3: Complex
\triangleright Fourier Series
Euler's Equation
Complex Fourier
Series
Averaging Complex
Exponentials

Complex Fourier

Analysis

Fourier Series \leftrightarrow
Complex Fourier
Series
Complex Fourier Analysis Example
Time Shifting
Even/Odd Symmetry
Antiperiodic \Rightarrow Odd
Harmonics Only
Symmetry Examples Summary

3: Complex Fourier Series

Euler's Equation

3: Complex Fourier Series
\triangleright Euler's Equation Complex Fourier Series

Averaging Complex

Exponentials

Complex Fourier

Analysis

Fourier Series \leftrightarrow

Complex Fourier

Series

Complex Fourier Analysis Example Time Shifting Even/Odd Symmetry
Antiperiodic \Rightarrow Odd
Harmonics Only
Symmetry Examples Summary

Euler's Equation: $e^{i \theta}=\cos \theta+i \sin \theta$
Hence: $\cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2}=\frac{1}{2} e^{i \theta}+\frac{1}{2} e^{-i \theta}$

$$
\sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i}=-\frac{1}{2} i e^{i \theta}+\frac{1}{2} i e^{-i \theta}
$$

Most maths becomes simpler if you use $e^{i \theta}$ instead of $\cos \theta$ and $\sin \theta$
The Complex Fourier Series is the Fourier Series but written using $e^{i \theta}$
Examples where using $e^{i \theta}$ makes things simpler:

Using $e^{i \theta}$	Using $\cos \theta$ and $\sin \theta$
$e^{i(\theta+\phi)}=e^{i \theta} e^{i \phi}$	$\cos (\theta+\phi)=\cos \theta \cos \phi-\sin \theta \sin \phi$
$e^{i \theta} e^{i \phi}=e^{i(\theta+\phi)}$	$\cos \theta \cos \phi=\frac{1}{2} \cos (\theta+\phi)+\frac{1}{2} \cos (\theta-\phi)$
$\frac{d}{d \theta} e^{i \theta}=i e^{i \theta}$	$\frac{d}{d \theta} \cos \theta=-\sin \theta$

Complex Fourier Series

3: Complex Fourier Series
Euler's Equation

Complex Fourier

\triangleright Series
Averaging Complex
Exponential

Complex Fourier

Analysis

Fourier Series \leftrightarrow
Complex Fourier

Series

Complex Fourier Analysis Example Time Shifting Even/Odd Symmetry
Antiperiodic \Rightarrow Odd Harmonics Only
Symmetry Examples Summary

Fourier Series: $u(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos 2 \pi n F t+b_{n} \sin 2 \pi n F t\right)$
Substitute: $\cos \theta=\frac{1}{2} e^{i \theta}+\frac{1}{2} e^{-i \theta} \quad$ and $\quad \sin \theta=-\frac{1}{2} i e^{i \theta}+\frac{1}{2} i e^{-i \theta}$

$$
\begin{aligned}
u(t)= & \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n}\left(\frac{1}{2} e^{i \theta}+\frac{1}{2} e^{-i \theta}\right)+b_{n}\left(-\frac{1}{2} i e^{i \theta}+\frac{1}{2} i e^{-i \theta}\right)\right) \\
= & \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(\left(\frac{1}{2} a_{n}-\frac{1}{2} i b_{n}\right) e^{i 2 \pi n F t}\right) \\
& \quad+\sum_{n=1}^{\infty}\left(\left(\frac{1}{2} a_{n}+\frac{1}{2} i b_{n}\right) e^{-i 2 \pi n F t}\right) \\
= & \sum_{n=-\infty}^{\infty} U_{n} e^{i 2 \pi n F t}
\end{aligned}
$$

where

$$
U_{n}=\left\{\begin{array}{ll}
\frac{1}{2} a_{n}-\frac{1}{2} i b_{n} & n \geq 1 \\
\frac{1}{2} a_{0} & n=0 \\
\frac{1}{2} a_{|n|}+\frac{1}{2} i b_{|n|} & n \leq-1
\end{array} \quad \Leftrightarrow \quad U_{ \pm n}=\frac{1}{2}\left(a_{|n|} \mp i b_{|n|}\right)\right.
$$

