8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

8: Correlation

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

The cross-correlation between two signals u(t) and v(t) is $w(t) = u(t) \otimes v(t) \triangleq \int_{-\infty}^{\infty} u^*(\tau)v(\tau+t)d\tau$

- 8: Correlation
- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

The cross-correlation between two signals u(t) and v(t) is $w(t) = u(t) \otimes v(t) \triangleq \int_{-\infty}^{\infty} u^*(\tau)v(\tau+t)d\tau$ $= \int_{-\infty}^{\infty} u^*(\tau-t)v(\tau)d\tau$ [sub: $\tau \to \tau - t$]

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

The *cross-correlation* between two signals u(t) and v(t) is

$$\begin{split} w(t) &= u(t) \otimes v(t) \triangleq \int_{-\infty}^{\infty} u^*(\tau) v(\tau + t) d\tau \\ &= \int_{-\infty}^{\infty} u^*(\tau - t) v(\tau) d\tau \qquad \text{[sub: } \tau \to \tau - t\text{]} \end{split}$$

The complex conjugate, $u^*(\tau)$ makes no difference if u(t) is real-valued but makes the definition work even if u(t) is complex-valued.

w(

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

The cross-correlation between two signals u(t) and v(t) is

$$\begin{aligned} t) &= u(t) \otimes v(t) \triangleq \int_{-\infty}^{\infty} u^*(\tau) v(\tau + t) d\tau \\ &= \int_{-\infty}^{\infty} u^*(\tau - t) v(\tau) d\tau \qquad \text{[sub: } \tau \to \tau - t\text{]} \end{aligned}$$

The complex conjugate, $u^*(\tau)$ makes no difference if u(t) is real-valued but makes the definition work even if u(t) is complex-valued.

Correlation versus Convolution:

$$u(t) \otimes v(t) = \int_{-\infty}^{\infty} u^*(\tau)v(\tau+t)d\tau$$
 [correlation]
$$u(t) * v(t) = \int_{-\infty}^{\infty} u(\tau)v(t-\tau)d\tau$$
 [convolution]

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

The *cross-correlation* between two signals u(t) and v(t) is

$$w(t) = u(t) \otimes v(t) \triangleq \int_{-\infty}^{\infty} u^*(\tau) v(\tau + t) d\tau$$

=
$$\int_{-\infty}^{\infty} u^*(\tau - t) v(\tau) d\tau \qquad [sub: \tau \to \tau - t]$$

The complex conjugate, $u^*(\tau)$ makes no difference if u(t) is real-valued but makes the definition work even if u(t) is complex-valued.

Correlation versus Convolution:

$$u(t) \otimes v(t) = \int_{-\infty}^{\infty} u^{*}(\tau)v(\tau+t)d\tau$$
 [correlation]
$$u(t) * v(t) = \int_{-\infty}^{\infty} u(\tau)v(t-\tau)d\tau$$
 [convolution]

Unlike convolution, the integration variable, τ , has the same sign in the arguments of $u(\cdots)$ and $v(\cdots)$ so the arguments have a constant difference instead of a constant sum (i.e. v(t) is not time-flipped).

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

The *cross-correlation* between two signals u(t) and v(t) is

$$w(t) = u(t) \otimes v(t) \triangleq \int_{-\infty}^{\infty} u^*(\tau) v(\tau + t) d\tau$$

= $\int_{-\infty}^{\infty} u^*(\tau - t) v(\tau) d\tau$ [sub: $\tau \to \tau - t$]

The complex conjugate, $u^*(\tau)$ makes no difference if u(t) is real-valued but makes the definition work even if u(t) is complex-valued.

Correlation versus Convolution:

$$\begin{split} u(t) \otimes v(t) &= \int_{-\infty}^{\infty} u^*(\tau) v(\tau + t) d\tau & \text{[correlation]} \\ u(t) * v(t) &= \int_{-\infty}^{\infty} u(\tau) v(t - \tau) d\tau & \text{[convolution]} \end{split}$$

Unlike convolution, the integration variable, τ , has the same sign in the arguments of $u(\cdots)$ and $v(\cdots)$ so the arguments have a constant difference instead of a constant sum (i.e. v(t) is not time-flipped).

Notes: (a) The argument of w(t) is called the "lag" (= delay of u versus v).

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

The *cross-correlation* between two signals u(t) and v(t) is

$$w(t) = u(t) \otimes v(t) \triangleq \int_{-\infty}^{\infty} u^*(\tau) v(\tau + t) d\tau$$

=
$$\int_{-\infty}^{\infty} u^*(\tau - t) v(\tau) d\tau \qquad [sub: \tau \to \tau - t]$$

The complex conjugate, $u^*(\tau)$ makes no difference if u(t) is real-valued but makes the definition work even if u(t) is complex-valued.

Correlation versus Convolution:

$$\begin{split} u(t) \otimes v(t) &= \int_{-\infty}^{\infty} u^*(\tau) v(\tau + t) d\tau & \text{[correlation]} \\ u(t) * v(t) &= \int_{-\infty}^{\infty} u(\tau) v(t - \tau) d\tau & \text{[convolution]} \end{split}$$

Unlike convolution, the integration variable, τ , has the same sign in the arguments of $u(\cdots)$ and $v(\cdots)$ so the arguments have a constant difference instead of a constant sum (i.e. v(t) is not time-flipped).

Notes: (a) The argument of w(t) is called the "lag" (= delay of u versus v). (b) Some people write $u(t) \star v(t)$ instead of $u(t) \otimes v(t)$.

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

The cross-correlation between two signals u(t) and v(t) is

$$w(t) = u(t) \otimes v(t) \triangleq \int_{-\infty}^{\infty} u^*(\tau) v(\tau + t) d\tau$$

= $\int_{-\infty}^{\infty} u^*(\tau - t) v(\tau) d\tau$ [sub: $\tau \to \tau - t$]

The complex conjugate, $u^*(\tau)$ makes no difference if u(t) is real-valued but makes the definition work even if u(t) is complex-valued.

Correlation versus Convolution:

$$u(t) \otimes v(t) = \int_{-\infty}^{\infty} u^*(\tau)v(\tau+t)d\tau$$
 [correlation]
$$u(t) * v(t) = \int_{-\infty}^{\infty} u(\tau)v(t-\tau)d\tau$$
 [convolution]

Unlike convolution, the integration variable, τ , has the same sign in the arguments of $u(\cdots)$ and $v(\cdots)$ so the arguments have a constant difference instead of a constant sum (i.e. v(t) is not time-flipped).

Notes: (a) The argument of w(t) is called the "lag" (= delay of u versus v).

- (b) Some people write $u(t) \star v(t)$ instead of $u(t) \otimes v(t)$.
- (c) Some swap u and v and/or negate t in the integral.

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

The cross-correlation between two signals u(t) and v(t) is

$$\begin{split} w(t) &= u(t) \otimes v(t) \triangleq \int_{-\infty}^{\infty} u^*(\tau) v(\tau + t) d\tau \\ &= \int_{-\infty}^{\infty} u^*(\tau - t) v(\tau) d\tau \qquad \text{[sub: } \tau \to \tau - t\text{]} \end{split}$$

The complex conjugate, $u^*(\tau)$ makes no difference if u(t) is real-valued but makes the definition work even if u(t) is complex-valued.

Correlation versus Convolution:

$$\begin{split} u(t) \otimes v(t) &= \int_{-\infty}^{\infty} u^*(\tau) v(\tau + t) d\tau & \text{[correlation]} \\ u(t) * v(t) &= \int_{-\infty}^{\infty} u(\tau) v(t - \tau) d\tau & \text{[convolution]} \end{split}$$

Unlike convolution, the integration variable, τ , has the same sign in the arguments of $u(\cdots)$ and $v(\cdots)$ so the arguments have a constant difference instead of a constant sum (i.e. v(t) is not time-flipped).

Notes: (a) The argument of w(t) is called the "lag" (= delay of u versus v).

- (b) Some people write $u(t) \star v(t)$ instead of $u(t) \otimes v(t)$.
- (c) Some swap u and v and/or negate t in the integral.

It is all rather inconsistent ©.

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Cross correlation is used to find where two signals match

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Cross correlation is used to find where two signals match: u(t) is the test waveform.

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Cross correlation is used to find where two signals match: u(t) is the test waveform.

Example 1:

v(t) contains u(t) with an unknown delay and added noise.

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Cross correlation is used to find where two signals match: u(t) is the test waveform.

Example 1:

v(t) contains u(t) with an unknown delay and added noise.

 $w(t) = u(t) \otimes v(t)$

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Cross correlation is used to find where two signals match: u(t) is the test waveform.

Example 1:

v(t) contains u(t) with an unknown delay and added noise.

 $w(t) = u(t) \otimes v(t)$ $= \int u^*(\tau - t)v(\tau)dt$

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Cross correlation is used to find where two signals match: u(t) is the test waveform.

