- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram


## 8: Correlation



## Cross-Correlation

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

The cross-correlation between two signals $u(t)$ and $v(t)$ is

$$
w(t)=u(t) \otimes v(t) \triangleq \int_{-\infty}^{\infty} u^{*}(\tau) v(\tau+t) d \tau
$$

## Cross-Correlation

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

The cross-correlation between two signals $u(t)$ and $v(t)$ is

$$
\begin{aligned}
w(t)=u(t) \otimes v(t) & \triangleq \int_{-\infty}^{\infty} u^{*}(\tau) v(\tau+t) d \tau \\
& =\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau \quad[\text { sub: } \tau \rightarrow \tau-t]
\end{aligned}
$$

## Cross-Correlation

## 8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

The cross-correlation between two signals $u(t)$ and $v(t)$ is

$$
\begin{aligned}
w(t)=u(t) \otimes v(t) & \triangleq \int_{-\infty}^{\infty} u^{*}(\tau) v(\tau+t) d \tau \\
& =\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau \quad[\text { sub: } \tau \rightarrow \tau-t]
\end{aligned}
$$

The complex conjugate, $u^{*}(\tau)$ makes no difference if $u(t)$ is real-valued but makes the definition work even if $u(t)$ is complex-valued.

## Cross-Correlation

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

The cross-correlation between two signals $u(t)$ and $v(t)$ is

$$
\begin{aligned}
w(t)=u(t) \otimes v(t) & \triangleq \int_{-\infty}^{\infty} u^{*}(\tau) v(\tau+t) d \tau \\
& =\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau \quad[\text { sub: } \tau \rightarrow \tau-t]
\end{aligned}
$$

The complex conjugate, $u^{*}(\tau)$ makes no difference if $u(t)$ is real-valued but makes the definition work even if $u(t)$ is complex-valued.

Correlation versus Convolution:

$$
\begin{array}{lr}
u(t) \otimes v(t)=\int_{-\infty}^{\infty} u^{*}(\tau) v(\tau+t) d \tau & \text { [correlation] } \\
u(t) * v(t)=\int_{-\infty}^{\infty} u(\tau) v(t-\tau) d \tau & \text { [convolution] }
\end{array}
$$

## Cross-Correlation

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

The cross-correlation between two signals $u(t)$ and $v(t)$ is

$$
\begin{aligned}
w(t)=u(t) \otimes v(t) & \triangleq \int_{-\infty}^{\infty} u^{*}(\tau) v(\tau+t) d \tau \\
& =\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau \quad[\text { sub: } \tau \rightarrow \tau-t]
\end{aligned}
$$

The complex conjugate, $u^{*}(\tau)$ makes no difference if $u(t)$ is real-valued but makes the definition work even if $u(t)$ is complex-valued.

Correlation versus Convolution:

$$
\begin{array}{lr}
u(t) \otimes v(t)=\int_{-\infty}^{\infty} u^{*}(\tau) v(\tau+t) d \tau & \text { [correlation] } \\
u(t) * v(t)=\int_{-\infty}^{\infty} u(\tau) v(t-\tau) d \tau & \text { [convolution] }
\end{array}
$$

Unlike convolution, the integration variable, $\tau$, has the same sign in the arguments of $u(\cdots)$ and $v(\cdots)$ so the arguments have a constant difference instead of a constant sum (i.e. $v(t)$ is not time-flipped).

## Cross-Correlation

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

The cross-correlation between two signals $u(t)$ and $v(t)$ is

$$
\begin{aligned}
w(t)=u(t) \otimes v(t) & \triangleq \int_{-\infty}^{\infty} u^{*}(\tau) v(\tau+t) d \tau \\
& =\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau \quad[\text { sub: } \tau \rightarrow \tau-t]
\end{aligned}
$$

The complex conjugate, $u^{*}(\tau)$ makes no difference if $u(t)$ is real-valued but makes the definition work even if $u(t)$ is complex-valued.

Correlation versus Convolution:

$$
\begin{array}{lr}
u(t) \otimes v(t)=\int_{-\infty}^{\infty} u^{*}(\tau) v(\tau+t) d \tau & \text { [correlation] } \\
u(t) * v(t)=\int_{-\infty}^{\infty} u(\tau) v(t-\tau) d \tau & \text { [convolution] }
\end{array}
$$

Unlike convolution, the integration variable, $\tau$, has the same sign in the arguments of $u(\cdots)$ and $v(\cdots)$ so the arguments have a constant difference instead of a constant sum (i.e. $v(t)$ is not time-flipped).

Notes: (a) The argument of $w(t)$ is called the "lag" (= delay of $u$ versus $v$ ).

## Cross-Correlation

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

The cross-correlation between two signals $u(t)$ and $v(t)$ is

$$
\begin{aligned}
w(t)=u(t) \otimes v(t) & \triangleq \int_{-\infty}^{\infty} u^{*}(\tau) v(\tau+t) d \tau \\
& =\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau \quad[\text { sub: } \tau \rightarrow \tau-t]
\end{aligned}
$$

The complex conjugate, $u^{*}(\tau)$ makes no difference if $u(t)$ is real-valued but makes the definition work even if $u(t)$ is complex-valued.

Correlation versus Convolution:

$$
\begin{array}{lr}
u(t) \otimes v(t)=\int_{-\infty}^{\infty} u^{*}(\tau) v(\tau+t) d \tau & \text { [correlation] } \\
u(t) * v(t)=\int_{-\infty}^{\infty} u(\tau) v(t-\tau) d \tau & \text { [convolution] }
\end{array}
$$

Unlike convolution, the integration variable, $\tau$, has the same sign in the arguments of $u(\cdots)$ and $v(\cdots)$ so the arguments have a constant difference instead of a constant sum (i.e. $v(t)$ is not time-flipped).

Notes: (a) The argument of $w(t)$ is called the "lag" (= delay of $u$ versus $v$ ).
(b) Some people write $u(t) \star v(t)$ instead of $u(t) \otimes v(t)$.

## Cross-Correlation

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

The cross-correlation between two signals $u(t)$ and $v(t)$ is

$$
\begin{aligned}
w(t)=u(t) \otimes v(t) & \triangleq \int_{-\infty}^{\infty} u^{*}(\tau) v(\tau+t) d \tau \\
& =\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau \quad[\text { sub: } \tau \rightarrow \tau-t]
\end{aligned}
$$

The complex conjugate, $u^{*}(\tau)$ makes no difference if $u(t)$ is real-valued but makes the definition work even if $u(t)$ is complex-valued.

Correlation versus Convolution:

$$
\begin{array}{lr}
u(t) \otimes v(t)=\int_{-\infty}^{\infty} u^{*}(\tau) v(\tau+t) d \tau & \text { [correlation] } \\
u(t) * v(t)=\int_{-\infty}^{\infty} u(\tau) v(t-\tau) d \tau & \text { [convolution] }
\end{array}
$$

Unlike convolution, the integration variable, $\tau$, has the same sign in the arguments of $u(\cdots)$ and $v(\cdots)$ so the arguments have a constant difference instead of a constant sum (i.e. $v(t)$ is not time-flipped).

Notes: (a) The argument of $w(t)$ is called the "lag" (= delay of $u$ versus $v$ ).
(b) Some people write $u(t) \star v(t)$ instead of $u(t) \otimes v(t)$.
(c) Some swap $u$ and $v$ and/or negate $t$ in the integral.

## Cross-Correlation

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

The cross-correlation between two signals $u(t)$ and $v(t)$ is

$$
\begin{aligned}
w(t)=u(t) \otimes v(t) & \triangleq \int_{-\infty}^{\infty} u^{*}(\tau) v(\tau+t) d \tau \\
& =\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau \quad[\text { sub: } \tau \rightarrow \tau-t]
\end{aligned}
$$

The complex conjugate, $u^{*}(\tau)$ makes no difference if $u(t)$ is real-valued but makes the definition work even if $u(t)$ is complex-valued.

Correlation versus Convolution:

$$
\begin{array}{lr}
u(t) \otimes v(t)=\int_{-\infty}^{\infty} u^{*}(\tau) v(\tau+t) d \tau & \text { [correlation] } \\
u(t) * v(t)=\int_{-\infty}^{\infty} u(\tau) v(t-\tau) d \tau & \text { [convolution] }
\end{array}
$$

Unlike convolution, the integration variable, $\tau$, has the same sign in the arguments of $u(\cdots)$ and $v(\cdots)$ so the arguments have a constant difference instead of a constant sum (i.e. $v(t)$ is not time-flipped).

