5: Gibbs
\triangle Phenomenon
Discontinuities
Discontinuous
Waveform
Gibbs Phenomenon
Integration
Rate at which
coefficients decrease
with m
Differentiation
Periodic Extension
t^{2} Periodic
Extension: Method
(a)
t^{2} Periodic
Extension: Method
(b)

Summary

5: Gibbs Phenomenon

Discontinuities

5: Gibbs Phenomenon
\triangleright Discontinuities Discontinuous Waveform
Gibbs Phenomenon
Integration
Rate at which
coefficients decrease with m
Differentiation
Periodic Extension
t^{2} Periodic
Extension: Method (a)
t^{2} Periodic Extension: Method (b)

Summary

A function, $v(t)$, has a discontinuity of amplitude b at $t=a$ if

$$
\lim _{e \rightarrow 0}(v(a+e)-v(a-e))=b \neq 0
$$

Conversely, $v(t)$, is continuous at $t=a$ if the limit, b, equals zero.

Examples:

Continuous

Discontinuous

We will see that if a periodic function, $v(t)$, is discontinuous, then its Fourier series behaves in a strange way.

Discontinuous Waveform

5: Gibbs Phenomenon

Discontinuities

Discontinuous
\downarrow Waveform
Gibbs Phenomenon

Integration

Rate at which
coefficients decrease
with m
Differentiation
Periodic Extension
t^{2} Periodic

Extension: Method

(a)
t^{2} Periodic
Extension: Method
(b)

Summary

Pulse: $T=\frac{1}{F}=20$, width $=\frac{1}{2} T$, height $A=1$

$$
\begin{aligned}
U_{m} & =\frac{1}{T} \int_{0}^{0.5 T} A e^{-i 2 \pi m F t} d t \\
& =\frac{i}{2 \pi m F T}\left[e^{-i 2 \pi m F t}\right]_{0}^{0.5 T} \\
& =\frac{i}{2 \pi m}\left(e^{-i \pi m}-1\right)=\frac{\left((-1)^{m}-1\right) i}{2 \pi m} \\
& = \begin{cases}0 & m \neq 0, \text { even } \\
0.5 & m=0 \\
\frac{-i}{m \pi} & m \text { odd }\end{cases}
\end{aligned}
$$

So, $u(t)=\frac{1}{2}+\frac{2}{\pi}\left(\sin 2 \pi F t+\frac{1}{3} \sin 6 \pi F t\right.$

$$
\left.+\frac{1}{5} \sin 10 \pi F t+\ldots\right)
$$

Define: $u_{N}(t)=\sum_{m=-N}^{N} U_{m} e^{i 2 \pi m F t}$

$$
\begin{aligned}
u_{N}(0) & =0.5 \forall N \\
\max _{t} u_{N}(t) & \underset{N \rightarrow \infty}{\longrightarrow} \frac{1}{2}+\frac{1}{\pi} \int_{0}^{\pi} \frac{\sin t}{t} d t \approx 1.0895
\end{aligned}
$$

[Enlarged View: $u_{41}(t)$]

[Powers of -1 and i]

Expressions involving $(-1)^{m}$ or, less commonly, i^{m} arise quite frequently and it is worth becoming familiar with them. They can arise in several guises:

$$
\begin{aligned}
& e^{-i \pi m}=e^{i \pi m}=\left(e^{i \pi}\right)^{m}=\cos (\pi m)=(-1)^{m} \\
& e^{i \frac{1}{2} \pi m}=\left(e^{i \frac{1}{2} \pi}\right)^{m}=i^{m} \\
& e^{-i \frac{1}{2} \pi m}=\left(e^{-i \frac{1}{2} \pi}\right)^{m}=(-i)^{m}
\end{aligned}
$$

As m increases these expressions repeat with periods of 2 or 4 . Simple expressions involving these quantities make useful sequences.

