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Suppose we have two signals with the same period, T = 1
F

,

u(t) =
∑∞

n=−∞ Une
i2πnFt

⇒ u∗(t) =
∑∞

n=−∞ U∗
n
e−i2πnFt [u(t) = u∗(t) if real]

v(t) =
∑∞

n=−∞ Vne
i2πnFt

Now multiply u∗(t) and v(t) together and take the average over [0, T ].
[Use different “dummy variables”, n and m, so they don’t get mixed up]

〈u∗(t)v(t)〉 =
〈
∑∞

n=−∞ U∗
n
e−i2πnFt

∑∞
m=−∞ Vmei2πmFt

〉

=
∑∞

n=−∞ U∗
n

∑∞
m=−∞ Vm

〈

e−i2πnFtei2πmFt
〉

=
∑∞

n=−∞ U∗
n

∑∞
m=−∞ Vm

〈

ei2π(m−n)Ft
〉

The quantity 〈· · · 〉 equals 1 if m = n and 0 otherwise, so the only non-zero
element in the second sum is when m = n, so the second sum equals Vn.

Hence Parseval’s theorem: 〈u∗(t)v(t)〉 = ∑∞
n=−∞ U∗

n
Vn

If v(t) = u(t) we get:
〈

|u(t)|2
〉

=
∑∞

n=−∞ U∗
n
Un =

∑∞
n=−∞ |Un|2



[Manipulating sums]
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If you have a multiplicative expression involving two or more sums, then you must use different dummy
variables for each of the sums:

∑
n
af(n)

∑
m

bg(m)

(1) You can always move any quantities to the right
∑

n
af(n)

∑
m

bg(m) =
∑

n
a
∑

m
bf(n)g(m)

=
∑

n

∑
m

abf(n)g(m)

(2) You can move quantities to the left past a summation provided that they do not involve the dummy

variable of the summation:
∑

n

∑
m

abf(n)g(m) =
∑

n
af(n)

∑
m

bg(m)

6=
∑

n
af(n)g(m)

∑
m

b

The last expression doesn’t make sense in any case since m is undefined outside
∑

m

(3) You can swap the summation order if the sum converges absolutely
∑

n

∑
m

h(n,m) =
∑

m

∑
n
h(n,m) provided that

∑
n

∑
m

|h(n,m)| < ∞

The equality on the left is not necessarily true if the sum does not converge absolutely. Of course,
if the sum has only a finite number of terms, it is bound to converge absolutely.
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The average power of a periodic signal is given by Pu ,

〈

|u(t)|2
〉

.

This is the average electrical power that would be dissipated if the
signal represents the voltage across a 1Ω resistor.

Parseval’s Theorem: Pu =
〈

|u(t)|2
〉

=
∑∞

n=−∞ |Un|2

= |U0|2 + 2
∑∞

n=1 |Un|2 [assume u(t) real]

= 1
4a

2
0 +

1
2

∑∞
n=1

(

a2
n
+ b2

n

)

[U+n = an−ibn

2 ]

Parseval’s theorem ⇒ the average power in u(t) is equal to the sum of the
average powers in each of its Fourier components.

Example: u(t) = 2 + 2 cos 2πFt+ 4 sin 2πFt− 2 sin 6πFt
〈

|u(t)|2
〉

= 4 + 1
2

(

22 + 42 + (−2)2
)

= 16
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P
u
=<u2>=16

U[0:3]=[2, 1-2j, 0, j]

Time (s)

U0:3 = [2, 1− 2i, 0, i] ⇒ |U0|2 + 2
∑∞

n=1 |Un|2 = 16
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The spectrum of a periodic signal is the values of {Un} versus nF .

The magnitude spectrum is the values of {|Un|} =
{

1
2

√

a2|n| + b2|n|

}

.

The power spectrum is the values of
{

|Un|2
}

=
{

1
4

(

a2|n| + b2|n|

)}

.

Example:
u(t) = 2 + 2 cos 2πFt+ 4 sin 2πFt− 2 sin 6πFt

Fourier Coefficients: a0:3 = [4, 2, 0, 0] b1:3 = [4, 0, −2]

Spectrum: U−3:3 = [−i, 0, 1 + 2i, 2, 1− 2i, 0, i]

Magnitude Spectrum: |U−3:3| =
[

1, 0,
√
5, 2,

√
5, 0, 1

]

Power Spectrum:
∣

∣U2
−3:3

∣

∣ = [1, 0, 5, 4, 5, 0, 1] [
∑

=
〈

u2(t)
〉

]

-3 -2 -1 0 1 2 3
0

1

2

Frequency (Hz)

|U
n|

-3 -2 -1 0 1 2 3
0

5

Frequency (Hz)
|U

n2 |

Σ=16

The magnitude and power spectra of a real periodic signal are symmetrical.

