4: Parseval's Theorem and
\triangleright Convolution
Parseval's Theorem
(a.k.a. Plancherel's Theorem)
Power Conservation Magnitude Spectrum and Power Spectrum Product of Signals
Convolution
Properties
Convolution Example Convolution and Polynomial Multiplication Summary

4: Parseval's Theorem and Convolution

Parseval's Theorem (a.k.a. Plancherel's Theorem)

4: Parseval's
Theorem and
Convolution
Parseval's
Theorem (a.k.a.
Plancherel's
\downarrow Theorem)
Power Conservation
Magnitude Spectrum and Power Spectrum Product of Signals

Convolution

Properties
Convolution Example
Convolution and Polynomial Multiplication
Summary

Suppose we have two signals with the same period, $T=\frac{1}{F}$,

$$
\begin{aligned}
& u(t)=\sum_{n=-\infty}^{\infty} U_{n} e^{i 2 \pi n F t} \\
& \quad \Rightarrow \quad u^{*}(t)=\sum_{n=-\infty}^{\infty} U \\
& v(t)=\sum_{n=-\infty}^{\infty} V_{n} e^{i 2 \pi n F t}
\end{aligned}
$$

$$
\Rightarrow \quad u^{*}(t)=\sum_{n=-\infty}^{\infty} U_{n}^{*} e^{-i 2 \pi n F t} \quad\left[u(t)=u^{*}(t) \text { if real }\right]
$$

Now multiply $u^{*}(t)$ and $v(t)$ together and take the average over $[0, T]$. [Use different "dummy variables", n and m, so they don't get mixed up]

$$
\begin{aligned}
\left\langle u^{*}(t) v(t)\right\rangle= & \left\langle\sum_{n=-\infty}^{\infty} U_{n}^{*} e^{-i 2 \pi n F t} \sum_{m=-\infty}^{\infty} V_{m} e^{i 2 \pi m F t}\right\rangle \\
& =\sum_{n=-\infty}^{\infty} U_{n}^{*} \sum_{m=-\infty}^{\infty} V_{m}\left\langle e^{-i 2 \pi n F t} e^{i 2 \pi m F t}\right\rangle \\
& =\sum_{n=-\infty}^{\infty} U_{n}^{*} \sum_{m=-\infty}^{\infty} V_{m}\left\langle e^{i 2 \pi(m-n) F t}\right\rangle
\end{aligned}
$$

The quantity $\langle\cdots\rangle$ equals 1 if $m=n$ and 0 otherwise, so the only non-zero element in the second sum is when $m=n$, so the second sum equals V_{n}.

Hence Parseval's theorem: $\quad\left\langle u^{*}(t) v(t)\right\rangle=\sum_{n=-\infty}^{\infty} U_{n}^{*} V_{n}$
If $v(t)=u(t)$ we get: $\left.\left.\quad\langle | u(t)\right|^{2}\right\rangle=\sum_{n=-\infty}^{\infty} U_{n}^{*} U_{n}=\sum_{n=-\infty}^{\infty}\left|U_{n}\right|^{2}$

[Manipulating sums]

If you have a multiplicative expression involving two or more sums, then you must use different dummy variables for each of the sums:

$$
\sum_{n} a f(n) \sum_{m} b g(m)
$$

(1) You can always move any quantities to the right

$$
\begin{aligned}
\sum_{n} a f(n) \sum_{m} b g(m) & =\sum_{n} a \sum_{m} b f(n) g(m) \\
& =\sum_{n} \sum_{m} a b f(n) g(m)
\end{aligned}
$$

(2) You can move quantities to the left past a summation provided that they do not involve the dummy variable of the summation:

$$
\begin{aligned}
\sum_{n} \sum_{m} a b f(n) g(m) & =\sum_{n} a f(n) \sum_{m} b g(m) \\
& \neq \sum_{n} a f(n) g(m) \sum_{m} b
\end{aligned}
$$

The last expression doesn't make sense in any case since m is undefined outside \sum_{m}
(3) You can swap the summation order if the sum converges absolutely

$$
\sum_{n} \sum_{m} h(n, m)=\sum_{m} \sum_{n} h(n, m) \quad \text { provided that } \sum_{n} \sum_{m}|h(n, m)|<\infty
$$

The equality on the left is not necessarily true if the sum does not converge absolutely. Of course, if the sum has only a finite number of terms, it is bound to converge absolutely.