m	-4	-3	-2	-1	0	1	2	3	4
$(-1)^{m}=\cos \pi m=e^{i \pi m}$	1	-1	1	-1	1	-1	1	-1	1
$i^{m}=e^{i 0.5 \pi m}$	1	i	-1	$-i$	1	i	-1	$-i$	1
$(-i)^{m}=e^{-i 0.5 \pi m}$	1	$-i$	-1	i	1	$-i$	-1	i	1
$\frac{1}{2}\left(1+(-1)^{m}\right)$	1	0	1	0	1	0	1	0	1
$\frac{1}{2}\left(1-(-1)^{m}\right)$	0	1	0	1	0	1	0	1	0
$\frac{1}{2}\left(i^{m}+(-i)^{m}\right)=\cos 0.5 \pi m$	1	0	-1	0	1	0	-1	0	1
$\frac{1}{4}\left(1+(-1)^{m}+i^{m}+(-i)^{m}\right)$	1	0	0	0	1	0	0	0	1

Gibbs Phenomenon

5: Gibbs Phenomenon

Discontinuities

Discontinuous
Waveform
\triangleright Gibbs Phenomenon
Integration
Rate at which
coefficients decrease with m
Differentiation
Periodic Extension
t^{2} Periodic
Extension: Method (a)
t^{2} Periodic
Extension: Method
(b)

Summary

Truncated Fourier Series: $u_{N}(t)=\sum_{m=-N}^{N} U_{m} e^{i 2 \pi m F t}$
If $u(t)$ has a discontinuity of height b at $t=a$ then:
(1) $u_{N}(a) \underset{N \rightarrow \infty}{\longrightarrow} \lim _{e \rightarrow 0} \frac{u(a-e)+u(a+e)}{2}$
(2) $u_{N}(t)$ has an overshoot of about 9% of b at the discontinuity. For large N the overshoot moves closer to the discontinuity but does not get smaller (Gibbs phenomenon). In the limit the overshoot equals $\left(-\frac{1}{2}+\frac{1}{\pi} \int_{0}^{\pi} \frac{\sin t}{t} d t\right) b \approx 0.0895 b$.
(3) For large m, the coefficients, U_{m} decrease no faster than $|m|^{-1}$.

Example:

$$
\begin{aligned}
u_{N}(0) & \underset{N \rightarrow \infty}{\longrightarrow} 0.5 \\
\max _{t} u_{N}(t) & \xrightarrow[N \rightarrow \infty]{\longrightarrow} 1.0895 \ldots \\
U_{m} & = \begin{cases}0 & m \neq 0, \text { even } \\
0.5 & m=0 \\
\frac{-i}{m \pi} & m \text { odd }\end{cases}
\end{aligned}
$$

[Origin of Gibbs Phenomenon]

This topic is included for interest but is not examinable.
Our first goal is to express the partial Fourier series, $u_{N}(t)$, in terms of the original signal, $u(t)$. We begin by substituting the integral expression for U_{n} in the partial Fourier series

$$
u_{N}(t)=\sum_{n=-N}^{+N} U_{n} e^{i 2 \pi n F t}=\sum_{n=-N}^{+N}\left(\frac{1}{T} \int_{0}^{T} u(\tau) e^{-i 2 \pi n F \tau} d \tau\right) e^{i 2 \pi n F t}
$$

Now we swap the order of the integration and the finite summation (OK if the integral converges $\forall n$)

$$
u_{N}(t)=\frac{1}{T} \int_{0}^{T} u(\tau)\left(\sum_{n=-N}^{+N} e^{i 2 \pi n F(t-\tau)}\right) d \tau
$$

Now apply the formula for the sum of a geometric progression with $z=e^{i 2 \pi F(t-\tau)}$:

$$
\begin{aligned}
& \sum_{n=-N}^{+N} z^{n}=\frac{z^{-N}-z^{N+1}}{1-z}=\frac{z^{-(N+0.5)}-z^{N+0.5}}{z^{-0.5}-z^{0.5}} \\
& u_{N}(t)= \frac{1}{T} \int_{0}^{T} u(\tau) \frac{e^{i 2 \pi(N+0.5) F(\tau-t)}-e^{-i 2 \pi(N+0.5) F(\tau-t)}}{e^{i 2 \pi 0.5 F(\tau-t)}-e^{-i 2 \pi 0.5 F(\tau-t)}} d \tau \\
&= \frac{1}{T} \int_{0}^{T} u(\tau) \frac{\sin \pi(2 N+1) F(\tau-t)}{\sin \pi F(\tau-t)} d \tau
\end{aligned}
$$