Example 1:

v(t) contains u(t) with an unknown delay and added noise.

$$w(t) = u(t) \otimes v(t) = \int u^*(\tau - t)v(\tau)dt$$

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Cross correlation is used to find where two signals match: u(t) is the test waveform.

Example 1:

- v(t) contains u(t) with an unknown delay and added noise.
- $$\begin{split} w(t) &= u(t) \otimes v(t) \\ &= \int u^*(\tau-t) v(\tau) dt \text{ gives a peak} \\ &\text{at the time lag where } u(\tau-t) \text{ best} \\ &\text{matches } v(\tau) \end{split}$$

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Cross correlation is used to find where two signals match: u(t) is the test waveform.

Example 1:

- v(t) contains u(t) with an unknown delay and added noise.
- $$\begin{split} w(t) &= u(t) \otimes v(t) \\ &= \int u^*(\tau t) v(\tau) dt \text{ gives a peak} \\ \text{at the time lag where } u(\tau t) \text{ best} \\ \text{matches } v(\tau) \text{; in this case at } t = 450 \end{split}$$

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Cross correlation is used to find where two signals match: u(t) is the test waveform.

Example 1:

- v(t) contains u(t) with an unknown delay and added noise.
- $$\begin{split} w(t) &= u(t) \otimes v(t) \\ &= \int u^*(\tau t) v(\tau) dt \text{ gives a peak} \\ \text{at the time lag where } u(\tau t) \text{ best} \\ \text{matches } v(\tau) \text{; in this case at } t = 450 \end{split}$$

Example 2:

y(t) is the same as v(t) with more noise

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Cross correlation is used to find where two signals match: u(t) is the test waveform.

Example 1:

- v(t) contains u(t) with an unknown delay and added noise.
- $$\begin{split} w(t) &= u(t) \otimes v(t) \\ &= \int u^*(\tau t) v(\tau) dt \text{ gives a peak} \\ \text{at the time lag where } u(\tau t) \text{ best} \\ \text{matches } v(\tau) \text{; in this case at } t = 450 \end{split}$$

Example 2:

y(t) is the same as v(t) with more noise $z(t) = u(t) \otimes y(t)$ can still detect the correct time delay (hard for humans)

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Cross correlation is used to find where two signals match: u(t) is the test waveform.

Example 1:

- v(t) contains u(t) with an unknown delay and added noise.
- $$\begin{split} w(t) &= u(t) \otimes v(t) \\ &= \int u^*(\tau t) v(\tau) dt \text{ gives a peak} \\ \text{at the time lag where } u(\tau t) \text{ best} \\ \text{matches } v(\tau) \text{; in this case at } t = 450 \end{split}$$

Example 2:

y(t) is the same as v(t) with more noise $z(t) = u(t) \otimes y(t)$ can still detect the correct time delay (hard for humans)

Example 3:

p(t) contains -u(t)

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Cross correlation is used to find where two signals match: u(t) is the test waveform.

Example 1:

- v(t) contains u(t) with an unknown delay and added noise.
- $$\begin{split} w(t) &= u(t) \otimes v(t) \\ &= \int u^*(\tau t) v(\tau) dt \text{ gives a peak} \\ \text{at the time lag where } u(\tau t) \text{ best} \\ \text{matches } v(\tau) \text{; in this case at } t = 450 \end{split}$$

Example 2:

y(t) is the same as v(t) with more noise $z(t) = u(t) \otimes y(t)$ can still detect the correct time delay (hard for humans)

Example 3:

p(t) contains -u(t) so that $q(t)=u(t)\otimes p(t)$ has a negative peak

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Cross correlation is used to find where two signals match: u(t) is the test waveform.

Example 1:

- v(t) contains u(t) with an unknown delay and added noise.
- $$\begin{split} w(t) &= u(t) \otimes v(t) \\ &= \int u^*(\tau t) v(\tau) dt \text{ gives a peak} \\ \text{at the time lag where } u(\tau t) \text{ best} \\ \text{matches } v(\tau) \text{; in this case at } t = 450 \end{split}$$

Example 2:

y(t) is the same as v(t) with more noise $z(t) = u(t) \otimes y(t)$ can still detect the correct time delay (hard for humans)

Example 3:

 $p(t) \mbox{ contains } -u(t) \mbox{ so that } q(t) = u(t) \otimes p(t)$ has a negative peak

- 8: Correlation
- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation:
$$w(t) = u(t) \otimes v(t) = \int_{-\infty}^{\infty} u^*(\tau - t)v(\tau)d\tau$$

- 8: Correlation
- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t) = u(t) \otimes v(t) = \int_{-\infty}^{\infty} u^*(\tau - t)v(\tau)d\tau$ If we define $x(t) = u^*(-t)$ then $x(t) * v(t) \triangleq \int_{-\infty}^{\infty} x(t - \tau)v(\tau)d\tau$

- 8: Correlation
- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t) = u(t) \otimes v(t) = \int_{-\infty}^{\infty} u^*(\tau - t)v(\tau)d\tau$ If we define $x(t) = u^*(-t)$ then $x(t) * v(t) \triangleq \int_{-\infty}^{\infty} x(t - \tau)v(\tau)d\tau = \int_{-\infty}^{\infty} u^*(\tau - t)v(\tau)d\tau$

- 8: Correlation
- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t) = u(t) \otimes v(t) = \int_{-\infty}^{\infty} u^*(\tau - t)v(\tau)d\tau$ If we define $x(t) = u^*(-t)$ then $x(t) * v(t) \triangleq \int_{-\infty}^{\infty} x(t - \tau)v(\tau)d\tau = \int_{-\infty}^{\infty} u^*(\tau - t)v(\tau)d\tau$ $= u(t) \otimes v(t)$

- 8: Correlation
- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t) = u(t) \otimes v(t) = \int_{-\infty}^{\infty} u^*(\tau - t)v(\tau)d\tau$ If we define $x(t) = u^*(-t)$ then $x(t) * v(t) \triangleq \int_{-\infty}^{\infty} x(t - \tau)v(\tau)d\tau = \int_{-\infty}^{\infty} u^*(\tau - t)v(\tau)d\tau$ $= u(t) \otimes v(t)$

Fourier Transform of x(t):

 $X(f) = \int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt$

- 8: Correlation
- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t) = u(t) \otimes v(t) = \int_{-\infty}^{\infty} u^*(\tau - t)v(\tau)d\tau$ If we define $x(t) = u^*(-t)$ then $x(t) * v(t) \triangleq \int_{-\infty}^{\infty} x(t - \tau)v(\tau)d\tau = \int_{-\infty}^{\infty} u^*(\tau - t)v(\tau)d\tau$ $= u(t) \otimes v(t)$

$$X(f) = \int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt = \int_{-\infty}^{\infty} u^{*}(-t) e^{-i2\pi ft} dt$$

- 8: Correlation
- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t) = u(t) \otimes v(t) = \int_{-\infty}^{\infty} u^*(\tau - t)v(\tau)d\tau$ If we define $x(t) = u^*(-t)$ then $x(t) * v(t) \triangleq \int_{-\infty}^{\infty} x(t - \tau)v(\tau)d\tau = \int_{-\infty}^{\infty} u^*(\tau - t)v(\tau)d\tau$ $= u(t) \otimes v(t)$

$$\begin{aligned} X(f) &= \int_{-\infty}^{\infty} x(t) e^{-i2\pi f t} dt = \int_{-\infty}^{\infty} u^*(-t) e^{-i2\pi f t} dt \\ &= \int_{-\infty}^{\infty} u^*(t) e^{i2\pi f t} dt \end{aligned}$$

- 8: Correlation
- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t) = u(t) \otimes v(t) = \int_{-\infty}^{\infty} u^*(\tau - t)v(\tau)d\tau$ If we define $x(t) = u^*(-t)$ then $x(t) * v(t) \triangleq \int_{-\infty}^{\infty} x(t - \tau)v(\tau)d\tau = \int_{-\infty}^{\infty} u^*(\tau - t)v(\tau)d\tau$ $= u(t) \otimes v(t)$

$$\begin{aligned} X(f) &= \int_{-\infty}^{\infty} x(t) e^{-i2\pi f t} dt = \int_{-\infty}^{\infty} u^*(-t) e^{-i2\pi f t} dt \\ &= \int_{-\infty}^{\infty} u^*(t) e^{i2\pi f t} dt = \left(\int_{-\infty}^{\infty} u(t) e^{-i2\pi f t} dt \right)^* \end{aligned}$$