Notes: (a) The argument of $w(t)$ is called the "lag" (= delay of $u$ versus $v$ ).
(b) Some people write $u(t) \star v(t)$ instead of $u(t) \otimes v(t)$.
(c) Some swap $u$ and $v$ and/or negate $t$ in the integral.

It is all rather inconsistent $(\underset{\text {. }}{ }$


## 8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Cross correlation is used to find where two signals match


## 8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Cross correlation is used to find where two signals match: $u(t)$ is the test waveform.


## Signal Matching

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Cross correlation is used to find where two signals match: $u(t)$ is the test waveform.

Example 1:
$v(t)$ contains $u(t)$ with an unknown delay and added noise.



## Signal Matching

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Cross correlation is used to find where two signals match: $u(t)$ is the test waveform.

## Example 1:

$v(t)$ contains $u(t)$ with an unknown delay and added noise.
$w(t)=u(t) \otimes v(t)$


## Signal Matching

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Cross correlation is used to find where two signals match: $u(t)$ is the test waveform.

## Example 1:

$v(t)$ contains $u(t)$ with an unknown delay and added noise.

$$
\begin{aligned}
w(t) & =u(t) \otimes v(t) \\
& =\int u^{*}(\tau-t) v(\tau) d t
\end{aligned}
$$




## Signal Matching

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Cross correlation is used to find where two signals match: $u(t)$ is the test waveform.

## Example 1:

$v(t)$ contains $u(t)$ with an unknown delay and added noise.

$$
\begin{aligned}
w(t) & =u(t) \otimes v(t) \\
& =\int u^{*}(\tau-t) v(\tau) d t
\end{aligned}
$$





## Signal Matching

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Cross correlation is used to find where two signals match: $u(t)$ is the test waveform.

## Example 1:

$v(t)$ contains $u(t)$ with an unknown delay and added noise.
$w(t)=u(t) \otimes v(t)$
$=\int u^{*}(\tau-t) v(\tau) d t$ gives a peak at the time lag where $u(\tau-t)$ best matches $v(\tau)$




## Signal Matching

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Cross correlation is used to find where two signals match: $u(t)$ is the test waveform.

## Example 1:

$v(t)$ contains $u(t)$ with an unknown delay and added noise.
$w(t)=u(t) \otimes v(t)$
$=\int u^{*}(\tau-t) v(\tau) d t$ gives a peak at the time lag where $u(\tau-t)$ best


 matches $v(\tau)$; in this case at $t=450$

## Signal Matching

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Cross correlation is used to find where two signals match: $u(t)$ is the test waveform.

## Example 1:

$v(t)$ contains $u(t)$ with an unknown delay and added noise.

$$
\begin{aligned}
w(t) & =u(t) \otimes v(t) \\
& =\int u^{*}(\tau-t) v(\tau) d t \text { gives a peak } \\
& \text { at the time lag where } u(\tau-t) \text { best } \\
& \text { matches } v(\tau) \text {; in this case at } t=450
\end{aligned}
$$

## Example 2:

$y(t)$ is the same as $v(t)$ with more noise





## Signal Matching

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Cross correlation is used to find where two signals match: $u(t)$ is the test waveform.

## Example 1:

$v(t)$ contains $u(t)$ with an unknown delay and added noise.

$$
\begin{aligned}
w(t) & =u(t) \otimes v(t) \\
& =\int u^{*}(\tau-t) v(\tau) d t \text { gives a peak } \\
& \text { at the time lag where } u(\tau-t) \text { best } \\
& \text { matches } v(\tau) \text {; in this case at } t=450
\end{aligned}
$$

## Example 2:

$y(t)$ is the same as $v(t)$ with more noise $z(t)=u(t) \otimes y(t)$ can still detect the correct time delay (hard for humans)






## Signal Matching

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Cross correlation is used to find where two signals match: $u(t)$ is the test waveform.

## Example 1:

$v(t)$ contains $u(t)$ with an unknown delay and added noise.

$$
\begin{aligned}
w(t) & =u(t) \otimes v(t) \\
& =\int u^{*}(\tau-t) v(\tau) d t \text { gives a peak } \\
& \text { at the time lag where } u(\tau-t) \text { best } \\
& \text { matches } v(\tau) \text {; in this case at } t=450
\end{aligned}
$$

## Example 2:

$y(t)$ is the same as $v(t)$ with more noise $z(t)=u(t) \otimes y(t)$ can still detect the correct time delay (hard for humans)

## Example 3:

$p(t)$ contains $-u(t)$







## Signal Matching

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Cross correlation is used to find where two signals match: $u(t)$ is the test waveform.

## Example 1:

$v(t)$ contains $u(t)$ with an unknown delay and added noise.

$$
\begin{aligned}
w(t) & =u(t) \otimes v(t) \\
& =\int u^{*}(\tau-t) v(\tau) d t \text { gives a peak } \\
& \text { at the time lag where } u(\tau-t) \text { best } \\
& \text { matches } v(\tau) \text {; in this case at } t=450
\end{aligned}
$$

## Example 2:

$y(t)$ is the same as $v(t)$ with more noise $z(t)=u(t) \otimes y(t)$ can still detect the correct time delay (hard for humans)

## Example 3:

$p(t)$ contains $-u(t)$ so that

$$
q(t)=u(t) \otimes p(t) \text { has a negative peak }
$$








## Signal Matching

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Cross correlation is used to find where two signals match: $u(t)$ is the test waveform.

## Example 1:

$v(t)$ contains $u(t)$ with an unknown delay and added noise.

$$
\begin{aligned}
w(t) & =u(t) \otimes v(t) \\
& =\int u^{*}(\tau-t) v(\tau) d t \text { gives a peak } \\
& \text { at the time lag where } u(\tau-t) \text { best } \\
& \text { matches } v(\tau) \text {; in this case at } t=450
\end{aligned}
$$

## Example 2:

$y(t)$ is the same as $v(t)$ with more noise $z(t)=u(t) \otimes y(t)$ can still detect the correct time delay (hard for humans)

## Example 3:

$p(t)$ contains $-u(t)$ so that
$q(t)=u(t) \otimes p(t)$ has a negative peak








## Cross-correlation as Convolution

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t)=u(t) \otimes v(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau$

## Cross-correlation as Convolution

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t)=u(t) \otimes v(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau$
If we define $x(t)=u^{*}(-t)$ then

$$
x(t) * v(t) \triangleq \int_{-\infty}^{\infty} x(t-\tau) v(\tau) d \tau
$$

## Cross-correlation as Convolution

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t)=u(t) \otimes v(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau$
If we define $x(t)=u^{*}(-t)$ then

$$
x(t) * v(t) \triangleq \int_{-\infty}^{\infty} x(t-\tau) v(\tau) d \tau=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau
$$

## Cross-correlation as Convolution

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t)=u(t) \otimes v(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau$
If we define $x(t)=u^{*}(-t)$ then

$$
\begin{aligned}
x(t) * v(t) & \triangleq \int_{-\infty}^{\infty} x(t-\tau) v(\tau) d \tau=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau \\
& =u(t) \otimes v(t)
\end{aligned}
$$

## Cross-correlation as Convolution

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t)=u(t) \otimes v(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau$
If we define $x(t)=u^{*}(-t)$ then

$$
\begin{aligned}
x(t) * v(t) & \triangleq \int_{-\infty}^{\infty} x(t-\tau) v(\tau) d \tau=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau \\
& =u(t) \otimes v(t)
\end{aligned}
$$

Fourier Transform of $x(t)$ :

$$
X(f)=\int_{-\infty}^{\infty} x(t) e^{-i 2 \pi f t} d t
$$

## Cross-correlation as Convolution

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t)=u(t) \otimes v(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau$
If we define $x(t)=u^{*}(-t)$ then

$$
\begin{aligned}
x(t) * v(t) & \triangleq \int_{-\infty}^{\infty} x(t-\tau) v(\tau) d \tau=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau \\
& =u(t) \otimes v(t)
\end{aligned}
$$

Fourier Transform of $x(t)$ :

$$
X(f)=\int_{-\infty}^{\infty} x(t) e^{-i 2 \pi f t} d t=\int_{-\infty}^{\infty} u^{*}(-t) e^{-i 2 \pi f t} d t
$$

