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We will see that if a periodic function, v(t), is discontinuous, then its
Fourier series behaves in a strange way.
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]
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Convergence: v(t) always converges if u(t) does since Vm ∝ 1
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vN (t) is a good approximation even for small N
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Integrating u(t) multiplies the Um by −i

2πF ×m−1⇒ they decrease faster.
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For large |m|, Um decreases as |m|
−1
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Integrating u(t) multiplies the Um by −i

2πF ×m−1⇒ they decrease faster.

The rate at which the coefficients, Um, decrease with m depends on the
lowest derivative that has a discontinuity:

• Discontinuity in u(t) itself (e.g. square wave)

For large |m|, Um decreases as |m|
−1
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Integrating u(t) multiplies the Um by −i

2πF ×m−1⇒ they decrease faster.

The rate at which the coefficients, Um, decrease with m depends on the
lowest derivative that has a discontinuity:

• Discontinuity in u(t) itself (e.g. square wave)

For large |m|, Um decreases as |m|
−1

• Discontinuity in u′(t) (e.g. triangle wave)

For large |m|, Um decreases as |m|−2

• Discontinuity in u(n)(t)

For large |m|, Um decreases as |m|−(n+1)

• No discontinuous derivatives
For large |m|, Um decreases faster than any power (e.g. e−|m|)
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If u(t) is a continuous differentiable function and w(t) = du(t)
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For further details see RHB Chapter 12.4, 12.5, 12.6
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