- 8: Correlation
- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t) = u(t) \otimes v(t) = \int_{-\infty}^{\infty} u^*(\tau - t)v(\tau)d\tau$ If we define $x(t) = u^*(-t)$ then $x(t) * v(t) \triangleq \int_{-\infty}^{\infty} x(t - \tau)v(\tau)d\tau = \int_{-\infty}^{\infty} u^*(\tau - t)v(\tau)d\tau$ $= u(t) \otimes v(t)$

$$\begin{aligned} X(f) &= \int_{-\infty}^{\infty} x(t) e^{-i2\pi f t} dt = \int_{-\infty}^{\infty} u^*(-t) e^{-i2\pi f t} dt \\ &= \int_{-\infty}^{\infty} u^*(t) e^{i2\pi f t} dt = \left(\int_{-\infty}^{\infty} u(t) e^{-i2\pi f t} dt \right)^* \\ &= U^*(f) \end{aligned}$$

- 8: Correlation
- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t) = u(t) \otimes v(t) = \int_{-\infty}^{\infty} u^*(\tau - t)v(\tau)d\tau$ If we define $x(t) = u^*(-t)$ then $x(t) * v(t) \triangleq \int_{-\infty}^{\infty} x(t - \tau)v(\tau)d\tau = \int_{-\infty}^{\infty} u^*(\tau - t)v(\tau)d\tau$ $= u(t) \otimes v(t)$

$$\begin{split} X(f) &= \int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt = \int_{-\infty}^{\infty} u^*(-t) e^{-i2\pi ft} dt \\ &= \int_{-\infty}^{\infty} u^*(t) e^{i2\pi ft} dt = \left(\int_{-\infty}^{\infty} u(t) e^{-i2\pi ft} dt \right)^* \\ &= U^*(f) \\ &\text{So } w(t) = x(t) * v(t) \implies W(f) = X(f) V(f) \end{split}$$

- 8: Correlation
- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t) = u(t) \otimes v(t) = \int_{-\infty}^{\infty} u^*(\tau - t)v(\tau)d\tau$ If we define $x(t) = u^*(-t)$ then $x(t) * v(t) \triangleq \int_{-\infty}^{\infty} x(t - \tau)v(\tau)d\tau = \int_{-\infty}^{\infty} u^*(\tau - t)v(\tau)d\tau$ $= u(t) \otimes v(t)$

$$\begin{split} X(f) &= \int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt = \int_{-\infty}^{\infty} u^*(-t) e^{-i2\pi ft} dt \\ &= \int_{-\infty}^{\infty} u^*(t) e^{i2\pi ft} dt = \left(\int_{-\infty}^{\infty} u(t) e^{-i2\pi ft} dt\right)^* \\ &= U^*(f) \\ \mathbf{So} \ w(t) &= x(t) * v(t) \quad \Rightarrow \quad W(f) = X(f) V(f) = U^*(f) V(f) \end{split}$$

- 8: Correlation
- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t) = u(t) \otimes v(t) = \int_{-\infty}^{\infty} u^*(\tau - t)v(\tau)d\tau$ If we define $x(t) = u^*(-t)$ then $x(t) * v(t) \triangleq \int_{-\infty}^{\infty} x(t - \tau)v(\tau)d\tau = \int_{-\infty}^{\infty} u^*(\tau - t)v(\tau)d\tau$ $= u(t) \otimes v(t)$

Fourier Transform of x(t):

$$\begin{split} X(f) &= \int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt = \int_{-\infty}^{\infty} u^*(-t) e^{-i2\pi ft} dt \\ &= \int_{-\infty}^{\infty} u^*(t) e^{i2\pi ft} dt = \left(\int_{-\infty}^{\infty} u(t) e^{-i2\pi ft} dt \right)^* \\ &= U^*(f) \\ \mathbf{So} \ w(t) &= x(t) * v(t) \quad \Rightarrow \quad W(f) = X(f) V(f) = U^*(f) V(f) \end{split}$$

Hence the Cross-correlation theorem: $w(t) = u(t) \otimes v(t)$

- 8: Correlation
- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t) = u(t) \otimes v(t) = \int_{-\infty}^{\infty} u^*(\tau - t)v(\tau)d\tau$ If we define $x(t) = u^*(-t)$ then $x(t) * v(t) \triangleq \int_{-\infty}^{\infty} x(t - \tau)v(\tau)d\tau = \int_{-\infty}^{\infty} u^*(\tau - t)v(\tau)d\tau$ $= u(t) \otimes v(t)$

Fourier Transform of x(t):

$$\begin{split} X(f) &= \int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt = \int_{-\infty}^{\infty} u^*(-t) e^{-i2\pi ft} dt \\ &= \int_{-\infty}^{\infty} u^*(t) e^{i2\pi ft} dt = \left(\int_{-\infty}^{\infty} u(t) e^{-i2\pi ft} dt\right)^* \\ &= U^*(f) \\ \mathbf{So} \ w(t) &= x(t) * v(t) \quad \Rightarrow \quad W(f) = X(f) V(f) = U^*(f) V(f) \end{split}$$

Hence the Cross-correlation theorem:

 $w(t) = u(t) \otimes v(t)$ = $u^*(-t) * v(t)$
- 8: Correlation
- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t) = u(t) \otimes v(t) = \int_{-\infty}^{\infty} u^*(\tau - t)v(\tau)d\tau$ If we define $x(t) = u^*(-t)$ then $x(t) * v(t) \triangleq \int_{-\infty}^{\infty} x(t - \tau)v(\tau)d\tau = \int_{-\infty}^{\infty} u^*(\tau - t)v(\tau)d\tau$ $= u(t) \otimes v(t)$

Fourier Transform of x(t):

$$\begin{split} X(f) &= \int_{-\infty}^{\infty} x(t) e^{-i2\pi f t} dt = \int_{-\infty}^{\infty} u^*(-t) e^{-i2\pi f t} dt \\ &= \int_{-\infty}^{\infty} u^*(t) e^{i2\pi f t} dt = \left(\int_{-\infty}^{\infty} u(t) e^{-i2\pi f t} dt\right)^* \\ &= U^*(f) \\ \mathbf{So} \ w(t) &= x(t) * v(t) \quad \Rightarrow \quad W(f) = X(f) V(f) = U^*(f) V(f) \end{split}$$

Hence the Cross-correlation theorem:

 $w(t) = u(t) \otimes v(t) \qquad \Leftrightarrow \qquad W(f) = U^*(f)V(f)$ $= u^*(-t) * v(t)$

- 8: Correlation
- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t) = u(t) \otimes v(t) = \int_{-\infty}^{\infty} u^*(\tau - t)v(\tau)d\tau$ If we define $x(t) = u^*(-t)$ then $x(t) * v(t) \triangleq \int_{-\infty}^{\infty} x(t - \tau)v(\tau)d\tau = \int_{-\infty}^{\infty} u^*(\tau - t)v(\tau)d\tau$ $= u(t) \otimes v(t)$

Fourier Transform of x(t):

$$\begin{split} X(f) &= \int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt = \int_{-\infty}^{\infty} u^*(-t) e^{-i2\pi ft} dt \\ &= \int_{-\infty}^{\infty} u^*(t) e^{i2\pi ft} dt = \left(\int_{-\infty}^{\infty} u(t) e^{-i2\pi ft} dt\right)^* \\ &= U^*(f) \\ \mathbf{So} \ w(t) &= x(t) * v(t) \quad \Rightarrow \quad W(f) = X(f) V(f) = U^*(f) V(f) \end{split}$$

Hence the Cross-correlation theorem:

 $\begin{aligned} w(t) &= u(t) \otimes v(t) \\ &= u^*(-t) * v(t) \end{aligned} \Leftrightarrow \qquad W(f) &= U^*(f)V(f) \end{aligned}$

Note that, unlike convolution, correlation is not associative or commutative: $v(t) \otimes u(t) = v^*(-t) * u(t)$

- 8: Correlation
- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t) = u(t) \otimes v(t) = \int_{-\infty}^{\infty} u^*(\tau - t)v(\tau)d\tau$ If we define $x(t) = u^*(-t)$ then $x(t) * v(t) \triangleq \int_{-\infty}^{\infty} x(t - \tau)v(\tau)d\tau = \int_{-\infty}^{\infty} u^*(\tau - t)v(\tau)d\tau$ $= u(t) \otimes v(t)$

Fourier Transform of x(t):

$$\begin{split} X(f) &= \int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt = \int_{-\infty}^{\infty} u^*(-t) e^{-i2\pi ft} dt \\ &= \int_{-\infty}^{\infty} u^*(t) e^{i2\pi ft} dt = \left(\int_{-\infty}^{\infty} u(t) e^{-i2\pi ft} dt\right)^* \\ &= U^*(f) \\ \mathbf{So} \ w(t) &= x(t) * v(t) \quad \Rightarrow \quad W(f) = X(f) V(f) = U^*(f) V(f) \end{split}$$

Hence the Cross-correlation theorem:

