E1.10 Fourier Series and Transforms

Mike Brookes

Syllabus

\triangleright Syllabus
Optical Fourier Transform
Organization
1: Sums and Averages

Main fact: Complicated time waveforms can be expressed as a sum of sine and cosine waves.
Why bother? Sine/cosine are the only bounded waves that stay the same when differentiated.
Any electronic circuit:
sine wave in \Rightarrow sine wave out (same frequency).

Joseph Fourier
1768-1830

Hard problem: Complicated waveform \rightarrow electronic circuit \rightarrow output $=$?
Easier problem: Complicated waveform \rightarrow sum of sine waves
\rightarrow linear electronic circuit (\Rightarrow obeys superposition)
$\rightarrow \overline{\text { add }}$ sine wave outputs \rightarrow output $=$?
Syllabus: Preliminary maths (1 lecture)
Fourier series for periodic waveforms (4 lectures)
Fourier transform for aperiodic waveforms (3 lectures)

Optical Fourier Transform

Syllabus

Optical Fourier

\triangleright Transform
Organization
1: Sums and Averages

A pair of prisms can split light up into its component frequencies (colours). This is called Fourier Analysis.
A second pair can re-combine the frequencies. This is called Fourier Synthesis.

We want to do the same thing with mathematical signals instead of light.

Organization

Syllabus

Optical Fourier Transform
\triangleright Organization
1: Sums and Averages

- 8 lectures: feel free to ask questions
- Textbook: Riley, Hobson \& Bence "Mathematical Methods for Physics and Engineering", ISBN:978052167971-8, Chapters [4], 12 \& 13
- Lecture slides (including animations) and problem sheets + answers available via Blackboard or from my website: http://www.ee.ic.ac.uk/hp/staff/dmb/courses/E1Fourier/E1Fourier.htm
- Email me with any errors in slides or problems and if answers are wrong or unclear

Syllabus
Optical Fourier
Transform
Organization
1: Sums and
\triangleright Averages
Geometric Series
Infinite Geometric
Series
Dummy Variables
Dummy Variable
Substitution
Averages
Average Properties
Periodic Waveforms
Averaging Sin and
Cos
Summary

1: Sums and Averages

Geometric Series

Syllabus

Optical Fourier Transform
Organization
1: Sums and
Averages
D Geometric Series
Infinite Geometric Series
Dummy Variables
Dummy Variable
Substitution
Averages
Average Properties
Periodic Waveforms
Averaging Sin and
Cos
Summary

A geometric series is a sum of terms that increase or decrease by a constant factor, x :

$$
S=a+a x+a x^{2}+\ldots+a x^{n}
$$

The sequence of terms themselves is called a geometric progression.
We use a trick to get rid of most of the terms:

$$
\begin{aligned}
S & =a+a x+a x^{2}+\ldots+a x^{n-1}+a x^{n} \\
x S & =\quad a x+a x^{2}+a x^{3}+\ldots \quad+a x^{n}+a x^{n+1}
\end{aligned}
$$

Now subtract the lines to get: $S-x S=(1-x) S=a-a x^{n+1}$
Divide by $1-x$ to get: $\quad \bigvee^{a}=$ first term ${ }^{\downarrow+1=} \quad n \times \frac{1-x^{n+1}}{1-x}$ number of terms
Example:

$$
\begin{aligned}
S & =3+6+12+24 & {[a=3, x=2, n+1=4] } \\
& =3 \times \frac{1-2^{4}}{1-2}=3 \times \frac{-15}{-1}=45 &
\end{aligned}
$$

Infinite Geometric Series

Syllabus

Optical Fourier Transform

Organization

1: Sums and
Averages
Geometric Series
Infinite Geometric
\triangleright Series
Dummy Variables
Dummy Variable
Substitution
Averages
Average Properties Periodic Waveforms Averaging Sin and Cos
Summary