So if we define the Dirichlet Kernel to be $D_{N}(x)=\frac{\sin ((N+0.5) x)}{\sin 0.5 x}$, and set $x=2 \pi F(\tau-t)$, we obtain

$$
u_{N}(t)=\frac{1}{T} \int_{0}^{T} u(\tau) D_{N}(2 \pi F(\tau-t)) d \tau
$$

So what we have shown is that $u_{N}(t)$ can be obtained by multiplying $u(\tau)$ by a time-shifted Dirichlet Kernel and then integrating over one period. Next we will look at the properties of the Dirichlet Kernel.

[Dirichlet Kernel]

This topic is included for interest but is not examinable.
Dirichlet Kernel definition: $D_{N}(x)=\sum_{n=-N}^{+N} e^{i n x}=1+2 \sum_{n=1}^{N} \cos n x=\frac{\sin ((N+0.5) x)}{\sin 0.5 x}$ $D_{N}(x)$ is plotted below for $N=\{2,5,10,21\}$. The vertical red lines at $\pm \pi$ mark one period.

- Periodic: with period 2π
- Average value: $\left\langle D_{N}(x)\right\rangle=\frac{1}{2 \pi} \int_{-\pi}^{+\pi} D_{N}(x) d x=1$
- First Zeros: $D_{N}(x)=0$ at $x= \pm \frac{\pi}{N+0.5}$ define the main lobe as $-\frac{\pi}{N+0.5}<x<\frac{\pi}{N+0.5}$
- Peak value: $2 N+1$ at $x=0$. The main lobe gets narrower but higher as N increases.
- Main Lobe semi-integral:

$$
\int_{x=0}^{\frac{\pi}{N+0.5}} D_{N}(x) d x=\int_{x=0}^{\frac{\pi}{N+0.5}} \frac{\sin ((N+0.5) x)}{\sin 0.5 x} d x=\frac{1}{N+0.5} \int_{y=0}^{\pi} \frac{\sin y}{\sin \frac{y}{2 N+1}} d y[y=(N+0.5) x]
$$

where we substituted $y=(N+0.5) x$. Now, for large N, we can approximate $\sin \frac{y}{2 N+1} \approx \frac{y}{2 N+1}$:

$$
\int_{x=0}^{\frac{\pi}{N+0.5}} D_{N}(x) d x \approx \frac{1}{N+0.5} \int_{y=0}^{\pi} \frac{\sin y}{\frac{y}{2 N+1}} d y=2 \int_{y=0}^{\pi} \frac{\sin y}{y} d y \approx 3.7038741 \approx 2 \pi \times 0.58949
$$

We see that, for large enough N, the main lobe semi-integral is independent of N.

$$
\left[\ln \operatorname{MATLAB} D_{N}(x)=(2 N+1) \times \operatorname{diric}(x, 2 N+1)\right]
$$

[Gibbs Phenomenon Overshoot]

This topic is included for interest but is not examinable.
The partial Fourier Series, $u_{N}(t)$, can be obtained by multiplying $u(t)$
 by a shifted Dirichlet Kernel and integrating over one period:

$$
u_{N}(t)=\frac{1}{T} \int_{0}^{T} u(\tau) D_{N}(2 \pi F(\tau-t)) d \tau
$$

For the special case when $u(t)$ is a pulse of height 1 and width $0.5 T$:

$$
u_{N}(t)=\frac{1}{T} \int_{0}^{0.5 T} D_{N}(2 \pi F(\tau-t)) d \tau
$$

Substitute $x=2 \pi F(\tau-t)$

$$
u_{N}(t)=\frac{1}{2 \pi F T} \int_{-2 \pi F t}^{\pi F T-2 \pi F t} D_{N}(x) d x=\frac{1}{2 \pi} \int_{-2 \pi F t}^{\pi-2 \pi F t} D_{N}(x) d x
$$