## Cross-correlation as Convolution

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t)=u(t) \otimes v(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau$
If we define $x(t)=u^{*}(-t)$ then

$$
\begin{aligned}
x(t) * v(t) & \triangleq \int_{-\infty}^{\infty} x(t-\tau) v(\tau) d \tau=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau \\
& =u(t) \otimes v(t)
\end{aligned}
$$

Fourier Transform of $x(t)$ :

$$
\begin{aligned}
X(f) & =\int_{-\infty}^{\infty} x(t) e^{-i 2 \pi f t} d t=\int_{-\infty}^{\infty} u^{*}(-t) e^{-i 2 \pi f t} d t \\
& =\int_{-\infty}^{\infty} u^{*}(t) e^{i 2 \pi f t} d t
\end{aligned}
$$

## Cross-correlation as Convolution

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t)=u(t) \otimes v(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau$
If we define $x(t)=u^{*}(-t)$ then

$$
\begin{aligned}
x(t) * v(t) & \triangleq \int_{-\infty}^{\infty} x(t-\tau) v(\tau) d \tau=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau \\
& =u(t) \otimes v(t)
\end{aligned}
$$

Fourier Transform of $x(t)$ :

$$
\begin{aligned}
X(f) & =\int_{-\infty}^{\infty} x(t) e^{-i 2 \pi f t} d t=\int_{-\infty}^{\infty} u^{*}(-t) e^{-i 2 \pi f t} d t \\
& =\int_{-\infty}^{\infty} u^{*}(t) e^{i 2 \pi f t} d t=\left(\int_{-\infty}^{\infty} u(t) e^{-i 2 \pi f t} d t\right)^{*}
\end{aligned}
$$

## Cross-correlation as Convolution

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t)=u(t) \otimes v(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau$
If we define $x(t)=u^{*}(-t)$ then

$$
\begin{aligned}
x(t) * v(t) & \triangleq \int_{-\infty}^{\infty} x(t-\tau) v(\tau) d \tau=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau \\
& =u(t) \otimes v(t)
\end{aligned}
$$

Fourier Transform of $x(t)$ :

$$
\begin{aligned}
X(f) & =\int_{-\infty}^{\infty} x(t) e^{-i 2 \pi f t} d t=\int_{-\infty}^{\infty} u^{*}(-t) e^{-i 2 \pi f t} d t \\
& =\int_{-\infty}^{\infty} u^{*}(t) e^{i 2 \pi f t} d t=\left(\int_{-\infty}^{\infty} u(t) e^{-i 2 \pi f t} d t\right)^{*} \\
& =U^{*}(f)
\end{aligned}
$$

## Cross-correlation as Convolution

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t)=u(t) \otimes v(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau$
If we define $x(t)=u^{*}(-t)$ then

$$
\begin{aligned}
x(t) * v(t) & \triangleq \int_{-\infty}^{\infty} x(t-\tau) v(\tau) d \tau=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau \\
& =u(t) \otimes v(t)
\end{aligned}
$$

Fourier Transform of $x(t)$ :

$$
\begin{aligned}
& \begin{aligned}
X(f) & =\int_{-\infty}^{\infty} x(t) e^{-i 2 \pi f t} d t=\int_{-\infty}^{\infty} u^{*}(-t) e^{-i 2 \pi f t} d t \\
& =\int_{-\infty}^{\infty} u^{*}(t) e^{i 2 \pi f t} d t=\left(\int_{-\infty}^{\infty} u(t) e^{-i 2 \pi f t} d t\right)^{*} \\
& =U^{*}(f)
\end{aligned} \\
& \text { So } w(t)=x(t) * v(t) \Rightarrow W(f)=X(f) V(f)
\end{aligned}
$$

## Cross-correlation as Convolution

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t)=u(t) \otimes v(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau$
If we define $x(t)=u^{*}(-t)$ then

$$
\begin{aligned}
x(t) * v(t) & \triangleq \int_{-\infty}^{\infty} x(t-\tau) v(\tau) d \tau=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau \\
& =u(t) \otimes v(t)
\end{aligned}
$$

Fourier Transform of $x(t)$ :

$$
\begin{aligned}
X(f) & =\int_{-\infty}^{\infty} x(t) e^{-i 2 \pi f t} d t=\int_{-\infty}^{\infty} u^{*}(-t) e^{-i 2 \pi f t} d t \\
& =\int_{-\infty}^{\infty} u^{*}(t) e^{i 2 \pi f t} d t=\left(\int_{-\infty}^{\infty} u(t) e^{-i 2 \pi f t} d t\right)^{*} \\
& =U^{*}(f)
\end{aligned} \text { So } w(t)=x(t) * v(t) \Rightarrow W(f)=X(f) V(f)=U^{*}(f) V(f) \text { ) } \begin{aligned}
& =W \text {. }
\end{aligned}
$$

## Cross-correlation as Convolution

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t)=u(t) \otimes v(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau$
If we define $x(t)=u^{*}(-t)$ then

$$
\begin{aligned}
x(t) * v(t) & \triangleq \int_{-\infty}^{\infty} x(t-\tau) v(\tau) d \tau=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau \\
& =u(t) \otimes v(t)
\end{aligned}
$$

Fourier Transform of $x(t)$ :

$$
\begin{aligned}
X(f) & =\int_{-\infty}^{\infty} x(t) e^{-i 2 \pi f t} d t=\int_{-\infty}^{\infty} u^{*}(-t) e^{-i 2 \pi f t} d t \\
& =\int_{-\infty}^{\infty} u^{*}(t) e^{i 2 \pi f t} d t=\left(\int_{-\infty}^{\infty} u(t) e^{-i 2 \pi f t} d t\right)^{*} \\
& =U^{*}(f)
\end{aligned} \text { So } w(t)=x(t) * v(t) \Rightarrow W(f)=X(f) V(f)=U^{*}(f) V(f) \text { ) } \begin{aligned}
& =W \text {. }
\end{aligned}
$$

Hence the Cross-correlation theorem:

$$
w(t)=u(t) \otimes v(t)
$$

## Cross-correlation as Convolution

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t)=u(t) \otimes v(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau$
If we define $x(t)=u^{*}(-t)$ then

$$
\begin{aligned}
x(t) * v(t) & \triangleq \int_{-\infty}^{\infty} x(t-\tau) v(\tau) d \tau=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau \\
& =u(t) \otimes v(t)
\end{aligned}
$$

Fourier Transform of $x(t)$ :

$$
\begin{aligned}
& \begin{aligned}
X(f) & =\int_{-\infty}^{\infty} x(t) e^{-i 2 \pi f t} d t=\int_{-\infty}^{\infty} u^{*}(-t) e^{-i 2 \pi f t} d t \\
& =\int_{-\infty}^{\infty} u^{*}(t) e^{i 2 \pi f t} d t=\left(\int_{-\infty}^{\infty} u(t) e^{-i 2 \pi f t} d t\right)^{*} \\
& =U^{*}(f)
\end{aligned} \\
& \text { So } w(t)=x(t) * v(t) \Rightarrow W(f)=X(f) V(f)=U^{*}(f) V(f)
\end{aligned}
$$

Hence the Cross-correlation theorem:

$$
\begin{aligned}
w(t) & =u(t) \otimes v(t) \\
& =u^{*}(-t) * v(t)
\end{aligned}
$$

## Cross-correlation as Convolution

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t)=u(t) \otimes v(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau$
If we define $x(t)=u^{*}(-t)$ then

$$
\begin{aligned}
x(t) * v(t) & \triangleq \int_{-\infty}^{\infty} x(t-\tau) v(\tau) d \tau=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau \\
& =u(t) \otimes v(t)
\end{aligned}
$$

Fourier Transform of $x(t)$ :

$$
\begin{aligned}
& X(f)=\int_{-\infty}^{\infty} x(t) e^{-i 2 \pi f t} d t=\int_{-\infty}^{\infty} u^{*}(-t) e^{-i 2 \pi f t} d t \\
& =\int_{-\infty}^{\infty} u^{*}(t) e^{i 2 \pi f t} d t=\left(\int_{-\infty}^{\infty} u(t) e^{-i 2 \pi f t} d t\right)^{*} \\
& =U^{*}(f) \\
& \text { So } w(t)=x(t) * v(t) \Rightarrow W(f)=X(f) V(f)=U^{*}(f) V(f)
\end{aligned}
$$