The U_{n} are normally complex except for U_{0} and satisfy $U_{n}=U_{-n}^{*}$
Complex Fourier Series: $u(t)=\sum_{n=-\infty}^{\infty} U_{n} e^{i 2 \pi n F t}$

Averaging Complex Exponentials

3: Complex Fourier Series
Euler's Equation Complex Fourier Series

Averaging Complex \triangle Exponential
Complex Fourier Analysis
Fourier Series \leftrightarrow Complex Fourier Series
Complex Fourier Analysis Example Time Shifting Even/Odd Symmetry Antiperiodic \Rightarrow Odd Harmonics Only Symmetry Examples Summary

If $x(t)$ has period $\frac{T}{n}$ for some integer n (ie. frequency $\frac{n}{T}=n F$):

$$
\langle x(t)\rangle \triangleq \frac{1}{T} \int_{t=0}^{T} x(t) d t
$$

This is the average over an integer number of cycles.
For a complex exponential:

$$
\begin{aligned}
\left\langle e^{i 2 \pi n F t}\right\rangle= & \langle\cos (2 \pi n F t)+i \sin (2 \pi n F t)\rangle \\
& =\langle\cos (2 \pi n F t)\rangle+i\langle\sin (2 \pi n F t)\rangle \\
& = \begin{cases}1+0 i & n=0 \\
0+0 i & n \neq 0\end{cases}
\end{aligned}
$$

Hence:

$$
\left\langle e^{i 2 \pi n F t}\right\rangle= \begin{cases}1 & n=0 \tag{©}\\ 0 & n \neq 0\end{cases}
$$

Complex Fourier Analysis

3: Complex Fourier Series
Euler's Equation
Complex Fourier

Series

Averaging Complex Exponentials

Complex Fourier
\triangle Analysis
Fourier Series \leftrightarrow
Complex Fourier

Series

Complex Fourier Analysis Example Time Shifting Even/Odd Symmetry Antiperiodic \Rightarrow Odd Harmonics Only Symmetry Examples Summary

Complex Fourier Series: $u(t)=\sum_{n=-\infty}^{\infty} U_{n} e^{i 2 \pi n F t}$
To find the coefficient, U_{n}, we multiply by something that makes all the terms involving the other coefficients average to zero.

$$
\begin{aligned}
\left\langle u(t) e^{-i 2 \pi n F t}\right\rangle=\langle & \left.\sum_{r=-\infty}^{\infty} U_{r} e^{i 2 \pi r F t} e^{-i 2 \pi n F t}\right\rangle \\
& =\left\langle\sum_{r=-\infty}^{\infty} U_{r} e^{i 2 \pi(r-n) F t}\right\rangle \\
& =\sum_{r=-\infty}^{\infty} U_{r}\left\langle e^{i 2 \pi(r-n) F t}\right\rangle
\end{aligned}
$$

All terms in the sum are zero, except for the one when $n=r$ which equals U_{n} :

$$
\begin{equation*}
U_{n}=\left\langle u(t) e^{-i 2 \pi n F t}\right\rangle \tag{©}
\end{equation*}
$$

This shows that the Fourier series coefficients are unique: you cannot have two different sets of coefficients that result in the same function $u(t)$.

Note the sign of the exponent: "+" in the Fourier Series but "-" for Fourier Analysis (in order to cancel out the " + ").

Fourier Series \leftrightarrow Complex Fourier Series

3: Complex Fourier Series
Euler's Equation Complex Fourier Series
Averaging Complex
Exponentials

Complex Fourier

 AnalysisFourier Series \leftrightarrow
Complex Fourier

\triangle Series

Complex Fourier Analysis Example Time Shifting Even/Odd Symmetry
Antiperiodic \Rightarrow Odd Harmonics Only
Symmetry Examples Summary

$$
\begin{aligned}
u(t) & =\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos 2 \pi n F t+b_{n} \sin 2 \pi n F t\right) \\
& =\sum_{n=-\infty}^{\infty} U_{n} e^{i 2 \pi n F t}
\end{aligned}
$$

We can easily convert between the two forms.