A finite geometric series: $S_{n}=a+a x+a x^{2}+\cdots+a x^{n}=a \frac{1-x^{n+1}}{1-x}$
What is the limit as $n \rightarrow \infty$?
If $|x|<1$ then $x^{n+1} \underset{n \rightarrow \infty}{\longrightarrow} 0$ which gives

$$
S_{\infty}=a+a x+a x^{2}+\cdots=a \frac{1}{1-x}=\frac{a}{1-x}
$$

Example 1:

$$
0.4+0.04+0.004+\ldots=\frac{0.4}{1-0.1}=0 . \dot{4}
$$

$$
[a=0.4, x=0.1]
$$

Example 2: (alternating signs)

$$
2-1.2+0.72-0.432+\ldots=\frac{2}{1-(-0.6)}=1.25 \quad[a=2, x=-0.6]
$$

Example 3:

$$
1+2+4+\ldots \neq \frac{1}{1-2}=\frac{1}{-1}=-1 \quad[a=1, x=2]
$$

The formula $S=a+a x+a x^{2}+\ldots=\frac{a}{1-x}$ is only valid for $|x|<1$

Dummy Variables

Syllabus
Optical Fourier Transform
Organization
1: Sums and
Averages
Geometric Series
Infinite Geometric Series
\triangleright Dummy Variables
Dummy Variable
Substitution
Averages
Average Properties
Periodic Waveforms
Averaging Sin and
Cos
Summary

Using a \sum sign, we can write the geometric series more compactly:

$$
S_{n}=a+a x+a x^{2}+\ldots+a x^{n}=\sum_{r=0}^{n} a x^{r}
$$

$$
\text { [Note: } \left.x^{0} \triangleq 1 \text { in this context even when } x=0\right]
$$

Here r is a dummy variable: you can replace it with anything else

$$
\sum_{r=0}^{n} a x^{r}=\sum_{k=0}^{n} a x^{k}=\sum_{\alpha=0}^{n} a x^{\alpha}
$$

Dummy variables are undefined outside the summation so they sometimes get re-used elsewhere in an expression:

$$
\sum_{r=0}^{3} 2^{r}+\sum_{r=1}^{2} 3^{r}=\left(1 \times \frac{1-2^{4}}{1-2}\right)+\left(3 \times \frac{1-3^{2}}{1-3}\right)=15+12=27
$$

The two dummy variables are both called r but they have no connection with each other at all (or with any other variable called r anywhere else).

Dummy Variable Substitution

Syllabus
Optical Fourier Transform

Organization

1: Sums and
Averages
Geometric Series
Infinite Geometric Series
Dummy Variables
Dummy Variable
\triangleright Substitution

Averages

Average Properties Periodic Waveforms Averaging Sin and Cos
Summary

We can derive the formula for the geometric series using \sum notation:

$$
S_{n}=\sum_{r=0}^{n} a x^{r} \text { and } x S_{n}=\sum_{r=0}^{n} a x^{r+1}
$$

We need to manipulate the second sum to involve x^{r}.
Use the substitution $s=r+1 \Leftrightarrow r=s-1$.
Substitute for r everywhere it occurs (including both limits)

$$
x S_{n}=\sum_{s=1}^{n+1} a x^{s}=\sum_{r=1}^{n+1} a x^{r}
$$

It is essential to sum over exactly the same set of values when substituting for dummy variables.
Subtracting gives $(1-x) S_{n}=S_{n}-x S_{n}=\sum_{r=0}^{n} a x^{r}-\sum_{r=1}^{n+1} a x^{r}$
$r \in[1, n]$ is common to both sums, so extract the remaining terms:

$$
\begin{gathered}
(1-x) S_{n}=a x^{0}-a x^{n+1}+\sum_{r=1}^{n} a x^{r}-\sum_{r=1}^{n} a x^{r} \\
=a x^{0}-a x^{n+1}=a\left(1-x^{n+1}\right)
\end{gathered}
$$

Hence: $\quad S_{n}=a \frac{1-x^{n+1}}{1-x}$

Averages

Syllabus

Optical Fourier

Transform
Organization
1: Sums and
Averages
Geometric Series
Infinite Geometric Series
Dummy Variables
Dummy Variable
Substitution
\triangleright Averages
Average Properties Periodic Waveforms Averaging Sin and
Cos
Summary

If a signal varies with time, we can plot its waveform, $x(t)$.
The average value of $x(t)$ in the range $T_{1} \leq t \leq T_{2}$ is

$$
\langle x\rangle_{\left[T_{1}, T_{2}\right]}=\frac{1}{T_{2}-T_{1}} \int_{t=T_{1}}^{T_{2}} x(t) d t
$$

The area under the curve $x(t)$ is equal to the area of the rectangle defined by 0 and $\langle x\rangle_{\left[T_{1}, T_{2}\right]}$.