Hence the Cross-correlation theorem:

$$
\begin{aligned}
w(t) & =u(t) \otimes v(t) \quad \Leftrightarrow \quad W(f)=U^{*}(f) V(f) \\
& =u^{*}(-t) * v(t)
\end{aligned}
$$

## Cross-correlation as Convolution

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t)=u(t) \otimes v(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau$
If we define $x(t)=u^{*}(-t)$ then

$$
\begin{aligned}
x(t) * v(t) & \triangleq \int_{-\infty}^{\infty} x(t-\tau) v(\tau) d \tau=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau \\
& =u(t) \otimes v(t)
\end{aligned}
$$

Fourier Transform of $x(t)$ :

$$
\begin{aligned}
& \begin{aligned}
X(f) & =\int_{-\infty}^{\infty} x(t) e^{-i 2 \pi f t} d t=\int_{-\infty}^{\infty} u^{*}(-t) e^{-i 2 \pi f t} d t \\
& =\int_{-\infty}^{\infty} u^{*}(t) e^{i 2 \pi f t} d t=\left(\int_{-\infty}^{\infty} u(t) e^{-i 2 \pi f t} d t\right)^{*} \\
& =U^{*}(f)
\end{aligned} \\
& \text { So } w(t)=x(t) * v(t) \Rightarrow W(f)=X(f) V(f)=U^{*}(f) V(f)
\end{aligned}
$$

Hence the Cross-correlation theorem:

$$
\begin{aligned}
w(t) & =u(t) \otimes v(t) \quad \Leftrightarrow \quad W(f)=U^{*}(f) V(f) \\
& =u^{*}(-t) * v(t)
\end{aligned}
$$

Note that, unlike convolution, correlation is not associative or commutative:

$$
v(t) \otimes u(t)=v^{*}(-t) * u(t)
$$

## Cross-correlation as Convolution

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t)=u(t) \otimes v(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau$
If we define $x(t)=u^{*}(-t)$ then

$$
\begin{aligned}
x(t) * v(t) & \triangleq \int_{-\infty}^{\infty} x(t-\tau) v(\tau) d \tau=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau \\
& =u(t) \otimes v(t)
\end{aligned}
$$

Fourier Transform of $x(t)$ :

$$
\begin{aligned}
& \begin{aligned}
X(f) & =\int_{-\infty}^{\infty} x(t) e^{-i 2 \pi f t} d t=\int_{-\infty}^{\infty} u^{*}(-t) e^{-i 2 \pi f t} d t \\
& =\int_{-\infty}^{\infty} u^{*}(t) e^{i 2 \pi f t} d t=\left(\int_{-\infty}^{\infty} u(t) e^{-i 2 \pi f t} d t\right)^{*} \\
& =U^{*}(f)
\end{aligned} \\
& \text { So } w(t)=x(t) * v(t) \Rightarrow W(f)=X(f) V(f)=U^{*}(f) V(f)
\end{aligned}
$$

Hence the Cross-correlation theorem:

$$
\begin{aligned}
w(t) & =u(t) \otimes v(t) \quad \Leftrightarrow \quad W(f)=U^{*}(f) V(f) \\
& =u^{*}(-t) * v(t)
\end{aligned}
$$

Note that, unlike convolution, correlation is not associative or commutative:

$$
v(t) \otimes u(t)=v^{*}(-t) * u(t)=u(t) * v^{*}(-t)
$$

## Cross-correlation as Convolution

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t)=u(t) \otimes v(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau$
If we define $x(t)=u^{*}(-t)$ then

$$
\begin{aligned}
x(t) * v(t) & \triangleq \int_{-\infty}^{\infty} x(t-\tau) v(\tau) d \tau=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau \\
& =u(t) \otimes v(t)
\end{aligned}
$$

Fourier Transform of $x(t)$ :

$$
\begin{aligned}
& \begin{aligned}
X(f) & =\int_{-\infty}^{\infty} x(t) e^{-i 2 \pi f t} d t=\int_{-\infty}^{\infty} u^{*}(-t) e^{-i 2 \pi f t} d t \\
& =\int_{-\infty}^{\infty} u^{*}(t) e^{i 2 \pi f t} d t=\left(\int_{-\infty}^{\infty} u(t) e^{-i 2 \pi f t} d t\right)^{*} \\
& =U^{*}(f)
\end{aligned} \\
& \text { So } w(t)=x(t) * v(t) \Rightarrow W(f)=X(f) V(f)=U^{*}(f) V(f)
\end{aligned}
$$

Hence the Cross-correlation theorem:

$$
\begin{aligned}
w(t) & =u(t) \otimes v(t) \quad \Leftrightarrow \quad W(f)=U^{*}(f) V(f) \\
& =u^{*}(-t) * v(t)
\end{aligned}
$$

Note that, unlike convolution, correlation is not associative or commutative:

$$
v(t) \otimes u(t)=v^{*}(-t) * u(t)=u(t) * v^{*}(-t)=w^{*}(-t)
$$



8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t)=u(t) \otimes v(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau$

## Normalized Cross-correlation

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t)=u(t) \otimes v(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau$
If we define $y(t)=u\left(t-t_{0}\right)$ for some fixed $t_{0}$, then $E_{y}=E_{u}$ :

## Normalized Cross-correlation

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t)=u(t) \otimes v(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau$
If we define $y(t)=u\left(t-t_{0}\right)$ for some fixed $t_{0}$, then $E_{y}=E_{u}$ :

$$
E_{y}=\int_{-\infty}^{\infty}|y(t)|^{2} d t
$$

## Normalized Cross-correlation

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t)=u(t) \otimes v(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau$
If we define $y(t)=u\left(t-t_{0}\right)$ for some fixed $t_{0}$, then $E_{y}=E_{u}$ :

$$
E_{y}=\int_{-\infty}^{\infty}|y(t)|^{2} d t=\int_{-\infty}^{\infty}\left|u\left(t-t_{0}\right)\right|^{2} d t
$$

## Normalized Cross-correlation

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t)=u(t) \otimes v(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau$
If we define $y(t)=u\left(t-t_{0}\right)$ for some fixed $t_{0}$, then $E_{y}=E_{u}$ :

$$
\begin{aligned}
E_{y}=\int_{-\infty}^{\infty}|y(t)|^{2} d t & =\int_{-\infty}^{\infty}\left|u\left(t-t_{0}\right)\right|^{2} d t \\
& =\int_{-\infty}^{\infty}|u(\tau)|^{2} d \tau=E_{u} \quad\left[t \rightarrow \tau+t_{0}\right]
\end{aligned}
$$

## Normalized Cross-correlation

## 8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t)=u(t) \otimes v(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau$
If we define $y(t)=u\left(t-t_{0}\right)$ for some fixed $t_{0}$, then $E_{y}=E_{u}$ :

$$
\begin{aligned}
E_{y}=\int_{-\infty}^{\infty}|y(t)|^{2} d t & =\int_{-\infty}^{\infty}\left|u\left(t-t_{0}\right)\right|^{2} d t \\
& =\int_{-\infty}^{\infty}|u(\tau)|^{2} d \tau=E_{u} \quad\left[t \rightarrow \tau+t_{0}\right]
\end{aligned}
$$

Cauchy-Schwarz inequality: $\left|\int_{-\infty}^{\infty} y^{*}(\tau) v(\tau) d \tau\right|^{2} \leq E_{y} E_{v}$

## Normalized Cross-correlation

## 8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t)=u(t) \otimes v(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau$
If we define $y(t)=u\left(t-t_{0}\right)$ for some fixed $t_{0}$, then $E_{y}=E_{u}$ :

$$
\begin{aligned}
E_{y}=\int_{-\infty}^{\infty}|y(t)|^{2} d t & =\int_{-\infty}^{\infty}\left|u\left(t-t_{0}\right)\right|^{2} d t \\
& =\int_{-\infty}^{\infty}|u(\tau)|^{2} d \tau=E_{u} \quad\left[t \rightarrow \tau+t_{0}\right]
\end{aligned}
$$

Cauchy-Schwarz inequality: $\left|\int_{-\infty}^{\infty} y^{*}(\tau) v(\tau) d \tau\right|^{2} \leq E_{y} E_{v}$

$$
\Rightarrow\left|w\left(t_{0}\right)\right|^{2}=\left|\int_{-\infty}^{\infty} u^{*}\left(\tau-t_{0}\right) v(\tau) d \tau\right|^{2}
$$

