
Delays must be multiplied by the 1214z |-
resampling ratio —z'"H1:0F
Noble identities: 191 HE)
Exchange resamplers and filters THo 10
Corrollary THo - =

Example: H(z) = h[0] + h[1]z71 + h[2]e72 + - -
H(z%) = h[0] + h[1]z73 + h[2)25 + -

1:0
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Noble Identities Proof

11: Multirate Systems

Multirate Systems
Building blocks
Resampling Cascades
Noble Identities

Noble Identities
> Proof
Upsampled
z-transform
Downsampled
z-transform

Downsampled
Spectrum

Power Spectral
Density +

Perfect
Reconstruction

Commutators
Summary
MATLAB routines

Define hg|n] to be the X[
impulse response of H(2%).

Assume that h[r] is of length M + 1 so that hg|n] is of length QM + 1.
We know that hg[n] = 0 except when Q) | n and that h|r| = hg[Qr].

wlr] = v[Qr] = 2 hols]z[Qr — s
=M hol@mlz[Qr — Qm) = SN hm2[Q(r — m)]

u[r] H(Z) y[”] —_ m H(ZQ) V[n] W[r]

Q:1 0:1

= Y=o hlmlulr — m] = y[r] ©
Upsampled Noble Identity: il iy LA ppyoth Ul R L T ppyot i gL
We know that v[n] = 0 except when @ | n and that v[Qr] = z[r].

wln] = =25 holslvin — 5] = 3, hel@mlv[n — Qml

= o hlmlvin — Qm]
If Q1 n, then v[n — Qm] =0Vm so wn] =0 = y[n|
If Q| n=Qr, then w|Qr| = Z%:o him|v|[Qr — Qm]

= Yo hlmla[r —m] = u[r] = y[Qr] ©
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Upsampled z-transform

11: Multirate Systems _ -_n __ nil.,—n

Multirate Systems V(Z) o Zn U[’II]Z o Zn s.t. K|’I’L U[ K]Z u[m] IK V[n]
Building blocks % K :
Resampling Cascades — ulmlz— m — U z

Noble Identities Zm [ ] ( )

Noble Identities Proof U(Z)
Upsampled
z-transform

Downsampled SpeCtl’um: V(erJ) — U(@ij)

z-transform

Dewnsampled Spectrum is horizontally shrunk and replicated K times.

Spectrum

Power Spectral Total energy unchanged; power (= energy/sample) multiplied by %
Density * Upsampling normally followed by a LP filter to remove images.

Perfect
Reconstruction

Commutators Exa m p I e:

Summary

MATLAB routines K = 3: three images of the original spectrum in all.
Energy unchanged: 5- [ ’U(ej“)fdw = ’V(ej“)fdw

1:K————

1 1
305 > 05
0 2 0 2 0 2 2
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Downsampled z-transform

11: Multirate Systems 1 K—1 J27kn

Multirate Systems Deﬁne CK [n] — 5K|n [n] — i74 k=0 e K x[n] K1 y[m] 1K xx[n]
Building blocks - -
Resampling Cascades

Noble Identities NOW deflne TR [n] — x[n] | n

Noble Identities Proof
Upsampled O K 1/ n

z-transform j2mkn

[>Downsamp|ec| XK(Z) :anK[n] — KZ Zk 0_6 K x[n]z‘”

z-transform

= cx[nlz(n]

u n — ]
Soactramy = = 52_01 >, x(n] (e%’c z) = = 5201 X(eTF z)

Power Spectral
Density +

Perfect . . 1 K-—1 L
Reconstruction From pl’eVIOUS Sllde: X(Z) K Zk: 4X<€ S )
Commutators —=K: 1

Xic(2) = Y (=)

MATLAB routines 1 K—1

Frequency Spectrum: |
V(€M) = % Lo X7
—  (X(e%) + X (R %)+ X (e %)+ )
Average of K aliased versions, each expanded in w by a factor of K.
Downsampling is normally preceded by a LP filter to prevent aliasing.
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Downsampled Spectrum

11: Multirate Systems

Multirate Systems
Building blocks

Resampling Cascades
Noble Identities
Noble Identities Proof
Upsampled
z-transform
Downsampled
z-transform
Downsampled
Spectrum
Power Spectral
Density +
Perfect
Reconstruction
Commutators
Summary
MATLAB routines

; — j(w—27k)

Y(elv) = % 5:01 X(ej ) X[n] [ ylm
Example 1:

K=3 1 T :

Not quite limited to =

Shaded region shows aliasing AU [ L

Energy decreases: 5- [ ’Y(ejw)fdw ~ XL ’X(ej“)ﬁdw
Example 2:

K — 3 ! 1

Enel’gy a” |n % S |w| < 2% X 05 > 05

No aliasing: © o : /_\ 0 /_\

w w

No aliasing: If all energy is in r% < |w| < (r + 1) % for some integer r
Normal case (7 = 0): If all energy in 0 < |w| < &

Downsampling: Total energy multiplied by =~ % (= % if no aliasing)
(

Average power = unchanged (= energy/sample)

DSP and Digital Filters (2017-9045)
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Power Spectral Density

11: Multirate Systems

Multirate Systems
Building blocks
Resampling Cascades
Noble Identities
Noble Identities Proof
Upsampled
z-transform
Downsampled
z-transform
Downsampled
Spectrum

Power Spectral
> Density +

Perfect
Reconstruction

Commutators

Summary
MATLAB routines

Example: Signal in w € £0.47 4+ Tone @ w = £0.17 + White noise

Power = Energy/sample = Average PSD

= 5= |7 _PSD(w
Component powers:
Signal = 0.3, Tone = 0.2, Noise = 0.1

Upsampling:

Same energy
per second
= Power is - K

Downsampling:

Average power
is unchanged.
3 aliasing in
the +3 case.

0.13+0.18=0.3

o
[N

=0.6
o
o

0.5+0.1

PSD, |

PSD, |

I
»

o

I
IS

o
N

o

Jdw = 0.6

upsample x 2

T

AAN

T 1T 1

-2 -1 0 1 2

-3 3
Frequency (rad/samp)
downsample + 2
A i N
-3 -2 -1 0 1 2 3

Frequency (rad/samp)

=0.2

0.056 + 0.14

o
[

=0.6

0.49 + 0.11

PSD, |

PSD, |

o
w

o
)

o

o©
o)

o
IS

o
N

o

original rate
©
c 1
1
b
:J_ 4L 4L
© 0.5
o
1
o
o oft i I i _\ i il
& 3 2 a 0 1 2 3

Frequency (rad/samp)

upsample x 3

A

'

L T1T 1

Frequency (rad/samp)

downsample + 3

N i X

=

.\ﬂ:

-3 -2

-1 0 1 2 3
Frequency (rad/samp)
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[Power Spectral Density (1)]

N T
The energy, E., is the total energy in all samples while the power, P, is the average energy per

z[n] |n| <N
0 n| > N

density (PSD) is given by S;x (ej“’) = limpn o0 ﬁ }XN (ej“’) ‘2. From Parseval's theorem, P, is

The energy of a spectrum is E, = > *%° lz[n]|? and its power is Pr = limy ;oo ﬁ SN 1z [n]|?.

sample. If the finite signal zx[n] is defined as zn[n| = , then the power spectral

the average value of S, (ejw) or, equivalently, P, = % ffw Sex (ejw) dw.

The signal on the previous slide has three components: (i) a signal component with a power of 0.3
and a trapezoidal PSD with a width of +0.47, (ii) a tonal component with a power of 0.2 whose PSD
consists of two delta functions and (iii) a white noise component of power 0.1 whose PSD is constant
at 0.1. The tonal component might arise from a time-domain waveform /0.4 cos (0.17mn + ¢) where ¢
is arbitrary and does not affect the PSD.

Upsampling by K inserts additional zero-valued samples and so does not affect £, but, since there are
now K times as many samples, P, is divided by K. The original periodic PSD is shrunk horozontally by
a factor of K which means that there are now K images of the original PSD at spacings of Aw = 2Z.
So, for example, when K = 2, the central trapezoidal component has a maximum height of 0.5 and
a width of £0.27 and there is a second, identical, trapezoidal component shifted by Aw = 2% = .
When K is an even number, one of the images will be centred on w = 7 and so will wrap around from
+7 to —m. The power of each image is multiplied by K ~2 but, since there are K images, the total
power is multiplied by K—1. For the white noise, the images all overlap (and add in power), so the
white noise PSD amplitude is multiplied by K—!. Finally, the amplitudes of the delta functions are
multiplied by K2 so that the total power of all K images is multiplied by K 1.