Fourier Coefficients \rightarrow Complex Fourier Coefficients:

$$
U_{ \pm n}=\frac{1}{2}\left(a_{|n|} \mp i b_{|n|}\right) \quad\left[U_{n}=U_{-n}^{*}\right]
$$

Complex Fourier Coefficients \rightarrow Fourier Coefficients:

$$
\begin{aligned}
& a_{n}=U_{n}+U_{-n}=2 \Re\left(U_{n}\right) \\
& b_{n}=i\left(U_{n}-U_{-n}\right)=-2 \Im\left(U_{n}\right)
\end{aligned}
$$

$$
\begin{array}{r}
{[\Re=\text { "real part" }]} \\
{[\Im=\text { "imaginary part"] }}
\end{array}
$$

The formula for a_{n} works even for $n=0$.

[Complex functions of time]

In these lectures, we are assuming that $u(t)$ is a periodic real-valued function of time. In this case we can represent $u(t)$ using either the Fourier Series or the Complex Fourier Series:

$$
u(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos 2 \pi n F t+b_{n} \sin 2 \pi n F t\right)=\sum_{n=-\infty}^{\infty} U_{n} e^{i 2 \pi n F t}
$$

We have seen that the U_{n} coefficients are complex-valued and that U_{n} and U_{-n} are complex conjugates so that we can write $U_{-n}=U_{n}^{*}$.

In fact, the complex Fourier series can also be used when $u(t)$ is a complex-valued function of time (this is sometimes useful in the fields of communications and signal processing). In this case, it is still true that $u(t)=\sum_{n=-\infty}^{\infty} U_{n} e^{i 2 \pi n F t}$, but now U_{n} and U_{-n} are completely independent and normally $U_{-n} \neq U_{n}^{*}$.

Complex Fourier Analysis Example

3: Complex Fourier

Series

Euler's Equation
Complex Fourier
Series
Averaging Complex
Exponentials

Complex Fourier

Analysis

Fourier Series \leftrightarrow

Complex Fourier

Series

Complex Fourier \triangleright Analysis Example Time Shifting Even/Odd Symmetry
Antiperiodic \Rightarrow Odd Harmonics Only
Symmetry Examples Summary
$T=20$, width $W=\frac{T}{4}$, height $A=8$
Method 1:
$U_{ \pm n}=\frac{1}{2} a_{n}$ 干 $i \frac{1}{2} b_{n}$

Method 2:

$$
\begin{aligned}
& U_{n}=\left\langle u(t) e^{-i 2 \pi n F t}\right\rangle \\
& =\frac{1}{T} \int_{0}^{T} u(t) e^{-i 2 \pi n F t} d t \\
& =\frac{1}{T} \int_{0}^{W} A e^{-i 2 \pi n F t} d t \\
& =\frac{A}{-i 2 \pi n F T}\left[e^{-i 2 \pi n F t}\right]_{0}^{W} \\
& =\frac{A}{i 2 \pi n}\left(1-e^{-i 2 \pi n F W}\right) \\
& =\frac{A e^{-i \pi n F W}}{i 2 \pi n}\left(e^{i \pi n F W}-e^{-i \pi n F W}\right) \\
& =\frac{A e^{-i \pi n F W}}{n \pi} \sin (n \pi F W) \\
& =\frac{8}{n \pi} \sin \left(\frac{n \pi}{4}\right) e^{-i \frac{n \pi}{4}}
\end{aligned}
$$

Complex Fourier Series: 3-7 /

Time Shifting

3: Complex Fourier

Series

Euler's Equation
Complex Fourier
Series

Averaging Complex

Exponentials

Complex Fourier

Analysis

Fourier Series \leftrightarrow

Complex Fourier

Series

Complex Fourier Analysis Example
D Time Shifting
Even/Odd Symmetry
Antiperiodic \Rightarrow Odd Harmonics Only
Symmetry Examples Summary

Complex Fourier Series: $u(t)=\sum_{n=-\infty}^{\infty} U_{n} e^{i 2 \pi n F t}$
If $v(t)$ is the same as $u(t)$ but delayed by a time $\tau: v(t)=u(t-\tau)$

$$
\begin{aligned}
v(t)= & \sum_{n=-\infty}^{\infty} U_{n} e^{i 2 \pi n F(t-\tau)}=\sum_{n=-\infty}^{\infty}\left(U_{n} e^{-i 2 \pi n F \tau}\right) e^{i 2 \pi n F t} \\
= & \sum_{n=-\infty}^{\infty} V_{n} e^{i 2 \pi n F t} \\
& \text { where } V_{n}=U_{n} e^{-i 2 \pi n F \tau}
\end{aligned}
$$