- For $t=0$ (the blue integral and the blue circle on the upper graph):

$$
u_{N}(0)=\frac{1}{2 \pi} \int_{0}^{\pi} D_{N}(x) d x=0.5
$$

- For $t=\frac{T}{2 N+1}$ (the red integral and the red circle on the upper graph):

$$
u_{N}\left(\frac{T}{2 N+1}\right)=\frac{1}{2 \pi} \int_{-\frac{\pi}{N+0.5}}^{\pi-\frac{\pi}{N+0.5}} D_{N}(x) d x=\frac{1}{2 \pi} \int_{-\frac{\pi}{N+0.5}}^{0} D_{N}(x) d x+\frac{1}{2 \pi} \int_{0}^{\pi-\frac{\pi}{N+0.5}} D_{N}(x) d x
$$

For large N, we replace the first term by a constant (since it is the semi-integral of the main lobe) and replace the upper limit of the second term by π :

$$
\approx 0.58949+\frac{1}{2 \pi} \int_{0}^{\pi} D_{N}(x) d x=1.08949
$$

- For $0 \ll t \ll 0.5 T, u_{N}(t) \approx 1$ (the green integral and the green circle on the upper graph).

Integration

5: Gibbs Phenomenon

Discontinuities

Discontinuous

Waveform

Gibbs Phenomenon

\triangleright Integration

Rate at which

coefficients decrease
with m
Differentiation
Periodic Extension
t^{2} Periodic
Extension: Method
(a)
t^{2} Periodic
Extension: Method (b)

Summary

Suppose $u(t)=\sum_{m=-\infty}^{\infty} U_{m} e^{i 2 \pi m F t}$
Define $v(t)$ to be the integral of $u(t)$

[boundedness requires $U_{0}=0$]

$$
\begin{aligned}
& \qquad \begin{aligned}
v(t) & =\int^{t} u(\tau) d \tau=\int^{t} \sum_{m=-\infty}^{\infty} U_{m} e^{i 2 \pi m F \tau} d \tau \\
& \left.=\sum_{m=-\infty}^{\infty} U_{m} \int^{t} e^{i 2 \pi m F \tau} d \tau \quad \text { [assume OK to swap } \int \text { and } \sum\right] \\
& =c+\sum_{m=-\infty}^{\infty} U_{m} \frac{1}{\overline{i 2 \pi m F}} e^{i 2 \pi m F t} \\
& =c+\sum_{m=-\infty}^{\infty} V_{m} e^{i 2 \pi m F t} \text { where } c \text { is an integration constant }
\end{aligned} \\
& \text { Hence } V_{m}=\frac{-i}{2 \pi m F} U_{m} \text { except for } V_{0}=c \text { (arbitrary constant) }
\end{aligned}
$$

Example:
Square wave: $U_{m}=\frac{-2 i}{m \pi}$ for odd m (0 for even m)
Triangle wave: $V_{m}=\frac{-i}{2 \pi m F} \times \frac{-2 i}{m \pi}=\frac{-1}{\pi^{2} m^{2} F}$ for odd m (0 for even m)

Convergence: $v(t)$ always converges if $u(t)$ does since $V_{m} \propto \frac{1}{m} U_{m}$ $v_{N}(t)$ is a good approximation even for small N

Rate at which coefficients decrease with m

5: Gibbs Phenomenon

Discontinuities

 Discontinuous WaveformGibbs Phenomenon
Integration
Rate at which
coefficients
\triangleright decrease with m Differentiation

Periodic Extension

t^{2} Periodic
Extension: Method (a)
t^{2} Periodic
Extension: Method (b)

Summary

Square wave: $U_{m}=\frac{-2 i}{\pi} m^{-1}$ for odd m (0 for even m)
Triangle wave: $V_{m}=\frac{-1}{\pi^{2} F} m^{-2}$ for odd $m(0$ for even $m)$