DSP and Digital Filters (2017-9045) Multirate: 11 — note 1 of slide 10



[Power Spectral Density (2)]

Downsampling by K deletes samples but leaves the average power of the remaining ones unchanged.
Thus the total power of the downsampled spectra remains at 0.6. The downsampled PSD is the average
of K shifted versions of the original PSD that have been expanded horizontally by a factor of K. The
white noise component is the average of K identical expanded but attenuated versions of itself and so
its PSD amplitude remains at 0.1. The power of a tonal components is unchanged and so its amplitude
is also unchanged.

When downsampling by a factor of K = 3, the original width of the trapezoidal component expands
from +0.47 to £1.27 which exceeds the 7 range of the graph. Thus, as w approaches 7, the PSD
of the signal component is decreasing with w but has not reached 0 at w = 7. This portion of the
trapezium wraps around to w = —7 and gives rise to the little triangle of additional noise in the range
—7 < w < —0.87 where it adds onto the white noise component. In a similar way, the portion of the
trapezium that overflows the left edge of the graph gives rise to additional noise at the right of the
graph in the range 0.87 < w < 7.

Summary of Spectral Density Changes: Width x Height (xImages)

Energy and Power Energy Spectral Density Power Spectral Density
Spectral Densities Up: 1: K Down: K : 1 Up: 1: K Down: K : 1
Alias-free block K=l x 1(xK) K x K—2 K=l x K71 (xK) K x K1
Tone: 6(w — wp) 1 x K71 (xK) 1x K1 1x K=2 (xK) 1x1

White Noise 1x1 1x K1 1x K1 1x1
Integral [ dw x 1 ~ x K1 x K1 ~ x1
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Perfect Reconstruction

11: Multirate Systems

Multirate Systems
Building blocks
Resampling Cascades
Noble Identities
Noble Identities Proof
Upsampled
z-transform
Downsampled
z-transform
Downsampled
Spectrum

Power Spectral
Density +

Perfect
Reconstruction

Commutators

Summary
MATLAB routines

x
U
D
v
q
w
Y

S35333F

b e

cdefghijklmn
c £ i 1
-c--f--i--1
h k
-bc-ef-hi-kl

a d g J
abcdefghi jkl

Xl faypdmliys]
o 1
3 P {}g[n]
o1 o1
3 Pl é"[n] il

Input sequence z[n] is split into three streams at 3 the sample rate:

ulm] = x|3m|, vm] = z[3m — 1], wm| = z[3m — 2]

Following upsampling, the streams are aligned by the delays and then added

to give:

yln] = x[n — 2]

Perfect Reconstruction: output is a delayed scaled replica of the input

DSP and Digital Filters (2017-9045)
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Commutators

11: Multirate Systems

Multirate Systems
Building blocks

Resampling Cascades
Noble Identities
Noble Identities Proof
Upsampled
z-transform
Downsampled
z-transform
Downsampled
Spectrum

Power Spectral
Density +
Perfect
Reconstruction

> Commutators
Summary

MATLAB routines

3:1

1:3

3:1

1:3

3:1

1:3

=
q[n]
é yin]

1

(%
w

[m +
m +

|

cdefghijklmn
c £ i 1
b e h k
a d g ]

e h k 1

d g j m

abcdefghijkl

The combination of delays and downsamplers can be regarded as a
commutator that distributes values in sequence to u, w and v.
Fractional delays, 273 and z7 3 are needed to synchronize the streams.
The output commutator takes values from the streams in sequence.

For clarity, we omit the fractional delays and regard each terminal, o, as
holding its value until needed. Initial commutator position has zero delay.

x[n]

o

o

u[m] 727,
717 v[m] 7153, yln]
723 wlm] *

ulm]

O

yln]

x[n] Fc

N

The commutator direction is against the direction of the 2! delays.

DSP and Digital Filters (2017-9045)
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Summary

11: Multirate Systems e Multirate Building Blocks
Multirate Systems 1:- K
iuildingl.bloc(!(s ; o Upsample: X(Z) 5 X(ZK)
esampling ascadades .
Noble Identities Invertible, Inserts K — 1 zeros between samples

Noble Identities Proof
Upsampled
z-transform
Downsampled
z-transform

Shrinks and replicates spectrum
Follow by LP filter to remove images

govnsampled o Downsample: X(z) Bl ” kK:_Ol X(e _Jiﬁkz%)

power Spectral Destroys information and energy, keeps every K™ sample
Perfect Expands and aliasses the spectrum

Commutators Spectrum is the average of K aliased expanded versions
,\D,,:T"'L",:;a',‘;utines Precede by LP filter to prevent aliases

e Equivalences
o Noble Identities: H(z) +— H(2*)
o Interchange P : 1 and 1: Q iff Pand () coprime

e Commutators
o Combine delays and down/up sampling

For further details see Mitra: 13.
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MATLAB routines

11: Multirate Systems

resample

Multirate Systems

change sampling rate

Building blocks
Resampling Cascades
Noble Identities
Noble Identities Proof
Upsampled
z-transform
Downsampled
z-transform
Downsampled
Spectrum

Power Spectral
Density +
Perfect
Reconstruction
Commutators
Summary

> MATLAB routines
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12: Polyphase
D> Filters

Heavy Lowpass
filtering

Maximum Decimation
Frequency

Polyphase
decomposition

Downsampled
Polyphase Filter

Polyphase Upsampler
Complete Filter

Upsampler
Implementation

Downsampler
Implementation

Summary

12: Polyphase Filters
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Heavy Lowpass filtering

12: Polyphase Filters

Heavy Lowpass
filtering
Maximum Decimation
Frequency

Polyphase
decomposition

Downsampled
Polyphase Filter

Polyphase Upsampler
Complete Filter

Upsampler
Implementation

Downsampler
Implementation

Summary

Filter Specification:
Sample Rate: 20 kHz N
Passband edge: 100 Hz (w; = 0.03) =0
Stopband edge: 300 Hz (w2 = 0.09) [H(e")
Passband ripple: +0.05 dB (§ = 0.006) = R
Stopband Gain: —80 dB (e = 0.0001) T — p

This is an extreme filter because the cutoff frequency is only 1% of the
Nyquist frequency.

Symmetric FIR Filter:
Design with Remez-exchange algorithm

Order = 360

0\ 0
20 M=360 20

S -40 $ -40 . 2
T 60 T 60
-80

. NN
0 0.05 0.1
w (rad/s) w (rad/s)
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Maximum

Decimation Frequency

12: Polyphase Filters

Heavy Lowpass

filtering
Maximum
Decimation

> Frequency

Polyphase
decomposition

Downsampled
Polyphase Filter

Polyphase Upsampler
Complete Filter

Upsampler
Implementation

Downsampler
Implementation

Summary

If a filter passband occupies only a small fraction
of |0, 7|, we can downsample then upsample
without losing information.

MH(z) —4:1+1:4 —[%M

Downsample: aliased components at offsets of

2?77 are almost zero because of H(z)

. 27
Upsample: Imag.es spaced at <% can b.e
removed using another low pass filter

To avoid aliasing in the passband, we need

— Witws2

27
T T W2 2wl

[HI (dB)

w=2m/4 K=4

[Y/X]| (dB)

w=2m/7 K=7

L

[Y/X]| (dB)

Centre of transition band must be < intermediate Nyquist freq, 7

We must add a lowpass filter to remove the images:

—~H(z)[H 7:1 [ 1:7|—l>7—|LPF|—

Passband noise = noise floor at output of H(z) plus 10log,, (K — 1) dB.
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Polyphase Filters: 12 -3 / 10



Polyphase decomposition

12: Polyphase Filters

Heavy Lowpass
filtering

Maximum Decimation
Frequency

Polyphase
decomposition

Downsampled
Polyphase Filter

Polyphase Upsampler
Complete Filter

Upsampler
Implementation

Downsampler
Implementation

Summary

For our filter: original Nyquist frequency = 10 kHz and transition band
centre i1s at 200 Hz so we can use K = 50.

We will split H(z) into K filters each of order R — 1. For convenience,
assume M + 1 is a multiple of K (else zero-pad h[n]).

Example: M =399, K =50= R =M+l =38

=m0 h[m]z‘m + Yo hlm + Kz~ (mHO [R terms]
—m—Kr
Z Z [m + KT]Z x[n] : HO(ZK)
1 =R-1 e '
) Zm:o ) ZT:O fmlrle™ Z}'— Hy(z")
where hp,[r] = hlm + K] ' |
o Zm 0 27" Hpy, (ZK> Z|_1 |
Example: M =399, K =50, R =8 Y—HK.1(ZK)>—£9M
hs[r] = [h[3], h[53], -- -, h[303], h[353]]

This is a polyphase implementation of the filter H(2)
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Downsampled Polyphase Filter

12: Polyphase Filters

Heavy Lowpass
filtering

Maximum Decimation
Frequency

Polyphase
decomposition

Downsampled
D> Polyphase Filter

Polyphase Upsampler
Complete Filter

Upsampler
Implementation

Downsampler
Implementation

Summary

H(z) is low pass so we downsample its
output by K without aliasing.