## Normalized Cross-correlation

## 8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t)=u(t) \otimes v(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau$
If we define $y(t)=u\left(t-t_{0}\right)$ for some fixed $t_{0}$, then $E_{y}=E_{u}$ :

$$
\begin{aligned}
E_{y}=\int_{-\infty}^{\infty}|y(t)|^{2} d t & =\int_{-\infty}^{\infty}\left|u\left(t-t_{0}\right)\right|^{2} d t \\
& =\int_{-\infty}^{\infty}|u(\tau)|^{2} d \tau=E_{u} \quad\left[t \rightarrow \tau+t_{0}\right]
\end{aligned}
$$

Cauchy-Schwarz inequality: $\left|\int_{-\infty}^{\infty} y^{*}(\tau) v(\tau) d \tau\right|^{2} \leq E_{y} E_{v}$

$$
\Rightarrow\left|w\left(t_{0}\right)\right|^{2}=\left|\int_{-\infty}^{\infty} u^{*}\left(\tau-t_{0}\right) v(\tau) d \tau\right|^{2} \leq E_{y} E_{v}
$$

## Normalized Cross-correlation

## 8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t)=u(t) \otimes v(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau$
If we define $y(t)=u\left(t-t_{0}\right)$ for some fixed $t_{0}$, then $E_{y}=E_{u}$ :

$$
\begin{aligned}
E_{y}=\int_{-\infty}^{\infty}|y(t)|^{2} d t & =\int_{-\infty}^{\infty}\left|u\left(t-t_{0}\right)\right|^{2} d t \\
& =\int_{-\infty}^{\infty}|u(\tau)|^{2} d \tau=E_{u} \quad\left[t \rightarrow \tau+t_{0}\right]
\end{aligned}
$$

Cauchy-Schwarz inequality: $\left|\int_{-\infty}^{\infty} y^{*}(\tau) v(\tau) d \tau\right|^{2} \leq E_{y} E_{v}$

$$
\Rightarrow\left|w\left(t_{0}\right)\right|^{2}=\left|\int_{-\infty}^{\infty} u^{*}\left(\tau-t_{0}\right) v(\tau) d \tau\right|^{2} \leq E_{y} E_{v}=E_{u} E_{v}
$$

## Normalized Cross-correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t)=u(t) \otimes v(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau$
If we define $y(t)=u\left(t-t_{0}\right)$ for some fixed $t_{0}$, then $E_{y}=E_{u}$ :

$$
\begin{aligned}
E_{y}=\int_{-\infty}^{\infty}|y(t)|^{2} d t & =\int_{-\infty}^{\infty}\left|u\left(t-t_{0}\right)\right|^{2} d t \\
& =\int_{-\infty}^{\infty}|u(\tau)|^{2} d \tau=E_{u} \quad\left[t \rightarrow \tau+t_{0}\right]
\end{aligned}
$$

Cauchy-Schwarz inequality: $\left|\int_{-\infty}^{\infty} y^{*}(\tau) v(\tau) d \tau\right|^{2} \leq E_{y} E_{v}$

$$
\Rightarrow\left|w\left(t_{0}\right)\right|^{2}=\left|\int_{-\infty}^{\infty} u^{*}\left(\tau-t_{0}\right) v(\tau) d \tau\right|^{2} \leq E_{y} E_{v}=E_{u} E_{v}
$$

but $t_{0}$ was arbitrary, so we must have $|w(t)| \leq \sqrt{E_{u} E_{v}}$ for all $t$

## Normalized Cross-correlation

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t)=u(t) \otimes v(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau$
If we define $y(t)=u\left(t-t_{0}\right)$ for some fixed $t_{0}$, then $E_{y}=E_{u}$ :

$$
\begin{aligned}
E_{y}=\int_{-\infty}^{\infty}|y(t)|^{2} d t & =\int_{-\infty}^{\infty}\left|u\left(t-t_{0}\right)\right|^{2} d t \\
& =\int_{-\infty}^{\infty}|u(\tau)|^{2} d \tau=E_{u} \quad\left[t \rightarrow \tau+t_{0}\right]
\end{aligned}
$$

Cauchy-Schwarz inequality: $\left|\int_{-\infty}^{\infty} y^{*}(\tau) v(\tau) d \tau\right|^{2} \leq E_{y} E_{v}$

$$
\Rightarrow\left|w\left(t_{0}\right)\right|^{2}=\left|\int_{-\infty}^{\infty} u^{*}\left(\tau-t_{0}\right) v(\tau) d \tau\right|^{2} \leq E_{y} E_{v}=E_{u} E_{v}
$$

but $t_{0}$ was arbitrary, so we must have $|w(t)| \leq \sqrt{E_{u} E_{v}}$ for all $t$

We can define the normalized cross-correlation

$$
z(t)=\frac{u(t) \otimes v(t)}{\sqrt{E_{u} E_{v}}}
$$

## Normalized Cross-correlation

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t)=u(t) \otimes v(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau$
If we define $y(t)=u\left(t-t_{0}\right)$ for some fixed $t_{0}$, then $E_{y}=E_{u}$ :

$$
\begin{aligned}
E_{y}=\int_{-\infty}^{\infty}|y(t)|^{2} d t & =\int_{-\infty}^{\infty}\left|u\left(t-t_{0}\right)\right|^{2} d t \\
& =\int_{-\infty}^{\infty}|u(\tau)|^{2} d \tau=E_{u} \quad\left[t \rightarrow \tau+t_{0}\right]
\end{aligned}
$$

Cauchy-Schwarz inequality: $\left|\int_{-\infty}^{\infty} y^{*}(\tau) v(\tau) d \tau\right|^{2} \leq E_{y} E_{v}$

$$
\Rightarrow\left|w\left(t_{0}\right)\right|^{2}=\left|\int_{-\infty}^{\infty} u^{*}\left(\tau-t_{0}\right) v(\tau) d \tau\right|^{2} \leq E_{y} E_{v}=E_{u} E_{v}
$$

but $t_{0}$ was arbitrary, so we must have $|w(t)| \leq \sqrt{E_{u} E_{v}}$ for all $t$

We can define the normalized cross-correlation

$$
z(t)=\frac{u(t) \otimes v(t)}{\sqrt{E_{u} E_{v}}}
$$

with properties: (1) $|z(t)| \leq 1$ for all $t$

## Normalized Cross-correlation

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Correlation: $w(t)=u(t) \otimes v(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau$
If we define $y(t)=u\left(t-t_{0}\right)$ for some fixed $t_{0}$, then $E_{y}=E_{u}$ :

$$
\begin{aligned}
E_{y}=\int_{-\infty}^{\infty}|y(t)|^{2} d t & =\int_{-\infty}^{\infty}\left|u\left(t-t_{0}\right)\right|^{2} d t \\
& =\int_{-\infty}^{\infty}|u(\tau)|^{2} d \tau=E_{u} \quad\left[t \rightarrow \tau+t_{0}\right]
\end{aligned}
$$

Cauchy-Schwarz inequality: $\left|\int_{-\infty}^{\infty} y^{*}(\tau) v(\tau) d \tau\right|^{2} \leq E_{y} E_{v}$

$$
\Rightarrow\left|w\left(t_{0}\right)\right|^{2}=\left|\int_{-\infty}^{\infty} u^{*}\left(\tau-t_{0}\right) v(\tau) d \tau\right|^{2} \leq E_{y} E_{v}=E_{u} E_{v}
$$

but $t_{0}$ was arbitrary, so we must have $|w(t)| \leq \sqrt{E_{u} E_{v}}$ for all $t$

We can define the normalized cross-correlation

$$
z(t)=\frac{u(t) \otimes v(t)}{\sqrt{E_{u} E_{v}}}
$$

with properties: (1) $|z(t)| \leq 1$ for all $t$
(2) $\left|z\left(t_{0}\right)\right|=1 \Leftrightarrow v(\tau)=\alpha u\left(\tau-t_{0}\right)$ with $\alpha$ constant

## Autocorrelation

## 8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

The correlation of a signal with itself is its autocorrelation:

$$
w(t)=u(t) \otimes u(t)
$$

## Autocorrelation

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

The correlation of a signal with itself is its autocorrelation:

$$
w(t)=u(t) \otimes u(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) u(\tau) d \tau
$$

## Autocorrelation

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

The correlation of a signal with itself is its autocorrelation:

$$
w(t)=u(t) \otimes u(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) u(\tau) d \tau
$$