Power Conservation

4: Parseval's

Theorem and

Convolution

Parseval's Theorem
(a.k.a. Plancherel's Theorem)

Power
\triangleright Conservation
Magnitude Spectrum and Power Spectrum

Product of Signals

Convolution
Properties
Convolution Example
Convolution and
Polynomial
Multiplication
Summary

The average power of a periodic signal is given by $\left.\left.P_{u} \triangleq\langle | u(t)\right|^{2}\right\rangle$. This is the average electrical power that would be dissipated if the signal represents the voltage across a 1Ω resistor.
Parseval's Theorem: $\left.P_{u}=\left.\langle | u(t)\right|^{2}\right\rangle=\sum_{n=-\infty}^{\infty}\left|U_{n}\right|^{2}$

$$
\begin{aligned}
& =\left|U_{0}\right|^{2}+2 \sum_{n=1}^{\infty}\left|U_{n}\right|^{2} \\
& =\frac{1}{4} a_{0}^{2}+\frac{1}{2} \sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right)
\end{aligned}
$$

$$
\begin{gathered}
\text { [assume } u(t) \text { real] } \\
{\left[J T \quad-a_{n}-i b_{n}\right]}
\end{gathered}
$$

Parseval's theorem \Rightarrow the average power in $u(t)$ is equal to the sum of the average powers in each of its Fourier components.

Example: $\quad u(t)=2+2 \cos 2 \pi F t+4 \sin 2 \pi F t-2 \sin 6 \pi F t$

$$
\left.\left.\langle | u(t)\right|^{2}\right\rangle=4+\frac{1}{2}\left(2^{2}+4^{2}+(-2)^{2}\right)=16
$$

$$
U_{0: 3}=[2,1-2 i, 0, i] \quad \Rightarrow \quad\left|U_{0}\right|^{2}+2 \sum_{n=1}^{\infty}\left|U_{n}\right|^{2}=16
$$

Magnitude Spectrum and Power Spectrum

4: Parseval's
Theorem and
Convolution
Parseval's Theorem
(a.k.a. Plancherel's Theorem)
Power Conservation
Magnitude
Spectrum and
\triangleright Power Spectrum
Product of Signals
Convolution
Properties
Convolution Example
Convolution and Polynomial Multiplication
Summary

The spectrum of a periodic signal is the values of $\left\{U_{n}\right\}$ versus $n F$.
The magnitude spectrum is the values of $\left\{\left|U_{n}\right|\right\}=\left\{\frac{1}{2} \sqrt{a_{|n|}^{2}+b_{|n|}^{2}}\right\}$.
The power spectrum is the values of $\left\{\left|U_{n}\right|^{2}\right\}=\left\{\frac{1}{4}\left(a_{|n|}^{2}+b_{|n|}^{2}\right)\right\}$.
Example:

$$
\begin{aligned}
& u(t)=2+2 \cos 2 \pi F t+4 \sin 2 \pi F t-2 \sin 6 \pi F t \\
& \text { Fourier Coefficients: } \quad a_{0: 3}=[4,2,0,0] \quad b_{1: 3}=[4,0,-2] \\
& \quad \text { Spectrum: } \quad U_{-3: 3}=[-i, 0,1+2 i, 2,1-2 i, 0, i] \\
& \text { Magnitude Spectrum: } \quad\left|U_{-3: 3}\right|=[1,0, \sqrt{5}, 2, \sqrt{5}, 0,1] \\
& \text { Power Spectrum: }\left|U_{-3: 3}^{2}\right|=[1,0,5,4,5,0,1] \quad\left[\sum=\left\langle u^{2}(t)\right\rangle\right] \\
& \left.e_{0}^{2}\right|_{0} ^{2} \mid
\end{aligned}
$$

The magnitude and power spectra of a real periodic signal are symmetrical.
A one-sided power power spectrum shows U_{0} and then $2\left|U_{n}\right|^{2}$ for $n \geq 1$.