The number of multiplications per input
sample is M + 1 = 400.

Using the Noble identities, we can move
the resampling back through the adders
and filters. H,,(2®) turns into H,,(z)
at a lower sample rate.

We still perform 400 multiplications but
now only once for every K input
samples.

Hy(")

Hy(z")

HK_I(ZK)P—ng Fainit

K:1— H()(Z)

K:1— Hl(Z)

K:1H He (2) utl

Multiplications per input sample = 8 (down by a factor of 50 ©®) but v[n|

has the wrong sample rate (®).
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Polyphase

Upsampler

12: Polyphase Filters

Heavy Lowpass
filtering
Maximum Decimation
Frequency
Polyphase
decomposition
Downsampled
Polyphase Filter
Polyphase
Upsampler
Complete Filter
Upsampler
Implementation
Downsampler
Implementation

Summary

To restore sample rate: upsample and
then lowpass filter to remove images

We can use the same lowpass filter,
H(z), in polyphase form:

K—1 _pm~—R-1 _Kr
Zm:O z ZrzO h’m [T]Z K
This time we put the delay z=™ after

the filters.

Multiplications per output sample =
400

Using the Noble identities, we can move
the resampling forwards through the
filters. H,,(2%) turns into H,,(z) at a
lower sample rate.

Multiplications per output sample = 8
(down by a factor of 50 @).

Yy ke A2

Ho(z") uu
]

—1
\—HK_l(ZK) }!

W, P bk

v[i] 1:K

Hy(z) MK

@iﬁ

LHK_I(Z) 1K A
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Complete Filter

12: Polyphase Filters

Heavy Lowpass
filtering

Maximum Decimation
Frequency

Polyphase
decomposition
Downsampled
Polyphase Filter
Polyphase Upsampler
> Complete Filter
Upsampler
Implementation
Downsampler
Implementation

Summary

x[n]

H(z) K1

vli]

The overall system implements:

1:K— H(2) —[%M

Need an extra gain of K to compensate for the downsampling energy loss.

Filtering at downsampled rate requires 16 multiplications per input sample
(8 for each filter). Reduced by 4 from the original 400.

H(e’%) reaches —10 dB at the downsampler
Nyquist frequency of .

Spectral components > % will be aliased
down in frequency in V(e?%).

For V (e’%), passband gain (blue curve)
follows the same curve as X (e’%).

Noise arises from K aliased spectral intervals.

Unit white noise in X (e’“) gives passband
noise floor at —69 dB (red curve) even
though stop band ripple is below —83 dB
(due to K — 1 aliased stopband copies).

IH| (dB)

V| (dB)

0
-20
-40
60 ©y w50 \ %%
-80 AA]
0 0.05 0.1
w (rad/s)
0
-20
-40 1
-60
80 1 2 3

w (downsampled)
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Upsampler Implementation

12: Polyphase Filters

Heavy Lowpass
filtering

Maximum Decimation
Frequency

Polyphase
decomposition

Downsampled
Polyphase Filter

Polyphase Upsampler
Complete Filter

Upsampler
Implementation

Downsampler
Implementation

Summary

We can represent the upsampler
compactly using a commutator.
Sample y[n] comes from Hy(2)
where k =n mod K.

[‘@Qf" indicates the sample rate]

Hy(z) comprises a sequence of 7
delays, 7 adders and 8 gains.

We can share the delays between
all 50 filters.

We can also share the gains and
adders between all 50 filters and
use commutators to switch the
coefficients.

v[i% Ho(2)
L Hi(z) b | n]
i

' @50
HK_l(Z) p—o
v[i] o[ V[i=T] )M
@l T? z 50
"?Zh[o]"ih[w] "ihBSO]
), (B
"?Zh[l]‘ AS1] $1A[351]
I I I
O——@—
1(/@[/1% oy R o v[i—7]
h[0] O;Ei n
1]~ W) &) %52)
h[49]—o

We now need 7 delays, 7 adders and 8 gains for the entire filter.

DSP and Digital Filters (2016-9045)

Polyphase Filters: 12 -8 / 10



Downsampler Implementation

12: Polyphase Filters

Heavy Lowpass
filtering

Maximum Decimation
Frequency

Polyphase
decomposition

Downsampled
Polyphase Filter

Polyphase Upsampler
Complete Filter

Upsampler
Implementation

Downsampler
Implementation

Summary

We can again use a commutator.
The outputs from all 50 filters are
added together to form w|i].

We use the transposed form of
H,,(z) because this will allow us
to share components.

We can sum the outputs of the
gain elements using an
accumulator which sums blocks of
K samples.

Now we can share all the
components and use commutators
to switch the gain coefficients.

We need 7 delays, 7 adders, 8
gains and 8 accumulators in total.

ulnl i)
h[350]

h[351] —o IZ
h[399] ~ KX
x[n]

vli]
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Summary

L2e=aP°'Lv:h::sF“t=fs e Filtering should be performed at the lowest possible sample rate
leavy w . .
fleering o reduce filter computation by K

aximum Decimation . . .
Frequency o actual saving is only & because you need a second filter
Polyphase .
S e o downsampled Nyquist frequency > max (Wpassband ) %
Downsampled
Polyphase Filter - . K-1 _
Polyphase Upsampler e Polyphase decomposition: split H(z) as Y., —, 2~ ™ H,,(2")

mpl ilter
Complete Filke o each H,,(z") can operate on subsampled data

psampler

Implementation o combine the filtering and down/up sampling

Downsampler
Implementation

> Summary e Noise floor is higher because it arises from K spectral intervals that
are aliased together by the downsampling.

e Share components between the K filters
o multiplier gain coefficients switch at the original sampling rate
o need a new component: accumulator/downsampler (K : X)

For further details see Harris 5.
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13: Resampling
D> Filters

Resampling

Halfband Filters
Dyadic 1:8 Upsampler
Rational Resampling

Arbitrary Resampling
+

Polynomial
Approximation

Farrow Filter +
Summary
MATLAB routines

13: Resampling Filters
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Resampling

13: Resampling
Filters

> Resampling
Halfband Filters
Dyadic 1:8 Upsampler
Rational Resampling

Arbitrary Resampling
+

Polynomial
Approximation

Farrow Filter +

Summary
MATLAB routines

Suppose we want to change the sample rate while preserving information:

e.g. Audio 44.1 kHz+»48 kHz<++96 kHz

Downsample:

x|n ]
LPF to new Nyquist bandwidth: wy = % P pr i |21
Upsample: xli]
. . . yln]
LPF to old Nyquist bandwidth: wy = & — | LK LPF
Rational ratio: f, x & x[n] [i]
P . P HLPF O
LPF to lower of old and new Nyquist Q
bandW|dthS: Wy = m
e Polyphase decomposition reduces computation by K = max(P, Q).
o The transition band centre should be at the Nyquist frequency, wp = %

o Filter order M =~ TERD

where d is stopband attenuation in dB and Aw

is the transition bandwidth (Remez-exchange estimate).

Aw

e Fractional semi-Transition bandwidth, o = Ty IS typically fixed.

2w
e.g. a=0.05

—~ M~ %T_Ka = 0.9dK (where wy = %)
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Halfband Filters

13: Resampling
Filters

Resampling

> Halfband Filters
Dyadic 1:8 Upsampler
Rational Resampling

Arbitrary Resampling
+

Polynomial
Approximation

Farrow Filter +

Summary
MATLAB routines

If K = 2 then the new Nyquist frequency is
Wy — -

We multiply ideal response % by a Kaiser
window. All even numbered points are zero
except h[0] = 0.5.

If 4 | M and we make the filter causal (xz_%),

—M —1 %_1 —2r
H(z)=05z"2 42 2o hilr]z
where hq[r] = h[2r + 1 — 4]

Half-band upsampler:

We interchange the filters with the 1:2 block
and use the commutator notation.

H,(z) is symmetrical with & coefficients

so we need &L multipliers in total (input gain
of 0.5 can usually be absorbed elsewhere).