 $\begin{aligned} w(t) &= u(t) \otimes v(t) \\ &= u^*(-t) * v(t) \end{aligned} \Leftrightarrow \qquad W(f) &= U^*(f)V(f) \end{aligned}$

Note that, unlike convolution, correlation is not associative or commutative:

$$v(t) \otimes u(t) = v^*(-t) * u(t) = u(t) * v^*(-t)$$

- 8: Correlation
- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t) = u(t) \otimes v(t) = \int_{-\infty}^{\infty} u^*(\tau - t)v(\tau)d\tau$ If we define $x(t) = u^*(-t)$ then $x(t) * v(t) \triangleq \int_{-\infty}^{\infty} x(t - \tau)v(\tau)d\tau = \int_{-\infty}^{\infty} u^*(\tau - t)v(\tau)d\tau$ $= u(t) \otimes v(t)$

Fourier Transform of x(t):

$$\begin{split} X(f) &= \int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt = \int_{-\infty}^{\infty} u^*(-t) e^{-i2\pi ft} dt \\ &= \int_{-\infty}^{\infty} u^*(t) e^{i2\pi ft} dt = \left(\int_{-\infty}^{\infty} u(t) e^{-i2\pi ft} dt\right)^* \\ &= U^*(f) \\ \mathbf{So} \ w(t) &= x(t) * v(t) \quad \Rightarrow \quad W(f) = X(f) V(f) = U^*(f) V(f) \end{split}$$

Hence the Cross-correlation theorem:

 $\begin{aligned} w(t) &= u(t) \otimes v(t) \\ &= u^*(-t) * v(t) \end{aligned} \Leftrightarrow \qquad W(f) &= U^*(f)V(f) \end{aligned}$

Note that, unlike convolution, correlation is not associative or commutative:

$$v(t) \otimes u(t) = v^*(-t) * u(t) = u(t) * v^*(-t) = w^*(-t)$$

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation:
$$w(t) = u(t) \otimes v(t) = \int_{-\infty}^{\infty} u^*(\tau - t)v(\tau)d\tau$$

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t) = u(t) \otimes v(t) = \int_{-\infty}^{\infty} u^*(\tau - t)v(\tau)d\tau$ If we define $y(t) = u(t - t_0)$ for some fixed t_0 , then $E_y = E_u$:

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t) = u(t) \otimes v(t) = \int_{-\infty}^{\infty} u^*(\tau - t)v(\tau)d\tau$ If we define $y(t) = u(t - t_0)$ for some fixed t_0 , then $E_y = E_u$: $E_y = \int_{-\infty}^{\infty} |y(t)|^2 dt$

- 8: Correlation
- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t) = u(t) \otimes v(t) = \int_{-\infty}^{\infty} u^*(\tau - t)v(\tau)d\tau$ If we define $y(t) = u(t - t_0)$ for some fixed t_0 , then $E_y = E_u$: $E_y = \int_{-\infty}^{\infty} |y(t)|^2 dt = \int_{-\infty}^{\infty} |u(t - t_0)|^2 dt$

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t) = u(t) \otimes v(t) = \int_{-\infty}^{\infty} u^*(\tau - t)v(\tau)d\tau$ If we define $y(t) = u(t - t_0)$ for some fixed t_0 , then $E_y = E_u$: $E_y = \int_{-\infty}^{\infty} |y(t)|^2 dt = \int_{-\infty}^{\infty} |u(t - t_0)|^2 dt$ $= \int_{-\infty}^{\infty} |u(\tau)|^2 d\tau = E_u \qquad [t \to \tau + t_0]$

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t) = u(t) \otimes v(t) = \int_{-\infty}^{\infty} u^*(\tau - t)v(\tau)d\tau$ If we define $y(t) = u(t - t_0)$ for some fixed t_0 , then $E_y = E_u$: $E_y = \int_{-\infty}^{\infty} |y(t)|^2 dt = \int_{-\infty}^{\infty} |u(t - t_0)|^2 dt$ $= \int_{-\infty}^{\infty} |u(\tau)|^2 d\tau = E_u$ $[t \to \tau + t_0]$

Cauchy-Schwarz inequality: $\left|\int_{-\infty}^{\infty} y^*(\tau) v(\tau) d\tau\right|^2 \leq E_y E_v$

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t) = u(t) \otimes v(t) = \int_{-\infty}^{\infty} u^*(\tau - t)v(\tau)d\tau$ If we define $y(t) = u(t - t_0)$ for some fixed t_0 , then $E_y = E_u$: $E_y = \int_{-\infty}^{\infty} |y(t)|^2 dt = \int_{-\infty}^{\infty} |u(t - t_0)|^2 dt$ $= \int_{-\infty}^{\infty} |u(\tau)|^2 d\tau = E_u$ $[t \to \tau + t_0]$

Cauchy-Schwarz inequality: $\left|\int_{-\infty}^{\infty} y^{*}(\tau)v(\tau)d\tau\right|^{2} \leq E_{y}E_{v}$ $\Rightarrow |w(t_{0})|^{2} = \left|\int_{-\infty}^{\infty} u^{*}(\tau-t_{0})v(\tau)d\tau\right|^{2}$

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t) = u(t) \otimes v(t) = \int_{-\infty}^{\infty} u^*(\tau - t)v(\tau)d\tau$ If we define $y(t) = u(t - t_0)$ for some fixed t_0 , then $E_y = E_u$: $E_y = \int_{-\infty}^{\infty} |y(t)|^2 dt = \int_{-\infty}^{\infty} |u(t - t_0)|^2 dt$ $= \int_{-\infty}^{\infty} |u(\tau)|^2 d\tau = E_u$ $[t \to \tau + t_0]$

Cauchy-Schwarz inequality: $\left|\int_{-\infty}^{\infty} y^{*}(\tau)v(\tau)d\tau\right|^{2} \leq E_{y}E_{v}$ $\Rightarrow |w(t_{0})|^{2} = \left|\int_{-\infty}^{\infty} u^{*}(\tau-t_{0})v(\tau)d\tau\right|^{2} \leq E_{y}E_{v}$

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t) = u(t) \otimes v(t) = \int_{-\infty}^{\infty} u^*(\tau - t)v(\tau)d\tau$ If we define $y(t) = u(t - t_0)$ for some fixed t_0 , then $E_y = E_u$: $E_y = \int_{-\infty}^{\infty} |y(t)|^2 dt = \int_{-\infty}^{\infty} |u(t - t_0)|^2 dt$ $= \int_{-\infty}^{\infty} |u(\tau)|^2 d\tau = E_u$ $[t \to \tau + t_0]$

Cauchy-Schwarz inequality: $\left|\int_{-\infty}^{\infty} y^{*}(\tau)v(\tau)d\tau\right|^{2} \leq E_{y}E_{v}$ $\Rightarrow |w(t_{0})|^{2} = \left|\int_{-\infty}^{\infty} u^{*}(\tau-t_{0})v(\tau)d\tau\right|^{2} \leq E_{y}E_{v} = E_{u}E_{v}$

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t) = u(t) \otimes v(t) = \int_{-\infty}^{\infty} u^*(\tau - t)v(\tau)d\tau$ If we define $y(t) = u(t - t_0)$ for some fixed t_0 , then $E_y = E_u$: $E_y = \int_{-\infty}^{\infty} |y(t)|^2 dt = \int_{-\infty}^{\infty} |u(t - t_0)|^2 dt$ $= \int_{-\infty}^{\infty} |u(\tau)|^2 d\tau = E_u$ $[t \to \tau + t_0]$ Cauchy-Schwarz inequality: $\left|\int_{-\infty}^{\infty} y^*(\tau)v(\tau)d\tau\right|^2 \leq E_y E_v$

 $\Rightarrow |w(t_0)|^2 = \left| \int_{-\infty}^{\infty} u^*(\tau - t_0) v(\tau) d\tau \right|^2 \le E_y E_v$

but t_0 was arbitrary, so we must have $|w(t)| \leq \sqrt{E_u E_v}$ for all t

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t) = u(t) \otimes v(t) = \int_{-\infty}^{\infty} u^*(\tau - t)v(\tau)d\tau$ If we define $y(t) = u(t - t_0)$ for some fixed t_0 , then $E_y = E_u$: $E_y = \int_{-\infty}^{\infty} |y(t)|^2 dt = \int_{-\infty}^{\infty} |u(t - t_0)|^2 dt$ $= \int_{-\infty}^{\infty} |u(\tau)|^2 d\tau = E_u$ $[t \to \tau + t_0]$