A one-sided power power spectrum shows U0 and then 2 |Un|2 for n ≥ 1.
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Suppose we have two signals with the same period, T = 1
F

,

u(t) =
∑∞

n=−∞ Une
i2πnFt

v(t) =
∑∞

m=−∞ Vne
i2πmFt

If w(t) = u(t)v(t) then Wr =
∑∞

m=−∞ Ur−mVm , Ur ∗ Vr

Proof:
w(t) = u(t)v(t)=

∑∞
n=−∞ Une

i2πnFt
∑∞

m=−∞ Vmei2πmFt

=
∑∞

n=−∞

∑∞
m=−∞ UnVmei2π(m+n)Ft

Now we change the summation variable to use r instead of n:
r = m+ n ⇒ n = r −m

This is a one-to-one mapping: every pair (m, n) in the range ±∞
corresponds to exactly one pair (m, r) in the same range.

w(t) =
∑∞

r=−∞

∑∞
m=−∞ Ur−mVmei2πrFt=

∑∞
r=−∞Wre

i2πrFt

where Wr =
∑∞

m=−∞ Ur−mVm , Ur ∗ Vr.

Wr is the sum of all products UnVm for which m+ n = r.

The spectrum Wr = Ur ∗ Vr is called the convolution of Ur and Vr.
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Convolution behaves algebraically like multiplication:

1) Commutative: Ur ∗ Vr = Vr ∗ Ur

2) Associative: Ur ∗ Vr ∗Wr = (Ur ∗ Vr) ∗Wr = Ur ∗ (Vr ∗Wr)
3) Distributive over addition: Wr ∗ (Ur + Vr) = Wr ∗ Ur +Wr ∗ Vr

4) Identity Element or “1”: If Ir =

{

1 r = 0

0 r 6= 0
, then Ir ∗ Ur = Ur

Proofs: (all sums are over ±∞)

1) Substitute for m: n = r −m⇔ m = r − n [1 ↔ 1 for any r]
∑

m
Ur−mVm=

∑

n
UnVr−n

2) Substitute for n: k = r +m− n⇔ n = r +m− k [1 ↔ 1]
∑

n
((
∑

m
Un−mVm)Wr−n)=

∑

k
((
∑

m
Ur−kVm)Wk−m)

=
∑

k

∑

m
Ur−kVmWk−m=

∑

k
(Ur−k (

∑

m
VmWk−m))

3)
∑

m
Wr−m (Um + Vm)=

∑

m
Wr−mUm +

∑

m
Wr−mVm

4) Ir−mUm = 0 unless m = r. Hence
∑

m
Ir−mUm = Ur.
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u(t) = 10 + 8 sin 2πt v(t) = 4 cos 6πt
U−1:1 = [4i, 10, −4i] V−3:3 = [2, 0, 0, 0, 0, 0, 2] [0 = V0]
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w(t) = u(t)v(t)= (10 + 8 sin 2πt) 4 cos 6πt

= 40 cos 6πt+ 32 sin 2πt cos 6πt

= 40 cos 6πt+ 16 sin 8πt− 16 sin 4πt

W−4:4 = [8i, 20, −8i, 0, 0, 0, 8i, 20, −8i]

To convolve Un and Vn:
Replace each harmonic in Vn by a scaled copy of the entire {Un}
(or vice versa) and sum the complex-valued coefficients of any
overlapping harmonics.
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Two polynomials: u(x) = U3x
3 + U2x

2 + U1x+ U0

v(x) = V2x
2 + V1x+ V0

Now multiply the two polynomials together:
w(x) = u(x)v(x)

= U3V2x
5 +(U3V1 + U2V2)x

4 +(U3V0 + U2V1 + U1V2)x
3

+(U2V0 + U1V1 + U0V2)x
2 +(U1V0 + U0V1)x+U0V0

The coefficient of xr consists of all the coefficient pair from U and V where
the subscripts add up to r. For example, for r = 3:

W3 = U3V0 + U2V1 + U1V2 =
∑2

m=0 U3−mVm

If all the missing coefficients are assumed to be zero, we can write

Wr =
∑∞

m=−∞ Ur−mVm , Ur ∗ Vr

So, to multiply two polynomials, you convolve their coefficient sequences.

Actually, the complex Fourier Series is iust a polynomial:

u(t) =
∑∞

n=−∞ Une
i2πnFt =

∑∞
n=−∞ Un

(

ei2πFt
)n
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• Parseval’s Theorem: 〈u∗(t)v(t)〉 = ∑∞
n=−∞ U∗

n
Vn

◦ Power Conservation:
〈

|u(t)|2
〉

=
∑∞

n=−∞ |Un|2

◦ or in terms of an and bn:
〈

|u(t)|2
〉

= 1
4a

2
0 +

1
2

∑∞
n=1

(

a2
n
+ b2

n

)

• Linearity: w(t) = au(t) + bv(t) ⇔ Wn = aUn + bVn

• Product of signals ⇔ Convolution of complex Fourier coefficients:
w(t) = u(t)v(t) ⇔ Wn = Un ∗ Vn ,

∑∞
m=−∞ Un−mVm

• Convolution acts like multiplication:
◦ Commutative: U ∗ V = V ∗ U
◦ Associative: U ∗ V ∗W is unambiguous
◦ Distributes over addition: U ∗ (V +W ) = U ∗ V + U ∗W
◦ Has an identity: Ir = 1 if r = 0 and = 0 otherwise

• Polynomial multiplication ⇔ convolution of coefficients

For further details see RHB Chapter 12.8.
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