Computation: % multiplies per input sample

Uy epr 2

Ui LZO.SM Al

2H, (22—

. > Z—O.25M y[n]
2H1(Z) p—o
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Dyadic 1:8 Upsampler

13: Resampling
Filters

Resampling

Halfband Filters
Dyadic 1:8

> Upsampler

Rational Resampling

Arbitrary Resampling

+

Polynomial
Approximation

Farrow Filter +

Summary
MATLAB routines

1 0.125 .
ST
2Hp(z) p— 2Hy(z) b 2Hi(z) p-o @8/

Suppose X(z): BW =081 & a=0.2

Upsample 1:2 — U(2):
Filter Hp(2) must remove image: Aw = 0.27

S o 60
For attenuation = 60 dB, P ~ seAs = 27.3

Round up to a multiple of 4: P =28
Upsample 1:2 — V(2): Aw = 0.6r= Q = 12

Upsample 1:2 — Y (2): Aw =0.87= R =238
[diminishing returns + higher sample rate]

Multiplication Count:
(1+ L) x fo+ 2 x2f, + & x 4f, = 22f,

Alternative approach using direct 1:8 upsampling:

— 1:K— LPF ———

Aw = 0.057 = M = 110 = 111 f, multiplications (using polyphase)
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Rational Resampling

13: Resampling
Filters

Resampling

Halfband Filters

Dyadic 1:8 Upsampler
Rational
Resampling

Arbitrary Resampling

+

Polynomial

Approximation

Farrow Filter +

Summary
MATLAB routines

X[n] X X X X X X X X X
v[s] OAOOAYOAOOAYOANOAYOAHOAHOA

Jil] © ¢ A o o A

Resample by g = Wo = maXZTP Q)
Aw £ 20w = 228

Polyphase: H(z) = Zj;_ol
Commutate coefficients:
v|s| uses Hy(z) with p = smod P

Keep only every Q" output:
y|i] uses H,(z) with p = Qimod P

2P Hy(2")

Multiplication Count:

To resample by g do 1:P
then LPF, then Q:1.

xX[n] 731 sl 120
ar. 1:3 H H(z) 5:1 @f;
x[n] vislre71 i
@al(z) 5:1 @
ho[r]
h[r]—
ho[r]— r=0:R
x[n] vl
e,
ganall
hy[r]— r=0:R
miA—~ @'

60 [dB 2.7 max(P,
H(z) M+m—35[m}= e
Hy(z): R+1= %% = 2T max (1 % M + 1 coeficients in all
Multiplication rate: ﬂmax (1, %) X fy = —max (fy, [2)
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Arbitrary Resampling

13: Resampling
Filters

Resampling

Halfband Filters
Dyadic 1:8 Upsampler
Rational Resampling

Arbitrary
> Resampling +

Polynomial
Approximation

Farrow Filter +
Summary
MATLAB routines

Sometimes need very large P and Q: A oy @ il
e.g. —4jé1k‘;|HZ — % @l V1] uses hligmoa rlr]
z h
Multiplicati OK: 27max(fu, fs) = r=OR
ultiplication rate ; = o ol @ o R=(M+1)/P-1
. . 2.7 p
However # coefficients: maz( . Q) e QP
Alternatively, use any large integer P
and round down to the nearest sample:
E.g. for y[i] at time i use hy|7] 1 —
where D = (LZQJ )mod P 2) LPF to min(r,7P/Q)
0.5 3) Zero-order hold
Equivalent to converting to analog with 0
. p 0™ Pr 2PT 4P
zero-order hold and resampling at f, = . Continuous time © (rad/s)
Zero-order hold convolves with rectangular -wide window = multiplies
: Q
. . S11l 7 . .
periodic spectrum by Q%fP . Resampling aliases €2 to Q_ 4 207

Unit power component at {2; gives alias components with total power:
2 2

gin? 21§00 2P X 2P o~ wi 272 QF

2P £Lun=1 \ 2nP7+Q; 2nPr—1 ™ 4P2? 672 T 12P2

For worst case, 21 = 7w, need P = 906 to get —60dB ®
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[Arbitrary Resampling]

Suppose we wish to upsample by an irrational factor, v/2 = g. We choose a integer value for P > g,
say P = 25. Conceptually, we will upsample by P = 25 to obtain v[s] and then downsample by

Q = % = 17.6.... Taking the input sample rate to be 1, the output sample number 7 will be at time
% = % which corresponds to the sample n’ = % of z[n] and to sample s’ = iQ of v[s].

Unfortunately, s’ is not an integer and so we will instead use sample s = |s'| = [iQ] of v[s] instead
where | | denotes the “floor” function which rounds down to the nearest integer. To calculate this, we
use the sub-filter hy[r] where p = s mod P. The input samples used by the filter will be the R + 1
most recent samples of z[n] namely z[|n'| — R] to z[|n’]] .

i | n=iQ/P | ¥ =iQ | s=1|s] | p=s mod P | [n'|]—R:|n|
0 0 0 0 0 “R:0

1 0.71 17.68 17 17 —R:0

2 1.41 35.36 35 10 1-R:1

3 2.12 53.03 53 3 2—R:2

4 2.83 70.71 70 20 2—R:2

5 3.54 88.39 88 13 3—R:3

The table shows the values of everything for the first six samples of y[i]. Since we only use every 17th
or 181 value of v[s], the subfilter that is used, p, increases by 17 or 18 (modulo P) each time.

DSP and Digital Filters (2017-10126) Resampling: 13 — note 1 of slide 6



[Alias Components]

Ignoring the polyphase implementation, the low pass filter operates at a sample rate of P and therefore
has a periodic spectrum that repeats at intervals of 2P7w. Therefore, considering positive frequencies
only, a signal component in the passband at €2; will have images at 2 = 2nPxw 4 €21 for all positive

integers n.

.- ; —1 . .
These components are multiplied by the Slg %‘1213199 function and therefore have amplitudes of

sin0.5P~ 1 (2nPr4+Qy) _ sin(nr£0.5P~1Qq)  sin(£1"0.5P71Qq)
0.5P~1(2nPrxQ1) =~ (nn+0.5P~1Q;) = (nr+0.5P~1Q)

When we do the downsampling to an output sample rate of £, these images will be aliased to frequencies
Qmod 2P~ . In general, these alias frequencies will be scattered throughout the range (0, 7) and will

result in broadband noise.

We need to sum the squared amplitudes of all these components:

s 2 n —1
oo sin?(£17"0.5P71Q1) . 5 1 oo 1
Zn:l (n7r:|:0-5p_191)2 — Sib <O5P Ql) Zn:l (n7‘r:|:0.5P_1§21)2

If we assume that n7 > 0.5P—1Q; and also that sin (O.5P‘1§21) ~ 0.5P~1Q4, then we can approx-
imate this sum as

_ 2 0o 02
(O5P 191) Zn:l (ni)Q — P12 X 2 Zn 1 n-
2

The summation is a standard result and equals 7.

2
1
12P2"

So the total power of the aliased components is
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Polynomial Approximation

13: Resampling
Filters

Resampling

Halfband Filters
Dyadic 1:8 Upsampler
Rational Resampling

Arbitrary Resampling
+

Polynomial
> Approximation

Farrow Filter +
Summary
MATLAB routines

Suppose P = 50 and H(z) has order M = 249 ey, @
H (z) is lowpass filter with wy =~ Z5 WO T g
Split into 50 filters of length R+ 1 = 4L = 5: vt o
h,|0] is the first P samples of h|m]
hp[1] is the next P samples, etc.
hplr] = hlp +rP]
Use a polynomial of order L to 5 .
approximate each segment' ©
hplr] = fr(5) with 0 < & < 1 | | M=249; B=6.5

h,[0]

h [1]

i3l | )

h|m] is smooth, so errors are Iow. -
E.g. error < 1072 for L = 4 m

e Resultant filter almost as good OV\/\{\N\M/\/\M

e Instead of M +1 = 250
coefficients we only need
(R+1)(L+1)=25
where
R+1= 2T max (1

“ol@
N———
()
=
(S
N
w
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Farrow Filter +
Lo e Filter coefficients depend on fractional part of i%: R+1=2H =5
esamplin .
Ealﬂ:a:d Ifilters A[Z] = ’[,% —nNn Where n = \‘Z%J MHA(Z)ﬁ
Dyadic :II.:8 Upsarrpler A[ ] T @P/Q
Rational Resamplin /
irbitrary Resampplingg y[@] — Zf:() fT(A[’L])Qj[? — ’]"] @;—]—f/ [fO(A)a ,‘ﬁQ(A)]
o, where f,(A) = X1 bilr]A
> Farrow Filter + . R L .
Summary - y[’L] = Z’I“:O ZZZO bl [T]A['L]lw[n — 7‘] x[n] Bo(2)
MATLAB routines I 1] R @1
= S0 Alil S birlaln =1 -
= > 10 Ali]'ui[n] 1
where v;[n] = b;[n] * x[n] +By(2)
[like a Taylor series expansion]
- B3(z)
Horner's Rule:
yli] = voln] + A (vi|n] + A (v2[n] + A(--+))) 1)
Multiplication Rate:
R+1~ 21

Each B;(z) needs R + 1 per input sample
Horner needs L per output sample

Total: (L+1)(R+1) f, + Lf, = 270+ pax (1§—) fo+Lf,
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[Farrow Filter sub-filter indexing]

We assume that the input sample rate is 1 and the output sample rate is g. Output sample yli] is
therefore at time n/ = % which will not normally be an integer.