Cauchy-Schwarz inequality: $\left|\int_{-\infty}^{\infty} y^{*}(\tau)v(\tau)d\tau\right|^{2} \leq E_{y}E_{v}$ $\Rightarrow |w(t_{0})|^{2} = \left|\int_{-\infty}^{\infty} u^{*}(\tau-t_{0})v(\tau)d\tau\right|^{2} \leq E_{y}E_{v} = E_{u}E_{v}$

but t_0 was arbitrary, so we must have $|w(t)| \leq \sqrt{E_u E_v}$ for all t

We can define the normalized cross-correlation

$$z(t) = \frac{u(t) \otimes v(t)}{\sqrt{E_u E_v}}$$

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t) = u(t) \otimes v(t) = \int_{-\infty}^{\infty} u^*(\tau - t)v(\tau)d\tau$ If we define $y(t) = u(t - t_0)$ for some fixed t_0 , then $E_y = E_u$: $E_y = \int_{-\infty}^{\infty} |y(t)|^2 dt = \int_{-\infty}^{\infty} |u(t - t_0)|^2 dt$ $= \int_{-\infty}^{\infty} |u(\tau)|^2 d\tau = E_u$ $[t \to \tau + t_0]$

Cauchy-Schwarz inequality: $\left|\int_{-\infty}^{\infty} y^{*}(\tau)v(\tau)d\tau\right|^{2} \leq E_{y}E_{v}$ $\Rightarrow |w(t_{0})|^{2} = \left|\int_{-\infty}^{\infty} u^{*}(\tau-t_{0})v(\tau)d\tau\right|^{2} \leq E_{y}E_{v} = E_{u}E_{v}$

but t_0 was arbitrary, so we must have $|w(t)| \leq \sqrt{E_u E_v}$ for all t

We can define the normalized cross-correlation

$$z(t) = \frac{u(t) \otimes v(t)}{\sqrt{E_u E_v}}$$

with properties: (1) $|z(t)| \leq 1$ for all t

- 8: Correlation
- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t) = u(t) \otimes v(t) = \int_{-\infty}^{\infty} u^*(\tau - t)v(\tau)d\tau$ If we define $y(t) = u(t - t_0)$ for some fixed t_0 , then $E_y = E_u$: $E_y = \int_{-\infty}^{\infty} |y(t)|^2 dt = \int_{-\infty}^{\infty} |u(t - t_0)|^2 dt$ $= \int_{-\infty}^{\infty} |u(\tau)|^2 d\tau = E_u$ $[t \to \tau + t_0]$

Cauchy-Schwarz inequality: $\left|\int_{-\infty}^{\infty} y^{*}(\tau)v(\tau)d\tau\right|^{2} \leq E_{y}E_{v}$ $\Rightarrow |w(t_{0})|^{2} = \left|\int_{-\infty}^{\infty} u^{*}(\tau-t_{0})v(\tau)d\tau\right|^{2} \leq E_{y}E_{v} = E_{u}E_{v}$

but t_0 was arbitrary, so we must have $|w(t)| \leq \sqrt{E_u E_v}$ for all t

We can define the *normalized cross-correlation*

$$z(t) = \frac{u(t) \otimes v(t)}{\sqrt{E_u E_v}}$$

with properties: (1) $|z(t)| \le 1$ for all t(2) $|z(t_0)| = 1 \Leftrightarrow v(\tau) = \alpha u(\tau - t_0)$ with α constant

- 8: Correlation
- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

The correlation of a signal with itself is its *autocorrelation*: $w(t) = u(t) \otimes u(t)$

- 8: Correlation
- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

The correlation of a signal with itself is its *autocorrelation*: $w(t) = u(t) \otimes u(t) = \int_{-\infty}^{\infty} u^*(\tau - t)u(\tau)d\tau$

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

The correlation of a signal with itself is its *autocorrelation*: $w(t) = u(t) \otimes u(t) = \int_{-\infty}^{\infty} u^*(\tau - t)u(\tau)d\tau$

The autocorrelation at zero lag:

$$w(0) = \int_{-\infty}^{\infty} u^*(\tau - 0)u(\tau)d\tau$$

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

The correlation of a signal with itself is its *autocorrelation*: $w(t) = u(t) \otimes u(t) = \int_{-\infty}^{\infty} u^*(\tau - t)u(\tau)d\tau$

The autocorrelation at zero lag:

 $w(0) = \int_{-\infty}^{\infty} u^*(\tau - 0)u(\tau)d\tau$ $= \int_{-\infty}^{\infty} u^*(\tau)u(\tau)d\tau$

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

The correlation of a signal with itself is its *autocorrelation*: $w(t) = u(t) \otimes u(t) = \int_{-\infty}^{\infty} u^*(\tau - t)u(\tau)d\tau$

The autocorrelation at zero lag:

$$w(0) = \int_{-\infty}^{\infty} u^*(\tau - 0)u(\tau)d\tau$$
$$= \int_{-\infty}^{\infty} u^*(\tau)u(\tau)d\tau$$
$$= \int_{-\infty}^{\infty} |u(\tau)|^2 d\tau = E_u$$

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

The correlation of a signal with itself is its *autocorrelation*: $w(t) = u(t) \otimes u(t) = \int_{-\infty}^{\infty} u^*(\tau - t)u(\tau)d\tau$

The autocorrelation at zero lag:

 $w(0) = \int_{-\infty}^{\infty} u^*(\tau - 0)u(\tau)d\tau$ $= \int_{-\infty}^{\infty} u^*(\tau)u(\tau)d\tau$ $= \int_{-\infty}^{\infty} |u(\tau)|^2 d\tau = E_u$

The autocorrelation at zero lag, w(0), is the energy of the signal.

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

The correlation of a signal with itself is its *autocorrelation*: $w(t) = u(t) \otimes u(t) = \int_{-\infty}^{\infty} u^*(\tau - t)u(\tau)d\tau$

The autocorrelation at zero lag:

 $w(0) = \int_{-\infty}^{\infty} u^*(\tau - 0)u(\tau)d\tau$ $= \int_{-\infty}^{\infty} u^*(\tau)u(\tau)d\tau$ $= \int_{-\infty}^{\infty} |u(\tau)|^2 d\tau = E_u$

The autocorrelation at zero lag, w(0), is the energy of the signal.

The normalized autocorrelation:

$$z(t) = \frac{u(t) \otimes u(t)}{E_u}$$

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

The correlation of a signal with itself is its *autocorrelation*: $w(t) = u(t) \otimes u(t) = \int_{-\infty}^{\infty} u^*(\tau - t)u(\tau)d\tau$

The autocorrelation at zero lag:

 $w(0) = \int_{-\infty}^{\infty} u^*(\tau - 0)u(\tau)d\tau$ $= \int_{-\infty}^{\infty} u^*(\tau)u(\tau)d\tau$ $= \int_{-\infty}^{\infty} |u(\tau)|^2 d\tau = E_u$

The autocorrelation at zero lag, w(0), is the energy of the signal.

The normalized autocorrelation: $z(t) = \frac{u(t) \otimes u(t)}{E_u}$ satisfies z(0) = 1 and $|z(t)| \le 1$ for any t.

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

The correlation of a signal with itself is its *autocorrelation*: $w(t) = u(t) \otimes u(t) = \int_{-\infty}^{\infty} u^*(\tau - t)u(\tau)d\tau$

The autocorrelation at zero lag:

 $w(0) = \int_{-\infty}^{\infty} u^*(\tau - 0)u(\tau)d\tau$ $= \int_{-\infty}^{\infty} u^*(\tau)u(\tau)d\tau$ $= \int_{-\infty}^{\infty} |u(\tau)|^2 d\tau = E_u$

The autocorrelation at zero lag, w(0), is the energy of the signal.

The normalized autocorrelation: $z(t) = \frac{u(t) \otimes u(t)}{E_u}$ satisfies z(0) = 1 and $|z(t)| \le 1$ for any t.

Wiener-Khinchin Theorem: [Cross-correlation theorem when v(t) = u(t)] $w(t) = u(t) \otimes u(t) \quad \Leftrightarrow \quad W(f) = U^*(f)U(f)$

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

The correlation of a signal with itself is its *autocorrelation*: $w(t) = u(t) \otimes u(t) = \int_{-\infty}^{\infty} u^*(\tau - t)u(\tau)d\tau$

The autocorrelation at zero lag:

 $w(0) = \int_{-\infty}^{\infty} u^*(\tau - 0)u(\tau)d\tau$ $= \int_{-\infty}^{\infty} u^*(\tau)u(\tau)d\tau$ $= \int_{-\infty}^{\infty} |u(\tau)|^2 d\tau = E_u$

The autocorrelation at zero lag, w(0), is the energy of the signal.

The normalized autocorrelation: $z(t) = \frac{u(t) \otimes u(t)}{E_u}$ satisfies z(0) = 1 and $|z(t)| \le 1$ for any t.