$u(t)$ multiplies the U_{m} by $\frac{-i}{2 \pi F} \times m^{-1} \Rightarrow$ they decrease faster.
The rate at which the coefficients, U_{m}, decrease with m depends on the lowest derivative that has a discontinuity:

- Discontinuity in $u(t)$ itself (e.g. square wave)

For large $|m|, U_{m}$ decreases as $|m|^{-1}$

- Discontinuity in $u^{\prime}(t)$ (e.g. triangle wave)

For large $|m|, U_{m}$ decreases as $|m|^{-2}$

- Discontinuity in $u^{(n)}(t)$

For large $|m|, U_{m}$ decreases as $|m|^{-(n+1)}$

- No discontinuous derivatives

For large $|m|, U_{m}$ decreases faster than any power (e.g. $e^{-|m|}$)

Differentiation

5: Gibbs Phenomenon

Discontinuities

Discontinuous

Waveform

Gibbs Phenomenon

Integration

Rate at which
coefficients decrease with m
\triangleright Differentiation
Periodic Extension
t^{2} Periodic
Extension: Method (a)
t^{2} Periodic
Extension: Method (b)

Summary

Integration multiplies U_{m} by $\frac{-i}{2 \pi m F}$.
Hence differentiation multiplies U_{m} by $\frac{2 \pi m F}{-i}=i 2 \pi m F$
If $u(t)$ is a continuous differentiable function and $w(t)=\frac{d u(t)}{d t}$ then, provided that $w(t)$ satisfies the Dirichlet conditions, its Fourier coefficients are:

$$
W_{m}=\left\{\begin{array}{ll}
0 & m=0 \\
i 2 \pi m F U_{m} & m \neq 0
\end{array} .\right.
$$

Since we are multiplying U_{m} by m the coefficients W_{m} decrease more slowly with m and so the Fourier series for $w(t)$ may not converge (i.e. $w(t)$ may not satisfy the Dirichlet conditions).

Differentiation makes waveforms spikier and less smooth.

Periodic Extension

5: Gibbs Phenomenon

Discontinuities

Discontinuous
Waveform
Gibbs Phenomenon

Integration

Rate at which
coefficients decrease
with m
Differentiation
\triangleright Periodic Extension
t^{2} Periodic
Extension: Method
(a)
t^{2} Periodic
Extension: Method
(b)

Summary

Suppose $y(t)$ is only defined over a finite interval (a, b).
You have two reasonable choices to make a periodic version:

$$
\text { (a) } T=b-a, \quad u(t)=y(t) \text { for } a \leq t<b
$$

(b) $T=2(b-a), u(t)= \begin{cases}y(t) & a \leq t \leq b \\ y(2 b-t) & b \leq t \leq 2 b-a\end{cases}$

Example:
$y(t)=t^{2}$ for $0 \leq t<2$

(a) $T=2$

(b) $T=4$

Option (b) has twice the period, no discontinuities, no Gibbs phenomenon overshoots and if $y(t)$ is continuous the coefficients decrease at least as fast as $|m|^{-2}$.

t^{2} Periodic Extension: Method (a)

5: Gibbs Phenomenon

Discontinuities

Discontinuous
Waveform
Gibbs Phenomenon

Integration

Rate at which
coefficients decrease
with m
Differentiation
Periodic Extension
t^{2} Periodic
Extension: Method
(a)
t^{2} Periodic
Extension: Method
(b)