Normal Resampling Method

In the normal resampling procedure, this corresponds to sample s = iQQ) of v[s] where v[s] is obtained
by upampling x[n] by a factor of P. Using a polyphase filter to do the upsampling, we use each of the
sub-filters hy[n] in turn to generate the upsampled samples v[s] where p = s mod P and the filter acts
on the R 4 1most recent input samples, z[n — R] to x[n] where n = |n’|]. We can write any integer
s, as the sum of an exact multiple of P and the remainder when s — P as s = P L%J + s mod P.
Substituting the previously defined expressions for n and p into this equation gives iQQ = Pn + p. We
can rearrange this to get p = Pn’ — Pn where p lies in the range [0, P — 1] and determines which of

the subfilters we will use.

Farrow Filter

In the normal method (above), the sub-filter than we use is indexed by p which lies in the range [0, P—1].
In the Farrow filter, the sub-filter that we use is instead indexed by the value of the fractional number

= % which always lies in the range [0, 1). From the previous paragraph, Ali] = % =n —n =
i% — Lz%J which is a function only of the output sample number, 7 and the resampling ratio g. The

advantage of this is that both P nor () can now be non-integers.

DSP and Digital Filters (2017-10126) Resampling: 13 — note 1 of slide 8



Summary

13: Resampling
Filters

Resampling

Halfband Filters
Dyadic 1:8 Upsampler
Rational Resampling

Arbitrary Resampling
+

Polynomial
Approximation

Farrow Filter +

> Summary
MATLAB routines

Transition band centre at wy
o wo = the lower of the old and new Nyquist frequencies
o Transition width = Aw = 2awy, typically a = 0.1

Factorizing resampling ratio can reduce computation

o halfband filters very efficient (half the coefficients are zero)

Rational resampling x £

Q
o # multiplies per second: 277 max (fy, fz)

o # coefficients: 2T max (P, Q)

Farrow Filter
o approximate filter impulse response with polynomial segments
o arbitrary, time-varying, resampling ratios

o # multiplies per second: %max (fys fo) X }c—z + Lf,
> ~ (L + 1) 4= times rational resampling case

Yy

o # coefficients: 2l max (P, Q) x £t
coefficients are independent of f,, when upsampling

For further details see Mitra: 13 and Harris: 7, 8.
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MATLAB routines

13: Resampling
Filters

Resampling

Halfband Filters
Dyadic 1:8 Upsampler
Rational Resampling

Arbitrary Resampling
+

Polynomial
Approximation

Farrow Filter +
Summary
> MATLAB routines

gcd(p.q) Find ap + B8q = 1 for coprime p, q
polyfit Fit a polynomial to data
polyval Evaluate a polynomial
upfirdn Perform polyphase filtering

resample Perform polyphase resampling

DSP and Digital Filters (2017-10126)
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14: FM Radio
> Receiver

FM Radio Block
Diagram

Aliased ADC
Channel Selection
Channel Selection (1)
Channel Selection (2)
Channel Selection (3)
FM Demodulator
Differentiation Filter
Pilot tone extraction
+

Polyphase Pilot tone

Summary

14: FM Radio Receiver
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FM Radio

Block Diagram

14: FM Radio
Receiver

FM Radio Block
> Diagram

Aliased ADC
Channel Selection
Channel Selection (1)
Channel Selection (2)
Channel Selection (3)
FM Demodulator

Differentiation Filter
Pilot tone extraction
+

Polyphase Pilot tone

Summary

FM spectrum: 87.5 to 108 MHz
Each channel: £100kHz

Baseband signal:

200 kHz per channel

Mono (L + R): +15kHz
Pilot tone: 19kHz " "
Stereo (L — R): 38 £ 15 kHz .
RDS: 57 + 2kHz —— ——
0 15 19 23 38 53 57
FM Modulation:
Freq deviation: £75kHz
L o ) Lowpass%:L
n
Tuner Demodulator r : [ ]Lowpass - R
Band| [Freq| "
Chatmel 19KHZ | pass | | x2 I8kHz
Select

L-R signal is multiplied by 38 kHz to shift it to baseband

[This example is taken from Ch 13 of Harris: Multirate Signal Processing]
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Aliased ADC

14: FM Radio
Receiver

FM Radio Block
Diagram

D> Aliased ADC
Channel Selection
Channel Selection (1)
Channel Selection (2)
Channel Selection (3)
FM Demodulator
Differentiation Filter
Pilot tone extraction

+
Polyphase Pilot tone

Summary

FM band: 87.5 to 108 MHz
Normally sample at f; > 2f ! el [l s ’

f—3f
—f + 3f

—
(=
—f+f

-

However:
fs = 80 MHz aliases band 420 80 40 0 40 80 120 MHz

down to [7.5, 28] MHz. L

—ve frequencies alias
to [—28, —7.5] MHz. Pass

Band ; ADC ufr]
80MHz|@80M

We must suppress other 0
frequencies that alias to the
range £(7.5, 28] MHz.

IH| (dB)

-60 4

725 f 875 108 1.5f 132 MHz

Need an analogue bandpass filter to extract the FM band. Transition band
mid-points are at f; = 80 MHz and 1.5f; = 120 MHz.

You can use an aliased analog-digital converter (ADC) provided that the
target band fits entirely between two consecutive multiples of %fs.
Lower ADC sample rate ©. Image = undistorted frequency-shifted copy.
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Channel Selection

14: FM Radio
Receiver

FM Radio Block
Diagram

Aliased ADC

> Channel Selection
Channel Selection (1)
Channel Selection (2)
Channel Selection (3)
FM Demodulator
Differentiation Filter
Pilot tone extraction

+
Polyphase Pilot tone

Summary

FM band shifted to 7.5 to 28 MHz (from 87.5 to 108 MHz)

We need to select a single channel 200 kHz wide

We shift selected channel to DC and then downsample to f, = 400 kHz.
Assume channel centre frequency is f. = ¢ x 100 kHz

We must apply a filter before downsampling to remove unwanted images

The downsampled signal is complex since positive and negative frequencies
contain different information.

We will look at three methods:
1 Freq shift, then polyphase lowpass filter
2 Polyphase bandpass complex filter
3 Polyphase bandpass real filter

200 kHz per chapnel

f,=cx100kHz

0 75 28 MHz 40 -400 -300 100 0 100 300 400 kHz
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Channel Selection (1)

14: FM Radio
Receiver

FM Radio Block
Diagram
Aliased ADC
Channel Selection
Channel Selection
> ()
Channel Selection (2)
Channel Selection (3)
FM Demodulator
Differentiation Filter
Pilot tone extraction
+
Polyphase Pilot tone
Summary

Multiply by e~I27T 55N to shift
channel at f. to DC.

fe=cx100k = gl = &

Result of multiplication is complex
(thick lines on diagram)

Next, lowpass filter to #2100 kHz

_ 200 k

= M = 208 = 1091

Finally, downsample 200 : 1

Polyphase:

H,(z) has [ 552 | = 6 taps

e—j27trc/ 800

ulr] ,

v[n]

1

-400 -300

—j2mrc/800
e nre

-100 0 100 300 400 kHz

Ho(z)

b

O

O

Pl
@400k
H\(2) _$

Hig9(2) |

Complex data x Real Coefficients (needs 2 multiplies per tap)

Multiplication Load:

2 x 80 MHz (freq shift) 4+ 12 x 80 MHz (H,(z)) = 14 x 80 MHz

DSP and Digital Filters (2017-10178)

FM Radio: 14 -5 / 12



Channel Selection (2)

14: FM Radio
Receiver

FM Radio Block
Diagram
Aliased ADC
Channel Selection
Channel Selection (1)
Channel Selection
> (2)
Channel Selection (3)
FM Demodulator
Differentiation Filter
Pilot tone extraction

+
Polyphase Pilot tone

Summary

Channel centre frequency f. = ¢ x 100 kHz where ¢ is an integer.
Write ¢ = 4k + [ .

where k = LQJ and | = ¢pod 4 |

ween ufr]_s+G@ P~
T @80M <|>— G[c],l(Z) _jln
b wGa@H 200:1 utd T

' '
We multiply u[r] by e=727"s00, convolve with h[m] and then downsample:

X—L

@400k ‘I’—G[c],199(2)_'

C

vn] = er\r/{:o h[m]u[200n — m)e =727 (200n—m) 55
= Z%:o h[m]el?™ 500 u[200n — m]e—727200n 805
= Z%:o gielm]u[200n — m]ei2m %
= (_j)ln Zi\,{zo giq [m]u[200n — m]

[r = 200n]
[c = 4k + 1]

[g01[m] £ hm]es27 5]
In

[e772™% indep of m]

Multiplication Load for polyphase implementation:
Gq,p(2) has complex coefficients x real input = 2 mults per tap
(—j)ln € {+1, —j, —1, +j} so no actual multiplies needed
Total: 12 x 80 MHz (for G ,(2)) + 0 (for —j') = 12 x 80 MHz

DSP and Digital Filters (2017-10178)
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Channel Selection (3)

14: FM Radio
Receiver

FM Radio Block

Diagram

Aliased ADC

Channel Selection

Channel Selection (1)

Channel Selection (2)
Channel Selection

> 3)

FM Demodulator

Differentiation Filter

Pilot tone extraction

+

Polyphase Pilot tone

Summary

Channel frequency f. = ¢ x 100 kHz where ¢ = 4k + [ is an integer

c

@8OM

>—G11(2)

vin] ulr] :
M_ G[c]I,O(Z) _i ?X @400k @8&80M _| F[c]ll(Z)
—+ _.ln

] G[c],199(2)

L..