Wiener-Khinchin Theorem: [Cross-correlation theorem when v(t) = u(t)] $w(t) = u(t) \otimes u(t) \quad \Leftrightarrow \quad W(f) = U^*(f)U(f) = |U(f)|^2$

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

The correlation of a signal with itself is its *autocorrelation*: $w(t) = u(t) \otimes u(t) = \int_{-\infty}^{\infty} u^*(\tau - t)u(\tau)d\tau$

The autocorrelation at zero lag:

 $w(0) = \int_{-\infty}^{\infty} u^*(\tau - 0)u(\tau)d\tau$ $= \int_{-\infty}^{\infty} u^*(\tau)u(\tau)d\tau$ $= \int_{-\infty}^{\infty} |u(\tau)|^2 d\tau = E_u$

The autocorrelation at zero lag, w(0), is the energy of the signal.

The normalized autocorrelation: $z(t) = \frac{u(t) \otimes u(t)}{E_u}$ satisfies z(0) = 1 and $|z(t)| \le 1$ for any t.

Wiener-Khinchin Theorem: [Cross-correlation theorem when v(t) = u(t)] $w(t) = u(t) \otimes u(t) \quad \Leftrightarrow \quad W(f) = U^*(f)U(f) = |U(f)|^2$

The Fourier transform of the autocorrelation is the energy spectrum.

- 8: Correlation
- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Cross-correlation is used to find when two different signals are similar.

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Cross-correlation is used to find when two different signals are similar. Autocorrelation is used to find when a signal is similar to itself delayed.

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Cross-correlation is used to find when two different signals are similar. Autocorrelation is used to find when a signal is similar to itself delayed.

First graph shows s(t) a segment of the microphone signal from the initial vowel of "early" spoken by me.

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Cross-correlation is used to find when two different signals are similar. Autocorrelation is used to find when a signal is similar to itself delayed.

First graph shows s(t) a segment of the microphone signal from the initial vowel of "early" spoken by me. The waveform is "quasi-periodic" = "almost periodic but not quite".

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Cross-correlation is used to find when two different signals are similar. Autocorrelation is used to find when a signal is similar to itself delayed.

First graph shows s(t) a segment of the microphone signal from the initial vowel of "early" spoken by me. The waveform is "quasi-periodic" = "almost periodic but not quite".

Second graph shows normalized autocorrelation, $z(t) = \frac{s(t) \otimes s(t)}{E_s}$.

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Cross-correlation is used to find when two different signals are similar. Autocorrelation is used to find when a signal is similar to itself delayed.

First graph shows s(t) a segment of the microphone signal from the initial vowel of "early" spoken by me. The waveform is "quasi-periodic" = "almost periodic but not quite".

Second graph shows normalized autocorrelation, $z(t) = \frac{s(t) \otimes s(t)}{E_s}$. z(0) = 1 for t = 0 since a signal always matches itself exactly.

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Cross-correlation is used to find when two different signals are similar. Autocorrelation is used to find when a signal is similar to itself delayed.

First graph shows s(t) a segment of the microphone signal from the initial vowel of "early" spoken by me. The waveform is "quasi-periodic" = "almost periodic but not quite".

Second graph shows normalized autocorrelation, $z(t) = \frac{s(t) \otimes s(t)}{E_s}$. z(0) = 1 for t = 0 since a signal always matches itself exactly. z(t) = 0.82 for t = 6.2 ms = one period lag (not an exact match).

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Cross-correlation is used to find when two different signals are similar. Autocorrelation is used to find when a signal is similar to itself delayed.

First graph shows s(t) a segment of the microphone signal from the initial vowel of "early" spoken by me. The waveform is "quasi-periodic" = "almost periodic but not quite".

Second graph shows normalized autocorrelation, $z(t) = \frac{s(t) \otimes s(t)}{E_s}$. z(0) = 1 for t = 0 since a signal always matches itself exactly. z(t) = 0.82 for t = 6.2 ms = one period lag (not an exact match). z(t) = 0.53 for t = 12.4 ms = two periods lag (even worse match).

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

There are three different versions of the Fourier Transform in current use.

- 8: Correlation
- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

There are three different versions of the Fourier Transform in current use. (1) Frequency version (we have used this in lectures)

$$U(f) = \int_{-\infty}^{\infty} u(t)e^{-i2\pi ft}dt \qquad u(t) = \int_{-\infty}^{\infty} U(f)e^{i2\pi ft}df$$

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

There are three different versions of the Fourier Transform in current use.

(1) Frequency version (we have used this in lectures)

$$U(f) = \int_{-\infty}^{\infty} u(t)e^{-i2\pi ft}dt \qquad u(t) = \int_{-\infty}^{\infty} U(f)e^{i2\pi ft}df$$

- Used in the communications/broadcasting industry and textbooks.
- The formulae do not need scale factors of 2π anywhere.

 \odot \odot \odot \odot

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

There are three different versions of the Fourier Transform in current use.

(1) Frequency version (we have used this in lectures)

$$U(f) = \int_{-\infty}^{\infty} u(t)e^{-i2\pi ft}dt \qquad u(t) = \int_{-\infty}^{\infty} U(f)e^{i2\pi ft}df$$

- Used in the communications/broadcasting industry and textbooks.
- The formulae do not need scale factors of 2π anywhere.
- (2) Angular frequency version

$$\widetilde{U}(\omega) = \int_{-\infty}^{\infty} u(t)e^{-i\omega t}dt \qquad u(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \widetilde{U}(\omega)e^{i\omega t}d\omega$$

 \odot \odot \odot \odot

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

There are three different versions of the Fourier Transform in current use.

(1) Frequency version (we have used this in lectures)

$$U(f) = \int_{-\infty}^{\infty} u(t)e^{-i2\pi ft}dt \qquad u(t) = \int_{-\infty}^{\infty} U(f)e^{i2\pi ft}df$$

- Used in the communications/broadcasting industry and textbooks.
- The formulae do not need scale factors of 2π anywhere.
- (2) Angular frequency version

 $\widetilde{U}(\omega) = \int_{-\infty}^{\infty} u(t)e^{-i\omega t}dt \qquad u(t) = \frac{1}{2\pi}\int_{-\infty}^{\infty} \widetilde{U}(\omega)e^{i\omega t}d\omega$ Continuous spectra are unchanged: $\widetilde{U}(\omega) = U(f) = U(\frac{\omega}{2\pi})$ \odot

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

There are three different versions of the Fourier Transform in current use.

(1) Frequency version (we have used this in lectures)

$$U(f) = \int_{-\infty}^{\infty} u(t)e^{-i2\pi ft}dt \qquad u(t) = \int_{-\infty}^{\infty} U(f)e^{i2\pi ft}df$$

- Used in the communications/broadcasting industry and textbooks.
- The formulae do not need scale factors of 2π anywhere. $\Im \Im \Im$

(2) Angular frequency version

$$\begin{split} \widetilde{U}(\omega) &= \int_{-\infty}^{\infty} u(t) e^{-i\omega t} dt \qquad u(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \widetilde{U}(\omega) e^{i\omega t} d\omega \\ \text{Continuous spectra are unchanged: } \widetilde{U}(\omega) &= U(f) = U(\frac{\omega}{2\pi}) \\ \text{However } \delta\text{-function spectral components are multiplied by } 2\pi \text{ so that} \\ U(f) &= \delta(f - f_0) \quad \Rightarrow \quad \widetilde{U}(\omega) = 2\pi \times \delta(\omega - 2\pi f_0) \end{split}$$

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

There are three different versions of the Fourier Transform in current use.

(1) Frequency version (we have used this in lectures)

$$U(f) = \int_{-\infty}^{\infty} u(t)e^{-i2\pi ft}dt \qquad u(t) = \int_{-\infty}^{\infty} U(f)e^{i2\pi ft}df$$

- Used in the communications/broadcasting industry and textbooks.
- The formulae do not need scale factors of 2π anywhere.

(2) Angular frequency version

$$\begin{split} \widetilde{U}(\omega) &= \int_{-\infty}^{\infty} u(t) e^{-i\omega t} dt \qquad u(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \widetilde{U}(\omega) e^{i\omega t} d\omega \\ \text{Continuous spectra are unchanged: } \widetilde{U}(\omega) &= U(f) = U(\frac{\omega}{2\pi}) \\ \text{However } \delta\text{-function spectral components are multiplied by } 2\pi \text{ so that} \\ U(f) &= \delta(f - f_0) \quad \Rightarrow \quad \widetilde{U}(\omega) = 2\pi \times \delta(\omega - 2\pi f_0) \end{split}$$

• Used in most signal processing and control theory textbooks.

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

There are three different versions of the Fourier Transform in current use.