Summary
$y(t)=t^{2}$ for $0 \leq t<2$
Method (a): $T=\frac{1}{F}=2$

$$
\begin{aligned}
U_{m} & =\frac{1}{T} \int_{0}^{T} t^{2} e^{-i 2 \pi m F t} d t \\
& =\frac{1}{T}\left[\frac{t^{2} e^{-i 2 \pi m F t}}{-i 2 \pi m F}-\frac{2 t e^{-i 2 \pi m F t}}{(-i 2 \pi m F)^{2}}+\frac{2 e^{-i 2 \pi m F t}}{(-i 2 \pi m F)^{3}}\right]_{0}^{T}
\end{aligned}
$$

$$
\text { Substitute } e^{-i 2 \pi m F 0}=e^{-i 2 \pi m F T}=1
$$

[for integer m]

$$
\begin{aligned}
& =\frac{1}{T}\left[\frac{T^{2}}{-i 2 \pi m F}-\frac{2 T}{(-i 2 \pi m F)^{2}}\right] \\
& =\frac{2 i}{\pi m}+\frac{2}{\pi^{2} m^{2}}
\end{aligned}
$$

$U_{0: 3}=[1.333,0.203+0.637 i, 0.051+0.318 i, 0.023+0.212 i]$

t^{2} Periodic Extension: Method (b)

5: Gibbs Phenomenon

Discontinuities

Discontinuous

Waveform

Gibbs Phenomenon

Integration

Rate at which
coefficients decrease
with m
Differentiation
Periodic Extension
t^{2} Periodic

Extension: Method

(a)

t^{2} Periodic

Extension: Method
\triangleright (b)
Summary
$y(t)=t^{2}$ for $0 \leq t<2$
Method (b): $T=\frac{1}{F}=4$

$$
\begin{aligned}
U_{m} & =\frac{1}{T} \int_{-0.5 T}^{0.5 T} t^{2} e^{-i 2 \pi m F t} d t \quad U_{0}=\frac{1}{T} \\
& =\frac{1}{T}\left[\frac{t^{2} e^{-i 2 \pi m F t}}{-i 2 \pi m F}-\frac{2 t e^{-i 2 \pi m F t}}{(-i 2 \pi m F)^{2}}+\frac{2 e^{-i 2 \pi m F t}}{(-i 2 \pi m F)^{3}}\right]_{-0.5 T}^{0.5 T}
\end{aligned}
$$

Substitute $e^{ \pm i \pi m F T}=e^{ \pm i \pi m}=(-1)^{m}$
[for integer m]

$$
\begin{aligned}
& =\frac{(-1)^{m}}{T}\left[\frac{-2 T}{(-i 2 \pi m F)^{2}}\right] \\
& =\frac{(-1)^{m} T^{2}}{2 \pi^{2} m^{2}}=\frac{(-1)^{m} 8}{\pi^{2} m^{2}}
\end{aligned}
$$

$U_{0: 3}=[1.333,-0.811,0.203,-0.090]$
Convergence is noticeably faster than for method (a)

Summary

5: Gibbs Phenomenon

Discontinuities

Discontinuous
Waveform
Gibbs Phenomenon
Integration
Rate at which
coefficients decrease
with m
Differentiation
Periodic Extension
t^{2} Periodic
Extension: Method
(a)
t^{2} Periodic
Extension: Method
(b)
\triangleright Summary

- Discontinuity at $t=a$
- Gibbs phenomenon: $u_{N}(t)$ overshoots by 9% of iump
- $u_{N}(a) \rightarrow$ mid point of iump
- Integration: If $v(t)=\int^{t} u(\tau) d \tau$, then $V_{m}=\frac{-i}{2 \pi m F} U_{m}$ and $V_{0}=c$, an arbitrary constant. U_{0} must be zero.
- Differentiation: If $w(t)=\frac{d u(t)}{d t}$, then $W_{m}=i 2 \pi m F U_{m}$ provided $w(t)$ satisfies Dirichlet conditions (it might not)
- Rate of decay:
- For large n, U_{n} decreases at a rate $|n|^{-(k+1)}$ where $\frac{d^{k} u(t)}{d t^{k}}$ is the first discontinuous derivative
- Error power: $\left\langle\left(u(t)-u_{N}(t)\right)^{2}\right\rangle=\sum_{|n|>N}\left|U_{n}\right|^{2}$
- Periodic Extension of finite domain signal of length L
- (a) Repeat indefinitely with period $T=L$
- (b) Reflect alternate repetitions for period $T=2 L$ no discontinuities or Gibbs phenomenon