800

g[c][ m] = h[m]e’?7 soc
9c[200s + p]=

= h[200s + ple’

Define f[c]
Although f[c]

8] = h[200s + plel*™ 2

Multiplication Load:

6 x 80 MHz (

o= Fla0(2)

o F.199(2)

0
1
04

(0

1991
'

vin]

@400k
.In

I=Cimod 4, 5=0:5, p=0:199, a=¢/*""*"

c(200s+p)

[2003 + ple?™ = 800

p

(4k+1)s

0 = h[200s + ple/?™ T P

= j'*h[200s + p]

pls] is complex it requires only one multiplication per
tap because each tap is either purely real or purely imaginary.

[polyphase]

F,(2)) + 4 x 80 MHz (xe/?"500 ) = 10 x 80 MHz

DSP and Digital Filters (2017-10178)
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FM Demodulator

14: FM Radio
Receiver

FM Radio Block
Diagram

Aliased ADC
Channel Selection
Channel Selection (1)
Channel Selection (2)
Channel Selection (3)
> FM Demodulator
Differentiation Filter
Pilot tone extraction

+
Polyphase Pilot tone

Summary

1 vin] [ D(z)

L E)— Im()
conj
0 Ii

-400 -300 100 0 100 300 400 kHz

Complex FM signal centred at DC: v(t) = |v(t)|ej¢(t)
We know that logv = log |v| + j¢

The instantaneous frequency of v(t) is %2

%.

We need to calculate z(t) = 2 = % =G (Ldv) = Iv%% (v* )
We need:

(1) Differentiation filter, D(z)

(2) Complex multiply, w[n] x v*[n] (only need & part)

(3) Real Divide by |v]?

L+R L-:R
.

x[n] is baseband signal (real): 0 15 19 23 38 53 57kHz

DSP and Digital Filters (2017-10178)
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Differentiation Filter

14: FM Radio
Receiver

FM Radio Block
Diagram

Aliased ADC
Channel Selection
Channel Selection (1)
Channel Selection (2)
Channel Selection (3)

FM Demodulator
Differentiation

D> Filter

Pilot tone extraction

+

Polyphase Pilot tone

Summary

Window design method: V]
(1) calculate d[n] for the ideal filter D(z)
(2) multiply by a window to give finite support

Differentiation: %e]wt — jweﬂuﬂt — D(ejw) _ JW |w| > Wo
0 \w| > wo
. . o e TWO
Hence dln] = 5 5, juei"dw = £ [#5° — 55]™ - (DTFT)

__ Mwg COS Nwo —Sin nwo
2

15 w, ] 0
-20
1

-40

0.5 -60

[HI
[HI (dB)

-80
0

0 0.5 1 15 2 25 3 0 0.5 1 15 2 25 3
w (rad/sample) w (rad/sample)

. B : : o . _ 27x140 kHz.
Using M = 18, Kaiser window, 8 =7 and wg = 2.2 = 4%0 T,

Near perfect differentiation for w < 1.6 (=~ 100 kHz for fs = 400 kHz)
Broad transition region allows shorter filter

DSP and Digital Filters (2017-10178)
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Pilot tone extraction

14: FM Radio
Receiver

FM Radio Block
Diagram

Aliased ADC
Channel Selection
Channel Selection (1)
Channel Selection (2)
Channel Selection (3)
FM Demodulator

Differentiation Filter
Pilot tone
> extraction +

Polyphase Pilot tone

Summary

[-20kHZ] [+40kHZ]
e—jZTm/ 20 ejZTm/ 10

x[n] yln]
S mhn w b e~

Aim: extract 19 kHz pilot tone, double freq — real 38 kHz tone.

53 57 kHz

20kHz

(1) shift spectrum down by 20 kHz: multiply by e=72"" 200k

(2) low pass filter to +1kHz to extract complex pilot at —1kHz: H(z)
(3) square to double frequency to —2 kHz [(ej“’t)2 = eJ2wt]
(4) shift spectrum up by 40 kHz: multiply by eti2mm ookt

(5) take real part

More efficient to do low pass filtering at a low sample rate:

o 72mn/20 [-20kHz] +j2nn/10 [+40kHz]

(¥
x[n] [19kHz] —[-1kHz] [-2kHz]— - [38kHz] y[n]
@400k gx)—F(z)—zo.l THT H(z) o0k 1.20—G(z)—é<)—Re(, @400k

Transition bands:
F(z): 1 — 17kHz,
Aw = 0.250 = M = 68,

H(z): 1 — 3kHz, G(z): 2 — 18kHz
Aw =10.63 = 27, Aw =0.25= 68

DSP and Digital Filters (2017-10178)
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[Pilot Tone Extraction]

e,jznn/z() [—20kHZ] e+j2nn/10 [+40kHZ]

x[n] [19kHZ] —[-1kHz] [-2kHz]— [38kHz] y[n]
@400k Ql<>—F(Z)—20.1 @20k H(z)—@@zTIQO—G(Z)—é)—Re() @400k

(@) (b) () (d) e B (& (b

(a) Freq shlft by 20kHz %107 (e) Square
T @400kHz 1 15} 2 @20kHz 1
o5} 1 | ]
o a 5} .
0 1 O N " " " " n
3 -3 -2 -1 0 1 2 3
(b) F|Iter by F(z) %107 (f) Upsample to 400 kHz
0.8 ' @400kHz ] AF A A ANDADANADNDNALADAALANADNNDNAAAAL
0.6 i
S04t . a,l
o2t - o
0 : : (0] o : : : I I "
-3 -2 3 -3 -2 -1 0 1 2 3
(c) Downsample to 20 kHz «107° (g) Filter by G(z)
01F A @20kHz ] ar 4 @400kHz 7]
@) a
0.05F . 2F
Z ; \oe
0 " : 1 1 " 0 " n N " N
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
(d) Filter by H(z) %107 (h) Freq shift by +40 kHz
01F L @ZOKHZ b 4F 4 @400kHZ i
) )
(D/_) 0.05 /\H(Z) (n/_) 2
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
Frequency (rad/samp) Frequency (rad/samp)
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Polyphase Pilot tone

14: FM Radio
Receiver

FM Radio Block
Diagram

Aliased ADC
Channel Selection
Channel Selection (1)
Channel Selection (2)
Channel Selection (3)
FM Demodulator
Differentiation Filter
Pilot tone extraction

+

Polyphase Pilot
tone

Summary

o 72mn/20 [-20kHz] +2nn/10 [+40kHz]

¥
x[n] [19kHZ] —[-1kHz] [-2kHz]— 1[38kHz] y[n]
@400k é—F(Z)—ZO.l @20k H(Z)—@@zTI.ZO—G(Z)—é—Re(, @400k
Anti-alias filter: F'(z)
Each branch, F,(z), gets every 20" sample and an identical ¢7%™ 20
So F,(z) can filter a real signal and then multiply by fixed ¢727 26

Anti-image filter: G(z)
Each branch, G, (z), multiplied by identical /2716
So G(2) can filter a real signal

o 9210120

jFO.(Z) %—@—H(z)—@—,—ﬁ—Re() Go(2) M

Lm0l @20k | 2O | @400k
I—lg—Re() Go(z) —
Multiplies:

@4001(; e
O—Flg(Z)
F and G each: (4+2) x 400kHz, H + x%: (2 x 28 +4) x 20kHz
Total: 15 x 400 kHz [Full-rate H(z) needs 273 x 400 kHz]

ejZnO/ 10

DSP and Digital Filters (2017-10178)
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Summary

14: FM Radio
Receiver

FM Radio Block
Diagram

Aliased ADC
Channel Selection
Channel Selection (1)
Channel Selection (2)
Channel Selection (3)
FM Demodulator

Differentiation Filter
Pilot tone extraction

+
Polyphase Pilot tone

> Summary

Aliased ADC allows sampling below the Nyquist frequency
o Only works because the wanted signal fits entirely within a
Nyquist band image

Polyphase filter can be combined with complex multiplications to
select the desired image
o subsequent multiplication by —j!™ shifts by the desired multiple
of i sample rate
> No actual multiplications required

FM demodulation uses a differentiation filter to calculate %

Pilot tone bandpass filter has narrow bandwidth so better done at a
low sample rate

o double the frequency of a complex tone by squaring it

This example is taken from Harris: 13.