The autocorrelation at zero lag:

$$
w(0)=\int_{-\infty}^{\infty} u^{*}(\tau-0) u(\tau) d \tau
$$

## Autocorrelation

## 8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

The correlation of a signal with itself is its autocorrelation:

$$
w(t)=u(t) \otimes u(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) u(\tau) d \tau
$$

The autocorrelation at zero lag:

$$
\begin{aligned}
w(0) & =\int_{-\infty}^{\infty} u^{*}(\tau-0) u(\tau) d \tau \\
& =\int_{-\infty}^{\infty} u^{*}(\tau) u(\tau) d \tau
\end{aligned}
$$

## Autocorrelation

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

The correlation of a signal with itself is its autocorrelation:

$$
w(t)=u(t) \otimes u(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) u(\tau) d \tau
$$

The autocorrelation at zero lag:

$$
\begin{aligned}
w(0) & =\int_{-\infty}^{\infty} u^{*}(\tau-0) u(\tau) d \tau \\
& =\int_{-\infty}^{\infty} u^{*}(\tau) u(\tau) d \tau \\
& =\int_{-\infty}^{\infty}|u(\tau)|^{2} d \tau=E_{u}
\end{aligned}
$$

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram


## Autocorrelation

The correlation of a signal with itself is its autocorrelation:

$$
w(t)=u(t) \otimes u(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) u(\tau) d \tau
$$

The autocorrelation at zero lag:

$$
\begin{aligned}
w(0) & =\int_{-\infty}^{\infty} u^{*}(\tau-0) u(\tau) d \tau \\
& =\int_{-\infty}^{\infty} u^{*}(\tau) u(\tau) d \tau \\
& =\int_{-\infty}^{\infty}|u(\tau)|^{2} d \tau=E_{u}
\end{aligned}
$$

The autocorrelation at zero lag, $w(0)$, is the energy of the signal.

## Autocorrelation

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

The correlation of a signal with itself is its autocorrelation:

$$
w(t)=u(t) \otimes u(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) u(\tau) d \tau
$$

The autocorrelation at zero lag:

$$
\begin{aligned}
w(0) & =\int_{-\infty}^{\infty} u^{*}(\tau-0) u(\tau) d \tau \\
& =\int_{-\infty}^{\infty} u^{*}(\tau) u(\tau) d \tau \\
& =\int_{-\infty}^{\infty}|u(\tau)|^{2} d \tau=E_{u}
\end{aligned}
$$

The autocorrelation at zero lag, $w(0)$, is the energy of the signal.

The normalized autocorrelation: $\quad z(t)=\frac{u(t) \otimes u(t)}{E_{u}}$

## Autocorrelation

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

The correlation of a signal with itself is its autocorrelation:

$$
w(t)=u(t) \otimes u(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) u(\tau) d \tau
$$

The autocorrelation at zero lag:

$$
\begin{aligned}
w(0) & =\int_{-\infty}^{\infty} u^{*}(\tau-0) u(\tau) d \tau \\
& =\int_{-\infty}^{\infty} u^{*}(\tau) u(\tau) d \tau \\
& =\int_{-\infty}^{\infty}|u(\tau)|^{2} d \tau=E_{u}
\end{aligned}
$$

The autocorrelation at zero lag, $w(0)$, is the energy of the signal.
The normalized autocorrelation: $\quad z(t)=\frac{u(t) \otimes u(t)}{E_{u}}$

$$
\text { satisfies } z(0)=1 \text { and }|z(t)| \leq 1 \text { for any } t
$$

## Autocorrelation

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

The correlation of a signal with itself is its autocorrelation:

$$
w(t)=u(t) \otimes u(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) u(\tau) d \tau
$$

The autocorrelation at zero lag:

$$
\begin{aligned}
w(0) & =\int_{-\infty}^{\infty} u^{*}(\tau-0) u(\tau) d \tau \\
& =\int_{-\infty}^{\infty} u^{*}(\tau) u(\tau) d \tau \\
& =\int_{-\infty}^{\infty}|u(\tau)|^{2} d \tau=E_{u}
\end{aligned}
$$

The autocorrelation at zero lag, $w(0)$, is the energy of the signal.

The normalized autocorrelation: $\quad z(t)=\frac{u(t) \otimes u(t)}{E_{u}}$

$$
\text { satisfies } z(0)=1 \text { and }|z(t)| \leq 1 \text { for any } t
$$

Wiener-Khinchin Theorem: [Cross-correlation theorem when $v(t)=u(t)$ ]

$$
w(t)=u(t) \otimes u(t) \quad \Leftrightarrow \quad W(f)=U^{*}(f) U(f)
$$

## Autocorrelation

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

The correlation of a signal with itself is its autocorrelation:

$$
w(t)=u(t) \otimes u(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) u(\tau) d \tau
$$

The autocorrelation at zero lag:

$$
\begin{aligned}
w(0) & =\int_{-\infty}^{\infty} u^{*}(\tau-0) u(\tau) d \tau \\
& =\int_{-\infty}^{\infty} u^{*}(\tau) u(\tau) d \tau \\
& =\int_{-\infty}^{\infty}|u(\tau)|^{2} d \tau=E_{u}
\end{aligned}
$$

The autocorrelation at zero lag, $w(0)$, is the energy of the signal.

The normalized autocorrelation: $\quad z(t)=\frac{u(t) \otimes u(t)}{E_{u}}$

$$
\text { satisfies } z(0)=1 \text { and }|z(t)| \leq 1 \text { for any } t
$$

Wiener-Khinchin Theorem: [Cross-correlation theorem when $v(t)=u(t)$ ]

$$
w(t)=u(t) \otimes u(t) \quad \Leftrightarrow \quad W(f)=U^{*}(f) U(f)=|U(f)|^{2}
$$

## Autocorrelation

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

The correlation of a signal with itself is its autocorrelation:

$$
w(t)=u(t) \otimes u(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) u(\tau) d \tau
$$

The autocorrelation at zero lag:

$$
\begin{aligned}
w(0) & =\int_{-\infty}^{\infty} u^{*}(\tau-0) u(\tau) d \tau \\
& =\int_{-\infty}^{\infty} u^{*}(\tau) u(\tau) d \tau \\
& =\int_{-\infty}^{\infty}|u(\tau)|^{2} d \tau=E_{u}
\end{aligned}
$$

The autocorrelation at zero lag, $w(0)$, is the energy of the signal.

The normalized autocorrelation: $\quad z(t)=\frac{u(t) \otimes u(t)}{E_{u}}$

$$
\text { satisfies } z(0)=1 \text { and }|z(t)| \leq 1 \text { for any } t
$$

Wiener-Khinchin Theorem: [Cross-correlation theorem when $v(t)=u(t)$ ]

$$
w(t)=u(t) \otimes u(t) \quad \Leftrightarrow \quad W(f)=U^{*}(f) U(f)=|U(f)|^{2}
$$

The Fourier transform of the autocorrelation is the energy spectrum.

## $+$ <br> Autocorrelation example

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Cross-correlation is used to find when two different signals are similar.


## Autocorrelation example

## 8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Cross-correlation is used to find when two different signals are similar. Autocorrelation is used to find when a signal is similar to itself delayed.

## Autocorrelation example

## 8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Cross-correlation is used to find when two different signals are similar. Autocorrelation is used to find when a signal is similar to itself delayed.

First graph shows $s(t)$ a segment of the microphone signal from the initial vowel of "early" spoken by me.


## Autocorrelation example

## 8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Cross-correlation is used to find when two different signals are similar. Autocorrelation is used to find when a signal is similar to itself delayed.

First graph shows $s(t)$ a segment of the microphone signal from the initial vowel of "early" spoken by me. The waveform is "quasi-periodic" = "almost periodic but not quite".


## Autocorrelation example

## 8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Cross-correlation is used to find when two different signals are similar. Autocorrelation is used to find when a signal is similar to itself delayed.

First graph shows $s(t)$ a segment of the microphone signal from the initial vowel of "early" spoken by me. The waveform is "quasi-periodic" = "almost periodic but not quite".
Second graph shows normalized autocorrelation, $z(t)=\frac{s(t) \otimes s(t)}{E_{s}}$.


## Autocorrelation example

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Cross-correlation is used to find when two different signals are similar. Autocorrelation is used to find when a signal is similar to itself delayed.