Product of Signals

4: Parseval's

Theorem and

Convolution
Parseval's Theorem
(a.k.a. Plancherel's Theorem)
Power Conservation
Magnitude Spectrum and Power Spectrum \triangleright Product of Signals Convolution

Properties

Convolution Example
Convolution and

Polynomial

Multiplication

Summary

Suppose we have two signals with the same period, $T=\frac{1}{F}$,

$$
\begin{aligned}
& u(t)=\sum_{n=-\infty}^{\infty} U_{n} e^{i 2 \pi n F t} \\
& v(t)=\sum_{m=-\infty}^{\infty} V_{n} e^{i 2 \pi m F t}
\end{aligned}
$$

If $w(t)=u(t) v(t)$ then $W_{r}=\sum_{m=-\infty}^{\infty} U_{r-m} V_{m} \triangleq U_{r} * V_{r}$
Proof:

$$
\begin{aligned}
w(t) & =u(t) v(t)=\sum_{n=-\infty}^{\infty} U_{n} e^{i 2 \pi n F t} \sum_{m=-\infty}^{\infty} V_{m} e^{i 2 \pi m F t} \\
& =\sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} U_{n} V_{m} e^{i 2 \pi(m+n) F t}
\end{aligned}
$$

Now we change the summation variable to use r instead of n :

$$
r=m+n \Rightarrow n=r-m
$$

This is a one-to-one mapping: every pair (m, n) in the range $\pm \infty$ corresponds to exactly one pair (m, r) in the same range.

$$
w(t)=\sum_{r=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} U_{r-m} V_{m} e^{i 2 \pi r F t}=\sum_{r=-\infty}^{\infty} W_{r} e^{i 2 \pi r F t}
$$

$$
\text { where } W_{r}=\sum_{m=-\infty}^{\infty} U_{r-m} V_{m} \triangleq U_{r} * V_{r}
$$

W_{r} is the sum of all products $U_{n} V_{m}$ for which $m+n=r$.
The spectrum $W_{r}=U_{r} * V_{r}$ is called the convolution of U_{r} and V_{r}.

Convolution Properties

4: Parseval's
Theorem and

Convolution

Parseval's Theorem
(a.k.a. Plancherel's Theorem)
Power Conservation
Magnitude Spectrum and Power Spectrum
Product of Signals

Convolution

\triangle Properties
Convolution Example
Convolution and

Polynomial

Multiplication

Summary

Convolution behaves algebraically like multiplication:

1) Commutative: $U_{r} * V_{r}=V_{r} * U_{r}$
2) Associative: $U_{r} * V_{r} * W_{r}=\left(U_{r} * V_{r}\right) * W_{r}=U_{r} *\left(V_{r} * W_{r}\right)$
3) Distributive over addition: $W_{r} *\left(U_{r}+V_{r}\right)=W_{r} * U_{r}+W_{r} * V_{r}$
4) Identity Element or " 1 ": If $I_{r}=\left\{\begin{array}{ll}1 & r=0 \\ 0 & r \neq 0\end{array}\right.$, then $I_{r} * U_{r}=U_{r}$

Proofs: (all sums are over $\pm \infty$)

1) Substitute for $m: n=r-m \Leftrightarrow m=r-n \quad[1 \leftrightarrow 1$ for any $r]$ $\sum_{m} U_{r-m} V_{m}=\sum_{n} U_{n} V_{r-n}$
2) Substitute for $n: k=r+m-n \Leftrightarrow n=r+m-k$ $[1 \leftrightarrow 1]$
$\sum_{n}\left(\left(\sum_{m} U_{n-m} V_{m}\right) W_{r-n}\right)=\sum_{k}\left(\left(\sum_{m} U_{r-k} V_{m}\right) W_{k-m}\right)$
$=\sum_{k} \sum_{m} U_{r-k} V_{m} W_{k-m}=\sum_{k}\left(U_{r-k}\left(\sum_{m} V_{m} W_{k-m}\right)\right)$
3) $\sum_{m} W_{r-m}\left(U_{m}+V_{m}\right)=\sum_{m} W_{r-m} U_{m}+\sum_{m} W_{r-m} V_{m}$
4) $I_{r-m} U_{m}=0$ unless $m=r$. Hence $\sum_{m} I_{r-m} U_{m}=U_{r}$.

Convolution Example

4: Parseval's
Theorem and
Convolution
Parseval's Theorem
(a.k.a. Plancherel's Theorem)
Power Conservation Magnitude Spectrum and Power Spectrum
Product of Signals
Convolution
Properties
Convolution
\triangleright Example
Convolution and Polynomial Multiplication
Summary

$$
\begin{aligned}
& u(t)=10+8 \sin 2 \pi t \quad v(t)=4 \cos 6 \pi t \\
& U_{-1: 1}=[4 i, \underline{10},-4 i] \quad V_{-3: 3}=[2,0,0, \underline{0}, 0,0,2] \\
& {\left[\underline{0}=V_{0}\right]} \\
& w(t)=u(t) v(t)=(10+8 \sin 2 \pi t) 4 \cos 6 \pi t \\
& =40 \cos 6 \pi t+32 \sin 2 \pi t \cos 6 \pi t \\
& =40 \cos 6 \pi t+16 \sin 8 \pi t-16 \sin 4 \pi t \\
& W_{-4: 4}=[8 i, 20,-8 i, 0, \underline{0}, 0,8 i, 20,-8 i]
\end{aligned}
$$