DSP and Digital Filters (2017-10178) FM Radio: 14 — 12 / 12



15: Subband
> Processing

Subband processing

2-band Filterbank
Perfect
Reconstruction

Quadrature Mirror
Filterbank (QMF)

Po|yphase QMF
QMF Options
Linear Phase QMF
IR Allpass QMF

Tree-structured
filterbanks

Summary

Merry Xmas

15: Subband Processing

DSP and Digital Filters (2017-10127)
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Subband processing

15: Subband
Processing

Subband

processing

2-band Filterbank
Perfect
Reconstruction

Quadrature Mirror
Filterbank (QMF)

Polyphase QMF

QMF Options o
Linear Phase QMF

IR Allpass QMF

Tree-structured
filterbanks

Summary

Merry Xmas

X I I I [ Processing [ I I

Hyz) M Pl H 1P, H Go2) yin]
H\(z) - Pi:1 H Subband H 1:P, H Gi(z)

I—HM_l(Z)’—PM_lll— —1: Py Gar

1(2) —

The H,,(z) are bandpass analysis filters and
frequency bands

divide x[n] into

Subband processing often processes frequency bands independently

The G,,,(2) are synthesis filters and together
The H,,(z) outputs are bandlimited and so c
without loss of information

o Sample rate multiplied overall by > P%-

D % = 1 = critically sampled: good

reconstruct the output
an be subsampled

for coding

> & > 1 = oversampled: more flexible

Goals:
(a) good frequency selectivity in H,,(2)
(b) perfect reconstruction: y[n| = x[n — d

if no processing

Benefits: Lower computation, faster convergence if adaptive

DSP and Digital Filters (2017-10127)
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2-band Filterbank

s ﬁx[”‘] Ho@)p ;) Fp vl Gdz):ﬁy ]
Ezf-b:nd Filterbank H\(2) vi[n] 71 u[r] 12 win] G2
ratare Mirvor
S V() = Hin(2)X () [ € {0, 1]
QMyll: Options U 1 K—1 j2rk 1 1 1 1
auF opions n(2) = & S Ve R %) = 1 {V (23) + Vi (—23) )
R (2) = Up () = § (Vin(2) + Vi) K=
i = 5 {Hm(2)X (2) + Hn(—2) X (—2)}
Ve = [ W) W) ]| o) |

1 B Ho(z)  Hi(z) Go(z)

= 35 [ X(Z) X( Z) ] [ HO(—Z) Hl(—z) Gl(z)

= X(2) X(—2) | A(2) [X (—2)A(2) is “aliased” term]

We want (a) T'(z)
and (b) A(z)

_ 1
2
_1

DSP and Digital Filters (2017-10127)
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Perfect

Reconstruction

15: Subband
Processing

For perfect reconstruction without aliasing, we require

Subband processing

2-band Filterbank
Perfect
Reconstruction

Quadrature Mirror
Filterbank (QMF)

Po|yphase QMF
QMF Options
Linear Phase QMF
IR Allpass QMF

Tree-structured
filterbanks

Summary

Merry Xmas

L ah min ]| &6 ][50
Hence: [ gggzg ] - [ Iﬁ%@) Iﬁl((ji) ]_1 [ QZO_d ]

B 2z_d I Hl(—Z) —Hl(Z) 1
~ Ho()Hi(—2)-Ho(-2)Hi(s) | —Hy(—2z) Ho(z) 0

224 _ Hl(_z)
Ho(Z)Hl(—Z)—Ho(—Z)Hl(Z) I _HO(_Z)

For all filters to be FIR, we need the denominator to be

Ho(2)Hy(—2) — Ho(—2)H,(2) = cz=% , which implies

Bl R

N[

Note: ¢ just scales H;(z) by ¢z and G;(z) by ¢~ =.
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Quadrature Mirror Filterbank (QMF)

15: Subband
:ﬂiiﬁf&"ﬁmss;ng %HO(Z) volml 57 Holr] [ 1wl Go(z)fﬂ
li;li?::tFllterbank H\(2) vi[n] 71 u[r] 12 win] G2
Reconstruction
Quadrature Mirror
Ef"?’ba"‘: - (QMF) QMF satisfies:
olyphase .
QMF Options (a) Hy(z) is causal and real
e s aF (b) Hi(z) = Ho(—z): i.e. |Ho(e?®)] is reflected around w = %
et (c) Gol2) = 2H1(~2) = 2Ho(2)
Summary (d) G]_(Z) — _QHO(_Z) — _2H]_ (Z)
Merry Xmas

QMF is alias-free:
A(2) = 5 {Ho(=2)Go(2) + Hi(=2)G1(2)}

= 1 {2H, (2)Ho(z) — 2Ho(2)Hy(2)} = 0

QMF Transfer Function:
T(z) = 5 {Ho(2)Go(z) + Hi(2)G1(2)}

= H§(2) — Hi(2) = Hj(2) — Hg(—2)

DSP and Digital Filters (2017-10127) Subband Processing: 15 -5 / 12



Polyphase QMF

15: Subband
Processing

Subband processing

2-band Filterbank
Perfect
Reconstruction

Quadrature Mirror
Filterbank (QMF)

> Polyphase QMF
QMF Options
Linear Phase QMF
IR Allpass QMF

Tree-structured
filterbanks

Summary

Merry Xmas

ﬁx[’”’] Hy(2) H 2 P 2 ome) b2
Ho(—2)M 2:1 P15 122 H2Hy (=)

Polyphase decomposition:

Ho(z) = Py(2%) + 27 P1(2?)
Hi(2) = Ho(—2) = Py(2) — 2 Py (22)
(Z) 2H()( ) = 2P()(Z2) + 22_1P1(Z2)
G1(2) = —2Hy(—2) = —2Py(2%) + 2271 P (2?)

] o fP@ @ DR}y
o P L P ()

1 |

Transfer Function:
T(z) = Hi(2) — H(2) = 4271 Py(2%) Py(2?)
we want T'(z) = 2=% = Py(z) = apz™ ", Pi(2) = a 2Ft1-4
= Hy(z) has only two non-zero taps = poor freq selectivity
. Perfect reconstruction QMF filterbanks cannot have good freq selectivity

DSP and Digital Filters (2017-10127) Subband Processing: 15 -6 / 12



QMF Options

15: Subband
Processing X[l’l]

1

Subband processing HO(Z) 2:1 uO[r] 1:2 1+ 2H0(Z) y[n]
2-band Filterbank Ho(—o b 2:1 PA T Do)

Perfect
Reconstruction
Quadrature Mirror

Filterbank (QMF) Polyphase decomposition:
Polyphase QMF

> QMF Options ) l/l()[r] n

Linear Phase QMF MO_PO(Z) & 2P0(Z) —oﬁ y[n]
IR Allpass QMF

w[r] /N
;l'.lree-bstrtll(ctured O_PI(Z) —\—i__/ 1[ ] = 2P1(Z)
1lterbanks

Summary

Merry Xmas A(z) = 0 = no alias term
T(z) = Hi(z) — Hi(z) = H(2) — Hg(—2) = 427 Py (2*) 1 (27)

X

Options:
(A) Perfect Reconstruction: T'(z) = 2=% = Hy(z) is a bad filter.

(B) T(z) is Linear Phase FIR:
= Tradeoff: |T'(e/*)| &~ 1 versus Hy(z) stopband attenuation

(C) T(z) is Allpass IIR: Hy(z) can be Butterworth or Elliptic filter
= Tradeoff: ZT(e’%) ~ 7w versus Hy(z) stopband attenuation

DSP and Digital Filters (2017-10127) Subband Processing: 15 -7 / 12



Option (B): Linear Phase QMF

15: Subband
Processing

Subband processing

2-band Filterbank
Perfect
Reconstruction

Quadrature Mirror
Filterbank (QMF)

Po|yphase QMF
QMF Options

> Linear Phase QMF
IR Allpass QMF

Tree-structured
filterbanks

Summary

Merry Xmas

x[n]

Hoz) M 2:1 el oY
Ho(—)H 2.1 Pl T

2H(2)

—2Ho(—z)

: ? yln]

T(z)~1

Hy(z) order M, linear phase = Ho(ejw) I ‘HO(ejw)‘
T(el*) = H3(e/*) — H}(e/*) = H3(e7) — H3(—ei*)

— @M |H0(6jw)|2 — e IwmmM | Fo (ed (@)

= M ([ Ho(e3)* — (=)™ [ (eI )

’ 2

|
)

M even = T(e3) =0 @ so choose M odd = — (—=1)™ = +1

Select hg[n| by numerical iteration to minimize
s o |2 T 0 2
ozf%JrA!Ho(e] )" dw + (1 — ) [ (|T(e?*)| = 1) dw

o — balance between Hy(z) being lowpass and T'(¢/%) ~ 1

Johnston filter gy
(M =11):
o 1
!