(1) Frequency version (we have used this in lectures)

$$U(f) = \int_{-\infty}^{\infty} u(t)e^{-i2\pi ft}dt \qquad u(t) = \int_{-\infty}^{\infty} U(f)e^{i2\pi ft}df$$

- Used in the communications/broadcasting industry and textbooks.
- The formulae do not need scale factors of 2π anywhere. $\Im \Im \Im$
- (2) Angular frequency version

$$\begin{split} \widetilde{U}(\omega) &= \int_{-\infty}^{\infty} u(t) e^{-i\omega t} dt \qquad u(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \widetilde{U}(\omega) e^{i\omega t} d\omega \\ \text{Continuous spectra are unchanged: } \widetilde{U}(\omega) &= U(f) = U(\frac{\omega}{2\pi}) \\ \text{However } \delta\text{-function spectral components are multiplied by } 2\pi \text{ so that} \\ U(f) &= \delta(f - f_0) \quad \Rightarrow \quad \widetilde{U}(\omega) = 2\pi \times \delta(\omega - 2\pi f_0) \end{split}$$

Used in most signal processing and control theory textbooks.

(3) Angular frequency + symmetrical scale factor

$$\widehat{U}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} u(t) e^{-i\omega t} dt \qquad u(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \widehat{U}(\omega) e^{i\omega t} d\omega$$

- 8: Correlation
- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

There are three different versions of the Fourier Transform in current use.

(1) Frequency version (we have used this in lectures)

$$U(f) = \int_{-\infty}^{\infty} u(t)e^{-i2\pi ft}dt \qquad u(t) = \int_{-\infty}^{\infty} U(f)e^{i2\pi ft}df$$

- Used in the communications/broadcasting industry and textbooks.
- The formulae do not need scale factors of 2π anywhere. $\Im \Im \Im$
- (2) Angular frequency version

$$\begin{split} \widetilde{U}(\omega) &= \int_{-\infty}^{\infty} u(t) e^{-i\omega t} dt \qquad u(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \widetilde{U}(\omega) e^{i\omega t} d\omega \\ \text{Continuous spectra are unchanged: } \widetilde{U}(\omega) &= U(f) = U(\frac{\omega}{2\pi}) \\ \text{However } \delta\text{-function spectral components are multiplied by } 2\pi \text{ so that} \\ U(f) &= \delta(f - f_0) \quad \Rightarrow \quad \widetilde{U}(\omega) = 2\pi \times \delta(\omega - 2\pi f_0) \end{split}$$

Used in most signal processing and control theory textbooks.

(3) Angular frequency + symmetrical scale factor

$$\begin{split} \widehat{U}(\omega) &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} u(t) e^{-i\omega t} dt \qquad u(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \widehat{U}(\omega) e^{i\omega t} d\omega \\ \text{In all cases } \widehat{U}(\omega) &= \frac{1}{\sqrt{2\pi}} \widetilde{U}(\omega) \end{split}$$

- 8: Correlation
- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

There are three different versions of the Fourier Transform in current use.

(1) Frequency version (we have used this in lectures)

$$U(f) = \int_{-\infty}^{\infty} u(t)e^{-i2\pi ft}dt \qquad u(t) = \int_{-\infty}^{\infty} U(f)e^{i2\pi ft}df$$

- Used in the communications/broadcasting industry and textbooks.
- The formulae do not need scale factors of 2π anywhere. $\Im \Im \Im$
- (2) Angular frequency version

$$\begin{split} \widetilde{U}(\omega) &= \int_{-\infty}^{\infty} u(t) e^{-i\omega t} dt \qquad u(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \widetilde{U}(\omega) e^{i\omega t} d\omega \\ \text{Continuous spectra are unchanged: } \widetilde{U}(\omega) &= U(f) = U(\frac{\omega}{2\pi}) \\ \text{However } \delta\text{-function spectral components are multiplied by } 2\pi \text{ so that} \\ U(f) &= \delta(f - f_0) \quad \Rightarrow \quad \widetilde{U}(\omega) = 2\pi \times \delta(\omega - 2\pi f_0) \end{split}$$

Used in most signal processing and control theory textbooks.

(3) Angular frequency + symmetrical scale factor

$$\begin{split} \widehat{U}(\omega) &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} u(t) e^{-i\omega t} dt \qquad u(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \widehat{U}(\omega) e^{i\omega t} d\omega \\ \text{In all cases } \widehat{U}(\omega) &= \frac{1}{\sqrt{2\pi}} \widetilde{U}(\omega) \end{split}$$

Used in many Maths textbooks (mathematicians like symmetry)

- 8: Correlation
- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Fourier Transform using Angular Frequency:

 $\widetilde{U}(\omega) = \int_{-\infty}^{\infty} u(t)e^{-i\omega t}dt$ $u(t) = \frac{1}{2\pi}\int_{-\infty}^{\infty} \widetilde{U}(\omega)e^{i\omega t}d\omega$

- 8: Correlation
- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Fourier Transform using Angular Frequency:

$$\widetilde{U}(\omega) = \int_{-\infty}^{\infty} u(t)e^{-i\omega t}dt \qquad u(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \widetilde{U}(\omega)e^{i\omega t}d\omega$$

Any formula involving $\int df$ will change to $\frac{1}{2\pi} \int d\omega$ [since $d\omega = 2\pi df$]

- 8: Correlation
- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Fourier Transform using Angular Frequency: $\widetilde{U}(\omega) = \int_{-\infty}^{\infty} u(t)e^{-i\omega t}dt \qquad u(t) = \frac{1}{2\pi}\int_{-\infty}^{\infty} \widetilde{U}(\omega)e^{i\omega t}d\omega$

Any formula involving $\int df$ will change to $\frac{1}{2\pi} \int d\omega$ [since $d\omega = 2\pi df$]

Parseval's Theorem:

 $\int u^*(t)v(t)dt = \frac{1}{2\pi}\int \widetilde{U}^*(\omega)\widetilde{V}(\omega)d\omega$

- 8: Correlation
- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Fourier Transform using Angular Frequency: $\widetilde{U}(\omega) = \int_{-\infty}^{\infty} u(t)e^{-i\omega t}dt \qquad u(t) = \frac{1}{2\pi}\int_{-\infty}^{\infty} \widetilde{U}(\omega)e^{i\omega t}d\omega$

Any formula involving $\int df$ will change to $\frac{1}{2\pi} \int d\omega$ [since $d\omega = 2\pi df$]

Parseval's Theorem:

$$\int u^*(t)v(t)dt = \frac{1}{2\pi} \int \widetilde{U}^*(\omega)\widetilde{V}(\omega)d\omega$$
$$E_u = \int |u(t)|^2 dt = \frac{1}{2\pi} \int \left|\widetilde{U}(\omega)\right|^2 d\omega$$

- 8: Correlation
- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Fourier Transform using Angular Frequency: $\widetilde{U}(\omega) = \int_{-\infty}^{\infty} u(t)e^{-i\omega t}dt \qquad u(t) = \frac{1}{2\pi}\int_{-\infty}^{\infty} \widetilde{U}(\omega)e^{i\omega t}d\omega$

Any formula involving $\int df$ will change to $\frac{1}{2\pi} \int d\omega$ [since $d\omega = 2\pi df$]

Parseval's Theorem:

$$\int u^*(t)v(t)dt = \frac{1}{2\pi} \int \widetilde{U}^*(\omega)\widetilde{V}(\omega)d\omega$$
$$E_u = \int |u(t)|^2 dt = \frac{1}{2\pi} \int \left|\widetilde{U}(\omega)\right|^2 d\omega$$

Waveform Multiplication: (convolution implicitly involves integration) $w(t) = u(t)v(t) \Rightarrow \widetilde{W}(\omega) = \frac{1}{2\pi}\widetilde{U}(\omega) * \widetilde{V}(\omega)$

- 8: Correlation
- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Fourier Transform using Angular Frequency: $\widetilde{U}(\omega) = \int_{-\infty}^{\infty} u(t)e^{-i\omega t}dt \qquad u(t) = \frac{1}{2\pi}\int_{-\infty}^{\infty} \widetilde{U}(\omega)e^{i\omega t}d\omega$

Any formula involving $\int df$ will change to $\frac{1}{2\pi} \int d\omega$ [since $d\omega = 2\pi df$]

Parseval's Theorem:

$$\int u^*(t)v(t)dt = \frac{1}{2\pi} \int \widetilde{U}^*(\omega)\widetilde{V}(\omega)d\omega$$
$$E_u = \int |u(t)|^2 dt = \frac{1}{2\pi} \int \left|\widetilde{U}(\omega)\right|^2 d\omega$$

Waveform Multiplication: (convolution implicitly involves integration) $w(t) = u(t)v(t) \Rightarrow \widetilde{W}(\omega) = \frac{1}{2\pi}\widetilde{U}(\omega) * \widetilde{V}(\omega)$

Spectrum Multiplication: (multiplication \Rightarrow integration) $w(t) = u(t) * v(t) \Rightarrow \widetilde{W}(\omega) = \widetilde{U}(\omega)\widetilde{V}(\omega)$

- 8: Correlation
- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Fourier Transform using Angular Frequency: $\widetilde{U}(\omega) = \int_{-\infty}^{\infty} u(t)e^{-i\omega t}dt \qquad u(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \widetilde{U}(\omega)e^{i\omega t}d\omega$

Any formula involving $\int df$ will change to $\frac{1}{2\pi} \int d\omega$ [since $d\omega = 2\pi df$]

Parseval's Theorem:

$$\int u^*(t)v(t)dt = \frac{1}{2\pi} \int \widetilde{U}^*(\omega)\widetilde{V}(\omega)d\omega$$
$$E_u = \int |u(t)|^2 dt = \frac{1}{2\pi} \int \left|\widetilde{U}(\omega)\right|^2 d\omega$$

Waveform Multiplication: (convolution implicitly involves integration) $w(t) = u(t)v(t) \Rightarrow \widetilde{W}(\omega) = \frac{1}{2\pi}\widetilde{U}(\omega) * \widetilde{V}(\omega)$

Spectrum Multiplication: (multiplication \Rightarrow integration) $w(t) = u(t) * v(t) \Rightarrow \widetilde{W}(\omega) = \widetilde{U}(\omega)\widetilde{V}(\omega)$

To obtain formulae for version (3) of the Fourier Transform, $\widehat{U}(\omega)$, substitute into the above formulae: $\widetilde{U}(\omega) = \sqrt{2\pi}\widehat{U}(\omega)$.