First graph shows $s(t)$ a segment of the microphone signal from the initial vowel of "early" spoken by me. The waveform is "quasi-periodic" = "almost periodic but not quite".

Second graph shows normalized autocorrelation, $z(t)=\frac{s(t) \otimes s(t)}{E_{s}}$. $z(0)=1$ for $t=0$ since a signal always matches itself exactly.


## Autocorrelation example

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Cross-correlation is used to find when two different signals are similar. Autocorrelation is used to find when a signal is similar to itself delayed.

First graph shows $s(t)$ a segment of the microphone signal from the initial vowel of "early" spoken by me. The waveform is "quasi-periodic" = "almost periodic but not quite".
Second graph shows normalized autocorrelation, $z(t)=\frac{s(t) \otimes s(t)}{E_{s}}$. $z(0)=1$ for $t=0$ since a signal always matches itself exactly.
$z(t)=0.82$ for $t=6.2 \mathrm{~ms}=$ one period lag (not an exact match).



## Autocorrelation example

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Cross-correlation is used to find when two different signals are similar. Autocorrelation is used to find when a signal is similar to itself delayed.

First graph shows $s(t)$ a segment of the microphone signal from the initial vowel of "early" spoken by me. The waveform is "quasi-periodic" = "almost periodic but not quite".
Second graph shows normalized autocorrelation, $z(t)=\frac{s(t) \otimes s(t)}{E_{s}}$. $z(0)=1$ for $t=0$ since a signal always matches itself exactly.
$z(t)=0.82$ for $t=6.2 \mathrm{~ms}=$ one period lag (not an exact match).
$z(t)=0.53$ for $t=12.4 \mathrm{~ms}=$ two periods lag (even worse match).



## Fourier Transform Variants

## 8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram


## Fourier Transform Variants

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

There are three different versions of the Fourier Transform in current use.
(1) Frequency version (we have used this in lectures)

$$
U(f)=\int_{-\infty}^{\infty} u(t) e^{-i 2 \pi f t} d t \quad u(t)=\int_{-\infty}^{\infty} U(f) e^{i 2 \pi f t} d f
$$

## Fourier Transform Variants

## 8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

There are three different versions of the Fourier Transform in current use.
(1) Frequency version (we have used this in lectures)

$$
U(f)=\int_{-\infty}^{\infty} u(t) e^{-i 2 \pi f t} d t \quad u(t)=\int_{-\infty}^{\infty} U(f) e^{i 2 \pi f t} d f
$$

- Used in the communications/broadcasting industry and textbooks.
- The formulae do not need scale factors of $2 \pi$ anywhere.


## Fourier Transform Variants

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

There are three different versions of the Fourier Transform in current use.
(1) Frequency version (we have used this in lectures)

$$
U(f)=\int_{-\infty}^{\infty} u(t) e^{-i 2 \pi f t} d t \quad u(t)=\int_{-\infty}^{\infty} U(f) e^{i 2 \pi f t} d f
$$

- Used in the communications/broadcasting industry and textbooks.
- The formulae do not need scale factors of $2 \pi$ anywhere.
(2) Angular frequency version

$$
\widetilde{U}(\omega)=\int_{-\infty}^{\infty} u(t) e^{-i \omega t} d t \quad u(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \widetilde{U}(\omega) e^{i \omega t} d \omega
$$

## Fourier Transform Variants

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

There are three different versions of the Fourier Transform in current use.
(1) Frequency version (we have used this in lectures)

$$
U(f)=\int_{-\infty}^{\infty} u(t) e^{-i 2 \pi f t} d t \quad u(t)=\int_{-\infty}^{\infty} U(f) e^{i 2 \pi f t} d f
$$

- Used in the communications/broadcasting industry and textbooks.
- The formulae do not need scale factors of $2 \pi$ anywhere.
(2) Angular frequency version
$\widetilde{U}(\omega)=\int_{-\infty}^{\infty} u(t) e^{-i \omega t} d t \quad u(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \widetilde{U}(\omega) e^{i \omega t} d \omega$
Continuous spectra are unchanged: $\widetilde{U}(\omega)=U(f)=U\left(\frac{\omega}{2 \pi}\right)$


## Fourier Transform Variants

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

There are three different versions of the Fourier Transform in current use.
(1) Frequency version (we have used this in lectures)

$$
U(f)=\int_{-\infty}^{\infty} u(t) e^{-i 2 \pi f t} d t \quad u(t)=\int_{-\infty}^{\infty} U(f) e^{i 2 \pi f t} d f
$$

- Used in the communications/broadcasting industry and textbooks.
- The formulae do not need scale factors of $2 \pi$ anywhere.
(2) Angular frequency version
$\widetilde{U}(\omega)=\int_{-\infty}^{\infty} u(t) e^{-i \omega t} d t \quad u(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \widetilde{U}(\omega) e^{i \omega t} d \omega$
Continuous spectra are unchanged: $\widetilde{U}(\omega)=U(f)=U\left(\frac{\omega}{2 \pi}\right)$
However $\delta$-function spectral components are multiplied by $2 \pi$ so that

$$
U(f)=\delta\left(f-f_{0}\right) \Rightarrow \widetilde{U}(\omega)=2 \pi \times \delta\left(\omega-2 \pi f_{0}\right)
$$

## Fourier Transform Variants

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

There are three different versions of the Fourier Transform in current use.
(1) Frequency version (we have used this in lectures)

$$
U(f)=\int_{-\infty}^{\infty} u(t) e^{-i 2 \pi f t} d t \quad u(t)=\int_{-\infty}^{\infty} U(f) e^{i 2 \pi f t} d f
$$

- Used in the communications/broadcasting industry and textbooks.
- The formulae do not need scale factors of $2 \pi$ anywhere.
(2) Angular frequency version
$\widetilde{U}(\omega)=\int_{-\infty}^{\infty} u(t) e^{-i \omega t} d t \quad u(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \widetilde{U}(\omega) e^{i \omega t} d \omega$
Continuous spectra are unchanged: $\widetilde{U}(\omega)=U(f)=U\left(\frac{\omega}{2 \pi}\right)$
However $\delta$-function spectral components are multiplied by $2 \pi$ so that

$$
U(f)=\delta\left(f-f_{0}\right) \Rightarrow \widetilde{U}(\omega)=2 \pi \times \delta\left(\omega-2 \pi f_{0}\right)
$$

- Used in most signal processing and control theory textbooks.


## Fourier Transform Variants

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

There are three different versions of the Fourier Transform in current use.
(1) Frequency version (we have used this in lectures)

$$
U(f)=\int_{-\infty}^{\infty} u(t) e^{-i 2 \pi f t} d t \quad u(t)=\int_{-\infty}^{\infty} U(f) e^{i 2 \pi f t} d f
$$

- Used in the communications/broadcasting industry and textbooks.
- The formulae do not need scale factors of $2 \pi$ anywhere.
(2) Angular frequency version
$\widetilde{U}(\omega)=\int_{-\infty}^{\infty} u(t) e^{-i \omega t} d t \quad u(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \widetilde{U}(\omega) e^{i \omega t} d \omega$
Continuous spectra are unchanged: $\widetilde{U}(\omega)=U(f)=U\left(\frac{\omega}{2 \pi}\right)$
However $\delta$-function spectral components are multiplied by $2 \pi$ so that

$$
U(f)=\delta\left(f-f_{0}\right) \Rightarrow \widetilde{U}(\omega)=2 \pi \times \delta\left(\omega-2 \pi f_{0}\right)
$$

- Used in most signal processing and control theory textbooks.
(3) Angular frequency + symmetrical scale factor

$$
\widehat{U}(\omega)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} u(t) e^{-i \omega t} d t \quad u(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \widehat{U}(\omega) e^{i \omega t} d \omega
$$

## Fourier Transform Variants

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

There are three different versions of the Fourier Transform in current use.
(1) Frequency version (we have used this in lectures)

$$
U(f)=\int_{-\infty}^{\infty} u(t) e^{-i 2 \pi f t} d t \quad u(t)=\int_{-\infty}^{\infty} U(f) e^{i 2 \pi f t} d f
$$