To convolve U_{n} and V_{n} :
Replace each harmonic in V_{n} by a scaled copy of the entire $\left\{U_{n}\right\}$ (or vice versa) and sum the complex-valued coefficients of any overlapping harmonics.

Convolution and Polynomial Multiplication

4: Parseval's
Theorem and Convolution
Parseval's Theorem
(a.k.a. Plancherel's Theorem)
Power Conservation
Magnitude Spectrum and Power Spectrum
Product of Signals
Convolution

Properties

Convolution Example
Convolution and
Polynomial
\triangleright Multiplication
Summary

Two polynomials: $u(x)=U_{3} x^{3}+U_{2} x^{2}+U_{1} x+U_{0}$

$$
v(x)=\quad V_{2} x^{2}+V_{1} x+V_{0}
$$

Now multiply the two polynomials together:

$$
\begin{aligned}
& w(x)=u(x) v(x) \\
& =U_{3} V_{2} x^{5}+\left(U_{3} V_{1}+U_{2} V_{2}\right) x^{4}+\left(U_{3} V_{0}+U_{2} V_{1}+U_{1} V_{2}\right) x^{3} \\
& \quad+\left(U_{2} V_{0}+U_{1} V_{1}+U_{0} V_{2}\right) x^{2}+\left(U_{1} V_{0}+U_{0} V_{1}\right) x+U_{0} V_{0}
\end{aligned}
$$

The coefficient of x^{r} consists of all the coefficient pair from U and V where the subscripts add up to r. For example, for $r=3$:

$$
W_{3}=U_{3} V_{0}+U_{2} V_{1}+U_{1} V_{2}=\sum_{m=0}^{2} U_{3-m} V_{m}
$$

If all the missing coefficients are assumed to be zero, we can write

$$
W_{r}=\sum_{m=-\infty}^{\infty} U_{r-m} V_{m} \triangleq U_{r} * V_{r}
$$

So, to multiply two polynomials, you convolve their coefficient sequences.
Actually, the complex Fourier Series is iust a polynomial:

$$
u(t)=\sum_{n=-\infty}^{\infty} U_{n} e^{i 2 \pi n F t}=\sum_{n=-\infty}^{\infty} U_{n}\left(e^{i 2 \pi F t}\right)^{n}
$$

Summary

4: Parseval's
Theorem and
Convolution
Parseval's Theorem
(a.k.a. Plancherel's Theorem)
Power Conservation
Magnitude Spectrum and Power Spectrum
Product of Signals
Convolution

Properties

Convolution Example
Convolution and

Polynomial

Multiplication
\triangleright Summary

- Parseval's Theorem: $\left\langle u^{*}(t) v(t)\right\rangle=\sum_{n=-\infty}^{\infty} U_{n}^{*} V_{n}$
- Power Conservation: $\left.\left.\langle | u(t)\right|^{2}\right\rangle=\sum_{n=-\infty}^{\infty}\left|U_{n}\right|^{2}$
- or in terms of a_{n} and b_{n} :

$$
\left.\left.\langle | u(t)\right|^{2}\right\rangle=\frac{1}{4} a_{0}^{2}+\frac{1}{2} \sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right)
$$

- Linearity: $w(t)=a u(t)+b v(t) \Leftrightarrow W_{n}=a U_{n}+b V_{n}$
- Product of signals \Leftrightarrow Convolution of complex Fourier coefficients:

$$
w(t)=u(t) v(t) \Leftrightarrow W_{n}=U_{n} * V_{n} \triangleq \sum_{m=-\infty}^{\infty} U_{n-m} V_{m}
$$

- Convolution acts like multiplication:
- Commutative: $U * V=V * U$
- Associative: $U * V * W$ is unambiguous
- Distributes over addition: $U *(V+W)=U * V+U * W$
- Has an identity: $I_{r}=1$ if $r=0$ and $=0$ otherwise
- Polynomial multiplication \Leftrightarrow convolution of coefficients

For further details see RHB Chapter 12.8.