- 8: Correlation
- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

• Cross-Correlation: $w(t) = u(t) \otimes v(t)$

- 8: Correlation
- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

- 8: Correlation
- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

• Cross-Correlation: $w(t) = u(t) \otimes v(t) = \int_{-\infty}^{\infty} u^*(\tau - t)v(\tau)d\tau$

• Used to find similarities between v(t) and a delayed u(t)

- 8: Correlation
- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

- \circ $% \left({{\rm{Used}}} \right)$ Used to find similarities between v(t) and a delayed u(t)
- Cross-correlation theorem: $W(f) = U^*(f)V(f)$

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

- \circ $\;$ Used to find similarities between v(t) and a delayed u(t)
- Cross-correlation theorem: $W(f) = U^*(f)V(f)$
- Cauchy-Schwarz Inequality: $|u(t) \otimes v(t)| \leq \sqrt{E_u E_v}$

- 8: Correlation
- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

- \circ $% \left({{\rm{Used}}} \right)$ Used to find similarities between v(t) and a delayed u(t)
- Cross-correlation theorem: $W(f) = U^*(f)V(f)$
- Cauchy-Schwarz Inequality: $|u(t) \otimes v(t)| \leq \sqrt{E_u E_v}$
 - ▷ Normalized cross-correlation: $\left|\frac{u(t) \otimes v(t)}{\sqrt{E_u E_v}}\right| \leq 1$

- 8: Correlation
- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

- \circ $% \left({{\rm{Used}}} \right)$ Used to find similarities between v(t) and a delayed u(t)
- Cross-correlation theorem: $W(f) = U^*(f)V(f)$
- Cauchy-Schwarz Inequality: $|u(t) \otimes v(t)| \leq \sqrt{E_u E_v}$
 - ▷ Normalized cross-correlation: $\left|\frac{u(t) \otimes v(t)}{\sqrt{E_u E_v}}\right| \leq 1$
- Autocorrelation: $x(t) = u(t) \otimes u(t)$

- 8: Correlation
- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

- $\circ~$ Used to find similarities between v(t) and a delayed u(t)
- Cross-correlation theorem: $W(f) = U^*(f)V(f)$
- Cauchy-Schwarz Inequality: $|u(t) \otimes v(t)| \leq \sqrt{E_u E_v}$
 - ▷ Normalized cross-correlation: $\left|\frac{u(t) \otimes v(t)}{\sqrt{E_u E_v}}\right| \le 1$
- Autocorrelation: $x(t) = u(t) \otimes u(t) = \int_{-\infty}^{\infty} u^*(\tau t)u(\tau)d\tau \le E_u$

- 8: Correlation
- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

- \circ $% \left({{\rm{Used}}} \right)$ Used to find similarities between v(t) and a delayed u(t)
- Cross-correlation theorem: $W(f) = U^*(f)V(f)$
- Cauchy-Schwarz Inequality: $|u(t) \otimes v(t)| \leq \sqrt{E_u E_v}$
 - ▷ Normalized cross-correlation: $\left|\frac{u(t) \otimes v(t)}{\sqrt{E_u E_v}}\right| \leq 1$
- Autocorrelation: $x(t) = u(t) \otimes u(t) = \int_{-\infty}^{\infty} u^*(\tau t)u(\tau)d\tau \le E_u$
 - \circ Wiener-Khinchin: X(f) = energy spectral density, $|U(f)|^2$

- 8: Correlation
- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

- \circ $% \left({{\rm{Used}}} \right)$ Used to find similarities between v(t) and a delayed u(t)
- Cross-correlation theorem: $W(f) = U^*(f)V(f)$
- Cauchy-Schwarz Inequality: $|u(t) \otimes v(t)| \leq \sqrt{E_u E_v}$
 - ▷ Normalized cross-correlation: $\left|\frac{u(t) \otimes v(t)}{\sqrt{E_u E_v}}\right| \leq 1$
- Autocorrelation: $x(t) = u(t) \otimes u(t) = \int_{-\infty}^{\infty} u^*(\tau t)u(\tau)d\tau \le E_u$
 - Wiener-Khinchin: X(f) = energy spectral density, $\left| U(f) \right|^2$
 - Used to find periodicity in u(t)

- 8: Correlation
- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

- \circ $\;$ Used to find similarities between v(t) and a delayed u(t)
- Cross-correlation theorem: $W(f) = U^*(f)V(f)$
- Cauchy-Schwarz Inequality: $|u(t) \otimes v(t)| \leq \sqrt{E_u E_v}$
 - ▷ Normalized cross-correlation: $\left|\frac{u(t) \otimes v(t)}{\sqrt{E_u E_v}}\right| \leq 1$
- Autocorrelation: $x(t) = u(t) \otimes u(t) = \int_{-\infty}^{\infty} u^*(\tau t)u(\tau)d\tau \le E_u$
 - \circ Wiener-Khinchin: X(f) = energy spectral density, $\left| U(f) \right|^2$
 - Used to find periodicity in u(t)
- Fourier Transform using ω :
 - \circ $\,$ Continuous spectra unchanged; spectral impulses multiplied by 2π

- 8: Correlation
- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

- \circ $% \left({{\rm{Used}}} \right)$ Used to find similarities between v(t) and a delayed u(t)
- Cross-correlation theorem: $W(f) = U^*(f)V(f)$
- Cauchy-Schwarz Inequality: $|u(t) \otimes v(t)| \leq \sqrt{E_u E_v}$
 - ▷ Normalized cross-correlation: $\left|\frac{u(t) \otimes v(t)}{\sqrt{E_u E_v}}\right| \leq 1$
- Autocorrelation: $x(t) = u(t) \otimes u(t) = \int_{-\infty}^{\infty} u^*(\tau t)u(\tau)d\tau \le E_u$
 - \circ $\;$ Wiener-Khinchin: X(f) = energy spectral density, $\left|U(f)\right|^2$
 - \circ Used to find periodicity in u(t)
- Fourier Transform using ω :
 - \circ Continuous spectra unchanged; spectral impulses multiplied by 2π
 - In formulae: $\int df \rightarrow \frac{1}{2\pi} \int d\omega$; ω -convolution involves an integral

- 8: Correlation
- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

• Cross-Correlation: $w(t) = u(t) \otimes v(t) = \int_{-\infty}^{\infty} u^*(\tau - t)v(\tau)d\tau$

- \circ $% \left({{\rm{Used}}} \right)$ Used to find similarities between v(t) and a delayed u(t)
- Cross-correlation theorem: $W(f) = U^*(f)V(f)$
- Cauchy-Schwarz Inequality: $|u(t) \otimes v(t)| \leq \sqrt{E_u E_v}$
 - ▷ Normalized cross-correlation: $\left|\frac{u(t) \otimes v(t)}{\sqrt{E_u E_v}}\right| \leq 1$
- Autocorrelation: $x(t) = u(t) \otimes u(t) = \int_{-\infty}^{\infty} u^*(\tau t)u(\tau)d\tau \le E_u$
 - \circ $\;$ Wiener-Khinchin: X(f) = energy spectral density, $\left|U(f)\right|^2$
 - Used to find periodicity in u(t)
- Fourier Transform using ω :
 - \circ $\,$ Continuous spectra unchanged; spectral impulses multiplied by 2π
 - In formulae: $\int df \rightarrow \frac{1}{2\pi} \int d\omega$; ω -convolution involves an integral

For further details see RHB Chapter 13.1

Spectrogram

- 8: Correlation
- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Spectrogram of "Merry Christmas" spoken by Mike Brookes (-)