Angle brackets alone, $\langle x\rangle$, denotes the average value over all time

$$
\langle x(t)\rangle=\lim _{A, B \rightarrow \infty}\langle x(t)\rangle_{[-A,+B]}
$$

Average Properties

Syllabus

Optical Fourier
Transform

Organization

1: Sums and
Averages
Geometric Series
Infinite Geometric Series
Dummy Variables
Dummy Variable
Substitution

Averages

\triangleright Average Properties
Periodic Waveforms
Averaging Sin and
Cos
Summary

The properties of averages follow from the properties of integrals:

$$
\begin{aligned}
\text { Addition: } & \langle x(t)+y(t)\rangle=\langle x(t)\rangle+\langle y(t)\rangle \\
\text { Add a constant: } & \langle x(t)+c\rangle=\langle x(t)\rangle+c \\
\text { Constant multiple: } & \langle a \times x(t)\rangle=a \times\langle x(t)\rangle
\end{aligned}
$$

where the constants a and c do not depend on time.

For example:

$$
\begin{aligned}
\langle x(t)+y(t)\rangle_{\left[T_{1}, T_{2}\right]}= & \frac{1}{T_{2}-T_{1}} \int_{t=T_{1}}^{T_{2}}(x(t)+y(t)) d t \\
& =\frac{1}{T_{2}-T_{1}} \int_{t=T_{1}}^{T_{2}} x(t) d t+\frac{1}{T_{2}-T_{1}} \int_{t=T_{1}}^{T_{2}} y(t) d t \\
& =\langle x(t)\rangle_{\left[T_{1}, T_{2}\right]}+\langle y(t)\rangle_{\left[T_{1}, T_{2}\right]}
\end{aligned}
$$

But beware: $\langle x(t) \times y(t)\rangle \neq\langle x(t)\rangle \times\langle y(t)\rangle$.

Periodic Waveforms

Syllabus

Optical Fourier

Transform
Organization
1: Sums and

Averages

Geometric Series

Infinite Geometric Series
Dummy Variables
Dummy Variable
Substitution
Averages
Average Properties
Periodic
\triangleright Waveforms
Averaging Sin and Cos
Summary

A periodic waveform with period T repeats itself at intervals of T :

$$
x(t+T)=x(t) \quad \Rightarrow \quad x(t \pm k T)=x(t) \text { for any integer } k .
$$

The smallest $T>0$ for which $x(t+T)=x(t) \forall t$ is the fundamental period. The fundamental frequency is $F=\frac{1}{T}$.

For a periodic waveform, $\langle x(t)\rangle$ equals the average over one period. It doesn't make any difference where in a period you start or how many whole periods you take the average over.

Example:

$$
\begin{aligned}
& x(t)=|\sin t| \\
& \begin{aligned}
\langle x\rangle & =\frac{1}{\pi} \int_{t=0}^{\pi}|\sin t| d t=\frac{1}{\pi} \int_{t=0}^{\pi} \sin t d t \\
\quad & =\frac{1}{\pi}[-\cos t]_{0}^{\pi}=\frac{1}{\pi}(1+1)=\frac{2}{\pi} \approx 0.637
\end{aligned}
\end{aligned}
$$