[H| (dB)

HT
i

0

H,

0.04
0.02
0

T| (dB)

-0.02

-0.04
0 1 2 3
w
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Option (C): IR Allpass QMF

15: Subband
Processing

Subband processing
2-band Filterbank
Perfect
Reconstruction

Quadrature Mirror
Filterbank (QMF)

Po|yphase QMF
QMF Options
Linear Phase QMF
> 1IR Allpass QMF

Tree-structured
filterbanks

Summary

Merry Xmas

[]
x[n] Py(2) oD D Pol2) |+ ]
" Pi) ‘Me Pi@) [ T(2)| =1

Choose Py(z) and P;(z) to be allpass IIR filters:
Hy1(z) = 2 (Po(2?) £ 27 1P (27)), Go1(z) = £2Hg1(2)

A(z) = 0 = No aliasing
T(z2)=H — H? =...=2"'Py(2?)P1(2?) is an allpass filter.

Hy(z) can be made a Butterworth or Elliptic filter with My = 4Mp + 1:

0 _ 0 o, —_
Mp=1 M =5 H H g15
_ 2 ° ' 8
° ~ L
£4 P 87 WO F 10
o _ -1 = o
& 6| A,=1+0.2362 T ES g o
-8 A =1+0.7152" ZPy(@) 3 5
G
0 1 2 3 %% 1 2 3 O 0 1 2 3
® )  (rad/sample)

Phase cancellation: Zz7'P, = ZPy + 7 ; Ripples in Hy and H; cancel.

DSP and Digital Filters (2017-10127)
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Tree-structured filterbanks

A half-band filterbank divides the full band into two equal halves. )

You can repeat the process on either or both of the signals u1 [p] - o

and (o] [p] % 1 2 3
Dividing the lower band in half repeatedly results in an octave band o >< v,
filterbank. Each subband occupies one octave (= a factor of 2 in .

frequency) except the first subband. :

The properties “perfect reconstruction” and “allpass” are preserved os| X - >< "
by the iteration. % i ; 5

Hol2: 12 HrallGoe)
Ho(z)-2:1£H1(z)-2:1 val7] 1:2-G1(Z)EF}1:2 Go(2)
Ho(z)—Z:liHl(z)—Zzl valq] 1:2-G1(z)2%1:2-c;0(z)

Hi(2)p2:1 vilp] 122-G1(Z)2—EM

x[n]

DSP and Digital Filters (2017-10127) Subband Processing: 15 — 10 / 12



Summary

15: Subband
Processing

Subband processing
2-band Filterbank
Perfect
Reconstruction

Quadrature Mirror
Filterbank (QMF)

Po|yphase QMF
QMF Options
Linear Phase QMF
IR Allpass QMF

Tree-structured
filterbanks

> Summary
Merry Xmas

e Half-band filterbank:
o Reconstructed output is T'(2) X (2) + A(2) X (—=2)
o Unwanted alias term is A(z) X (—z)

e Perfect reconstruction: imposes strong constraints on analysis
filters H;(z) and synthesis filters G;(z).

e Quadrature Mirror Filterbank (QMF) adds an additional symmetry
constraint Hy(z) = Hp(—2).
o Perfect reconstruction now impossible except for trivial case.
o Neat polyphase implementation with A(z) =0
o Johnston filters: Linear phase with T'(z) = 1
o Allpass filters: Elliptic or Butterworth with |T'(z)| =1

e (Can iterate to form a tree structure with equal or unequal
bandwidths.

See Mitra chapter 14 (which also includes some perfect reconstruction
designs).
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FORMULA SHEET AVAILABLE IN EXAM

The following formulae will be available in the exam:

Where a question requires a numerical answer, it must be given as a fully evaluated decimal number and
not as an unevaluated arithmetic expression.

Notation

o All signals and filter coefficients are real-valued unless explicitly noted otherwise.

e Unless otherwise specified, upper and lower case letters are used for sequences and their z-transforms
respectively. The signal at a block diagram node V is v[n| and its z-transform is V(z).

e x[n|=|a, b, c,d,e, f] means that x[0] = a, ... x[5] = f and that x[n] = O outside this range.

e R(z), 3(2), z%, |z| and Zz denote respectively the real part, imaginary part, complex conjugate,
magnitude and argument of a complex number z.

e The expected value of x is denoted E{x}.

e In block diagrams: solid arrows denote the direction of signal flow; an open triangle denotes a gain
element with the gain indicated adjacently; a “+4” in a circle denotes an adder/subtractor whose
inputs may be labelled “+” or ”—"" according to their sign; the sample rate, f, of a signal in Hz
may be indicated in the form “@ f”’.

Abbreviations
BIBO Bounded Input, Bounded Output IIR Infinite Impulse Response
CTFT Continuous-Time Fourier Transform LTI Linear Time-Invariant
DCT  Discrete Cosine Transform MDCT Modified Discrete Cosine Transform
DFT  Discrete Fourier Transform PSD Power Spectral Density
DTFT Discrete-Time Fourier Transform SNR Signal-to-Noise Ratio

FIR Finite Impulse Response

Standard Sequences

e §[n| =1 for n =0 and 0 otherwise.
® Ocondition[] = 1 whenever "condition" is true and O otherwise.

e u[n] =1 for n > 0 and 0 otherwise.

Digital Signal Processing and Digital Filters (©Imperial College London 1/3



Geometric Progression

_ yrtl—r—1 . _
o Y o'z "= 1105_# provided that aiz ' # 1.

o Y 'z = ]_éz,l provided that !az‘l} < 1.

Forward and Inverse Transforms

< X(z) = Y2 x[n]z"" x[n] = 2—711] $X(2)7" ldz
CTET:  X(j) = [“x(t)e ®dr X(0) = 35 [ X(j@)e%a0
DTFT:  X(e/®) = E7, x[n]e /" x[n] = 5 [T X (e/?)e!dw
DFT: Xk = Zgilx[n]e_ﬂ”% x[n] = %Zg’*IX[k]eﬂ”%
DCT: X[k] = XN x[n] cos 27:(2;;4)1( x[n] = X[O] +2 2N X k] co 27 <24r1l\71)k
MDCT:  X[k] = ¥, " xln] cos ErHERREEL yl) = 4 EN X [k] cos 22 ENICkH)
Convolution
DTFT:  v[n] =x[n] *y[n] 2 ¥ x[r]y[n—r] & V(e/?) =X (e/?)Y (/)
vin=xnlyln] & V(e/?) = L£X (/)@Y (/) £ L [T X (/%)Y (e/©70))db
DFT:  vln] = xfn] @yl 2 Y dfly{(1— 1) moan] & VI = X[V (K
v[n] = x[nly[n] & VI = g XK @n Y[k £ 5550 XY [(k—7) o n]
Group Delay

The group delay of a filter, H(z), is Ty (e/®) = —dlzgfjm) =R ( s dzi@)
Z () denotes the DTFT.

Order Estimation for FIR Filters

Three increasingly sophisticated formulae for estimating the minimum order of an FIR filter with unity
gain passbands:

a
SAw
~ _a—8
~ 22A0

<
2

t
<

a—1.2—20log;y b
4.6A0

w
<
2
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where a =stop band attenuation in dB, b = peak-to-peak passband ripple in dB and A®w = width of

smallest transition band in radians per sample.

z-plane Transformations

A lowpass filter, H(z), with cutoff frequency @y may be transformed into the filter H(Z2) as follows:

Target H(2) | Substitute Parameters
. wg—0y
— 1) sin
< W 2
. IS - cos(%;m)
Highpss = =~ gy
> W 2
) +01
~1 _ _(p=)=24p2 4 (p+1)2? _eos() 0
ABanc}passA 7= _(p+1)—2lp;1+(p—l);2 A= cos(d’f(bl)’ p = cot (wlzwl ) tan(%)
0 << @ ’

Bandst L (1p) 2R e o
_pancstop T = o AT ) = COS(“A’Z*‘;’I)’p = tan (3% ) tan ()
@ £ O £ ’

Noble Identities
—O0:1HHZ2) — = — H(ZQ)HQ:I —
—Hiz)H1:0— = —1:0HH(Z°) —
Multirate Spectra
v L} ifQ|r
Upsample: v[n] IZQ x[r] = x[r]= [Q el X(z) =V (9)
0 ifQtr
Downsample: vin] 0:1 yim] = y[m] =v[0Om] = Y(z)= 523;01 1% (e 5"
Multirate Commutators
’ Input Commutator ‘ Output Commutator
urlm urm
ur[m] x[n] P ur[m] Lm] [m] 1:P h— 1
-1 zZ
X z wra[m]  y[n]  upa[m]
ur-1{m] Pl up-1{m] . _. . Y ._. 1:P &
1o Z*I 1o [ [ Zil
X L o x M
I y[n
w[m] rpqwlm] | _wlm) wim] 1 A7)
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