Example:

$$
\begin{aligned}
& u(t)=6 \cos (2 \pi F t) \\
& \text { Fourier: } a_{1}=6, b_{1}=0 \\
& \text { Complex: } U_{ \pm 1}=\frac{1}{2} a_{1} \mp \frac{1}{2} i b_{1}=3 \\
& v(t)=6 \sin (2 \pi F t)=u(t-\tau) \\
& \text { Time delay: } \tau=\frac{T}{4} \Rightarrow F \tau=\frac{1}{4} \\
& \text { Complex: } V_{1}=U_{1} e^{-i \frac{\pi}{2}}=-3 i \\
& \quad V_{-1}=U_{-1} e^{i \frac{\pi}{2}}=+3 i
\end{aligned}
$$

Note: If $u(t)$ is a sine wave, U_{1} equals half the corresponding phasor.

Even/Odd Symmetry

3: Complex Fourier

Series

Euler's Equation
Complex Fourier
Series
Averaging Complex
Exponentials

Complex Fourier

Analysis

Fourier Series \leftrightarrow

Complex Fourier

Series

Complex Fourier Analysis Example
Time Shifting
Even/Odd
\checkmark Symmetry
Antiperiodic \Rightarrow Odd Harmonics Only Symmetry Examples Summary
(1) $u(t)$ real-valued $\Leftrightarrow \quad U_{n}$ conjugate symmetric $\left[U_{n}=U_{-n}^{*}\right]$
(2) $u(t)$ even $[u(t)=u(-t)] \quad \Leftrightarrow \quad U_{n}$ even $\left[U_{n}=U_{-n}\right]$
(3) $u(t)$ odd $[u(t)=-u(-t)] \quad \Leftrightarrow \quad U_{n}$ odd $\left[U_{n}=-U_{-n}\right]$
(1) $+(2) u(t)$ real \& even $\Leftrightarrow \quad U_{n}$ real \& even $\left[U_{n}=U_{-n}^{*}=U_{-n}\right]$
$(1)+(3) u(t)$ real \& odd $\Leftrightarrow U_{n}$ imaginary \& odd $\left[U_{n}=U_{-n}^{*}=-U_{-n}\right]$
Proof of (2): $u(t)$ even $\Rightarrow U_{n}$ even

$$
\begin{aligned}
U_{-n} & =\frac{1}{T} \int_{0}^{T} u(t) e^{-i 2 \pi(-n) F t} d t \\
& =\frac{1}{T} \int_{x=0}^{-T} u(-x) e^{-i 2 \pi n F x}(-d x) \\
& =\frac{1}{T} \int_{x=-T}^{0} u(-x) e^{-i 2 \pi n F x} d x \\
& =\frac{1}{T} \int_{x=-T}^{0} u(x) e^{-i 2 \pi n F x} d x=U_{n}
\end{aligned}
$$

$$
\text { [substitute } x=-t \text {] }
$$

[reverse the limits]

$$
\text { [even: } u(-x)=u(x) \text {] }
$$

Proof of (3): $u(t)$ odd $\Rightarrow U_{n}$ odd
Same as before, except for the last line:

$$
=\frac{1}{T} \int_{x=-T}^{0}-u(x) e^{-i 2 \pi n F x} d x=-U_{n} \quad[\text { odd: } u(-x)=-u(x)]
$$

Antiperiodic \Rightarrow Odd Harmonics Only

3: Complex Fourier

Series

Euler's Equation
Complex Fourier

Series

Averaging Complex

Exponentials

Complex Fourier

Analysis

Fourier Series \leftrightarrow
Complex Fourier

Series

Complex Fourier Analysis Example Time Shifting
Even/Odd Symmetry
Antiperiodic \Rightarrow

Odd Harmonics

\triangleright Only
Symmetry Examples Summary

A waveform, $u(t)$, is anti-periodic if $u\left(t+\frac{1}{2} T\right)=-u(t)$. If $u(t)$ is anti-periodic then $U_{n}=0$ for n even.