[proof that $x(t \pm k T)=x(t)]$

Proof that $x(t+T)=x(t) \forall t \Rightarrow x(t \pm k T)=x(t) \forall t, \forall k \in \mathbb{Z}$
We use induction. Let H_{k} be the hypothesis that $x(t+k T)=x(t) \forall t$. Under the assumption that $x(t+T)=x(t) \forall t$, we will show that if H_{k} is true, then so are H_{k+1} and H_{k-1}. Since we know that H_{0} is definitely true, this implies that H_{k} is true for all integers k, i.e. for all $k \in \mathbb{Z}$.
$\square \quad$ Suppose H_{k} is true, i.e. $x(\tau+k T)=x(\tau) \forall \tau$. Now set $\tau=t+T$. This gives $x(t+T+k T)=$ $x(t+T) \forall t$. But, we assume that $x(t+T)=x(t)$, so $x(t+(k+1) T)=x(t+T+k T)=$ $x(t+T)=x(T) \forall t$. Hence H_{k+1} is true.
\square Now suppose H_{k} is true as before but this time set $\tau=t-T$. Substituting this into $u(\tau+k T)=$ $u(\tau)$ gives $u(t-T+k T)=u(t-T)$. Substituting it also into $u(\tau+T)=u(\tau)$ gives $u(t)=u(t-T)$. Finally, combining these two identities gives $u(t+(k-1) T)=u(t)$ which is H_{k-1}.

Averaging Sin and Cos

Syllabus
Optical Fourier Transform

Organization

1: Sums and
Averages
Geometric Series
Infinite Geometric Series
Dummy Variables
Dummy Variable
Substitution
Averages
Average Properties
Periodic Waveforms
Averaging Sin and
\triangleright Cos
Summary

A sine wave, $x(t)=\sin 2 \pi F t$, has a frequency F and a period $T=\frac{1}{F}$

$$
\text { so that, } \sin \left(2 \pi F\left(t+\frac{1}{F}\right)\right)=\sin (2 \pi F t+2 \pi)=\sin 2 \pi F t .
$$

$$
\begin{aligned}
\langle\sin 2 \pi F t\rangle & =\frac{1}{T} \int_{t=0}^{T} \sin (2 \pi F t) d t \\
& =0
\end{aligned}
$$

Also, $\langle\cos 2 \pi F t\rangle=0$ except for the case $F=0$ since $\cos 2 \pi 0 t \equiv 1$.
Hence: $\langle\sin 2 \pi F t\rangle=0 \quad$ and $\quad\langle\cos 2 \pi F t\rangle= \begin{cases}0 & F \neq 0 \\ 1 & F=0\end{cases}$

Also:

$$
\begin{aligned}
\left\langle e^{i 2 \pi F t}\right\rangle & =\langle\cos 2 \pi F t+i \sin 2 \pi F t\rangle \\
& =\langle\cos 2 \pi F t\rangle+i\langle\sin 2 \pi F t\rangle \\
& = \begin{cases}0 & F \neq 0 \\
1 & F=0\end{cases}
\end{aligned}
$$

Summary

Syllabus
Optical Fourier Transform
Organization
1: Sums and
Averages
Geometric Series
Infinite Geometric Series
Dummy Variables
Dummy Variable
Substitution
Averages
Average Properties Periodic Waveforms Averaging Sin and Cos
\triangleright Summary

- Sum of geometric series (see RHB Chapter 4)
- Finite series: $S=a \times \frac{1-x^{n+1}}{1-x}$
- Infinite series: $S=\frac{a}{1-x}$ but only if $|x|<1$
- Dummy variables
- Commonly re-used elsewhere in expressions
- Substitutions must cover exactly the same set of values
- Averages: $\langle x\rangle_{\left[T_{1}, T_{2}\right]}=\frac{1}{T_{2}-T_{1}} \int_{t=T_{1}}^{T_{2}} x(t) d t$
- Periodic waveforms: $x(t \pm k T)=x(t)$ for any integer k
- Fundamental period is the smallest T
- Fundamental frequency is $F=\frac{1}{T}$
- For periodic waveforms, $\langle x\rangle$ is the average over any integer number of periods
- $\langle\sin 2 \pi F t\rangle=0$
- $\langle\cos 2 \pi F t\rangle=\left\langle e^{i 2 \pi F t}\right\rangle= \begin{cases}0 & F \neq 0 \\ 1 & F=0\end{cases}$