Proof:

Define $v(t)=u\left(t+\frac{T}{2}\right)$, then
(1) $v(t)=-u(t) \Rightarrow V_{n}=-U_{n}$
(2) $v(t)$ equals $u(t)$ but delayed by $-\frac{T}{2}$

$$
\Rightarrow V_{n}=U_{n} e^{i 2 \pi n F \frac{T}{2}}=U_{n} e^{i n \pi}= \begin{cases}U_{n} & n \text { even } \\ -U_{n} & n \text { odd }\end{cases}
$$

Hence for n even: $V_{n}=-U_{n}=U_{n} \Rightarrow U_{n}=0$
Example:

$$
U_{0: 5}=[0,3+2 i, 0, i, 0,1]
$$

Odd harmonics only \Leftrightarrow Second half of each period is the negative of the first half.

Symmetry Examples

3: Complex Fourier

Series

Euler's Equation
Complex Fourier

Series

Averaging Complex

Exponentials

Complex Fourier

Analysis

Fourier Series \leftrightarrow
Complex Fourier

Series

Complex Fourier Analysis Example Time Shifting Even/Odd Symmetry Antiperiodic \Rightarrow Odd Harmonics Only

Symmetry

D Examples

Summary

All these examples assume that $u(t)$ is real-valued $\Leftrightarrow U_{-n}=U_{+n}^{*}$.
(1) Even $u(t) \Leftrightarrow$ real U_{n}

$$
U_{0: 2}=[0,2,-1]
$$

(2) Odd $u(t) \Leftrightarrow$ imaginary U_{n}

$$
U_{0: 3}=[0,-2 i, i, i]
$$

(3) Anti-periodic $u(t)$ \Leftrightarrow odd harmonics only

$$
U_{0: 1}=[0,-i]
$$

(4) Even harmonics only \Leftrightarrow period is really $\frac{1}{2} T$

$$
U_{0: 4}=[2,0,2,0,1]
$$

$U[0: 3]=[0,-2 j, j, j]$

$U[0: 4]=[2,0,2,0,1]$

Summary

3: Complex Fourier

Series

Euler's Equation
Complex Fourier

Series

Averaging Complex

Exponentials

Complex Fourier

Analysis

Fourier Series \leftrightarrow

Complex Fourier

Series

Complex Fourier Analysis Example Time Shifting

Even/Odd Symmetry

Antiperiodic \Rightarrow Odd
Harmonics Only
Symmetry Examples
\triangleright Summary

- Fourier Series:

$$
u(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos 2 \pi n F t+b_{n} \sin 2 \pi n F t\right)
$$

- Complex Fourier Series: $u(t)=\sum_{n=-\infty}^{\infty} U_{n} e^{i 2 \pi n F t}$
- $U_{n}=\left\langle u(t) e^{-i 2 \pi n F t}\right\rangle \triangleq \frac{1}{T} \int_{0}^{T} u(t) e^{-i 2 \pi n F t} d t$
- Since $u(t)$ is real-valued, $U_{n}=U_{-n}^{*}$
- FS \rightarrow CFS: $U_{ \pm n}=\frac{1}{2} a_{|n|} \mp i \frac{1}{2} b_{|n|}$
- $\mathrm{CFS} \rightarrow \mathrm{FS}: a_{n}=U_{n}+U_{-n}$

$$
b_{n}=i\left(U_{n}-U_{-n}\right)
$$

- $u(t)$ real and even $\Leftrightarrow u(-t)=u(t)$

$$
\Leftrightarrow U_{n} \text { is real-valued and even } \Leftrightarrow b_{n}=0 \forall n
$$

- $u(t)$ real and odd $\Leftrightarrow u(-t)=-u(t)$
$\Leftrightarrow U_{n}$ is purely imaginary and odd $\Leftrightarrow a_{n}=0 \forall n$
- $u(t)$ anti-periodic $\Leftrightarrow u\left(t+\frac{T}{2}\right)=-u(t)$
\Leftrightarrow odd harmonics only $\Leftrightarrow a_{2 n}=b_{2 n}=U_{2 n}=0 \forall n$
For further details see RHB 12.3 and 12.7.