- Used in the communications/broadcasting industry and textbooks.
- The formulae do not need scale factors of $2 \pi$ anywhere.
(2) Angular frequency version
$\widetilde{U}(\omega)=\int_{-\infty}^{\infty} u(t) e^{-i \omega t} d t \quad u(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \widetilde{U}(\omega) e^{i \omega t} d \omega$
Continuous spectra are unchanged: $\widetilde{U}(\omega)=U(f)=U\left(\frac{\omega}{2 \pi}\right)$
However $\delta$-function spectral components are multiplied by $2 \pi$ so that

$$
U(f)=\delta\left(f-f_{0}\right) \Rightarrow \widetilde{U}(\omega)=2 \pi \times \delta\left(\omega-2 \pi f_{0}\right)
$$

- Used in most signal processing and control theory textbooks.
(3) Angular frequency + symmetrical scale factor

$$
\widehat{U}(\omega)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} u(t) e^{-i \omega t} d t \quad u(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \widehat{U}(\omega) e^{i \omega t} d \omega
$$

In all cases $\widehat{U}(\omega)=\frac{1}{\sqrt{2 \pi}} \widetilde{U}(\omega)$

## Fourier Transform Variants

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

There are three different versions of the Fourier Transform in current use.
(1) Frequency version (we have used this in lectures)

$$
U(f)=\int_{-\infty}^{\infty} u(t) e^{-i 2 \pi f t} d t \quad u(t)=\int_{-\infty}^{\infty} U(f) e^{i 2 \pi f t} d f
$$

- Used in the communications/broadcasting industry and textbooks.
- The formulae do not need scale factors of $2 \pi$ anywhere.
(2) Angular frequency version
$\widetilde{U}(\omega)=\int_{-\infty}^{\infty} u(t) e^{-i \omega t} d t \quad u(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \widetilde{U}(\omega) e^{i \omega t} d \omega$
Continuous spectra are unchanged: $\widetilde{U}(\omega)=U(f)=U\left(\frac{\omega}{2 \pi}\right)$
However $\delta$-function spectral components are multiplied by $2 \pi$ so that

$$
U(f)=\delta\left(f-f_{0}\right) \Rightarrow \widetilde{U}(\omega)=2 \pi \times \delta\left(\omega-2 \pi f_{0}\right)
$$

- Used in most signal processing and control theory textbooks.
(3) Angular frequency + symmetrical scale factor

$$
\widehat{U}(\omega)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} u(t) e^{-i \omega t} d t \quad u(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \widehat{U}(\omega) e^{i \omega t} d \omega
$$

$$
\text { In all cases } \widehat{U}(\omega)=\frac{1}{\sqrt{2 \pi}} \widetilde{U}(\omega)
$$

- Used in many Maths textbooks (mathematicians like symmetry)


## Scale Factors

## 8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Fourier Transform using Angular Frequency:

$$
\widetilde{U}(\omega)=\int_{-\infty}^{\infty} u(t) e^{-i \omega t} d t \quad u(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \widetilde{U}(\omega) e^{i \omega t} d \omega
$$

## Scale Factors

## 8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Fourier Transform using Angular Frequency:

$$
\widetilde{U}(\omega)=\int_{-\infty}^{\infty} u(t) e^{-i \omega t} d t \quad u(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \widetilde{U}(\omega) e^{i \omega t} d \omega
$$

Any formula involving $\int d f$ will change to $\frac{1}{2 \pi} \int d \omega \quad$ [since $d \omega=2 \pi d f$ ]

## Scale Factors

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Fourier Transform using Angular Frequency:

$$
\widetilde{U}(\omega)=\int_{-\infty}^{\infty} u(t) e^{-i \omega t} d t \quad u(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \widetilde{U}(\omega) e^{i \omega t} d \omega
$$

Any formula involving $\int d f$ will change to $\frac{1}{2 \pi} \int d \omega \quad$ [since $d \omega=2 \pi d f$ ]

## Parseval's Theorem:

$$
\int u^{*}(t) v(t) d t=\frac{1}{2 \pi} \int \widetilde{U}^{*}(\omega) \widetilde{V}(\omega) d \omega
$$

## Scale Factors

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Fourier Transform using Angular Frequency:

$$
\widetilde{U}(\omega)=\int_{-\infty}^{\infty} u(t) e^{-i \omega t} d t \quad u(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \widetilde{U}(\omega) e^{i \omega t} d \omega
$$

Any formula involving $\int d f$ will change to $\frac{1}{2 \pi} \int d \omega \quad$ [since $d \omega=2 \pi d f$ ]

## Parseval's Theorem:

$$
\begin{aligned}
& \int u^{*}(t) v(t) d t=\frac{1}{2 \pi} \int \widetilde{U}^{*}(\omega) \widetilde{V}(\omega) d \omega \\
& E_{u}=\int|u(t)|^{2} d t=\frac{1}{2 \pi} \int|\widetilde{U}(\omega)|^{2} d \omega
\end{aligned}
$$

## Scale Factors

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Fourier Transform using Angular Frequency:

$$
\widetilde{U}(\omega)=\int_{-\infty}^{\infty} u(t) e^{-i \omega t} d t \quad u(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \widetilde{U}(\omega) e^{i \omega t} d \omega
$$

Any formula involving $\int d f$ will change to $\frac{1}{2 \pi} \int d \omega \quad$ [since $d \omega=2 \pi d f$ ]

## Parseval's Theorem:

$$
\begin{aligned}
& \int u^{*}(t) v(t) d t=\frac{1}{2 \pi} \int \widetilde{U}^{*}(\omega) \widetilde{V}(\omega) d \omega \\
& E_{u}=\int|u(t)|^{2} d t=\frac{1}{2 \pi} \int|\widetilde{U}(\omega)|^{2} d \omega
\end{aligned}
$$

Waveform Multiplication: (convolution implicitly involves integration)

$$
w(t)=u(t) v(t) \Rightarrow \widetilde{W}(\omega)=\frac{1}{2 \pi} \widetilde{U}(\omega) * \widetilde{V}(\omega)
$$

## Scale Factors

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Fourier Transform using Angular Frequency:

$$
\widetilde{U}(\omega)=\int_{-\infty}^{\infty} u(t) e^{-i \omega t} d t \quad u(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \widetilde{U}(\omega) e^{i \omega t} d \omega
$$

Any formula involving $\int d f$ will change to $\frac{1}{2 \pi} \int d \omega \quad$ [since $d \omega=2 \pi d f$ ]

## Parseval's Theorem:

$$
\begin{aligned}
& \int u^{*}(t) v(t) d t=\frac{1}{2 \pi} \int \widetilde{U}^{*}(\omega) \widetilde{V}(\omega) d \omega \\
& E_{u}=\int|u(t)|^{2} d t=\frac{1}{2 \pi} \int|\widetilde{U}(\omega)|^{2} d \omega
\end{aligned}
$$

Waveform Multiplication: (convolution implicitly involves integration)

$$
w(t)=u(t) v(t) \Rightarrow \widetilde{W}(\omega)=\frac{1}{2 \pi} \widetilde{U}(\omega) * \widetilde{V}(\omega)
$$

Spectrum Multiplication: (multiplication $\nRightarrow$ integration)

$$
w(t)=u(t) * v(t) \Rightarrow \widetilde{W}(\omega)=\widetilde{U}(\omega) \widetilde{V}(\omega)
$$

## Scale Factors

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Fourier Transform using Angular Frequency:

$$
\widetilde{U}(\omega)=\int_{-\infty}^{\infty} u(t) e^{-i \omega t} d t \quad u(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \widetilde{U}(\omega) e^{i \omega t} d \omega
$$

Any formula involving $\int d f$ will change to $\frac{1}{2 \pi} \int d \omega \quad$ [since $d \omega=2 \pi d f$ ]

## Parseval's Theorem:

$$
\begin{aligned}
& \int u^{*}(t) v(t) d t=\frac{1}{2 \pi} \int \widetilde{U}^{*}(\omega) \widetilde{V}(\omega) d \omega \\
& E_{u}=\int|u(t)|^{2} d t=\frac{1}{2 \pi} \int|\widetilde{U}(\omega)|^{2} d \omega
\end{aligned}
$$

Waveform Multiplication: (convolution implicitly involves integration)

$$
w(t)=u(t) v(t) \Rightarrow \widetilde{W}(\omega)=\frac{1}{2 \pi} \widetilde{U}(\omega) * \widetilde{V}(\omega)
$$

Spectrum Multiplication: (multiplication $\nRightarrow$ integration)

$$
w(t)=u(t) * v(t) \Rightarrow \widetilde{W}(\omega)=\widetilde{U}(\omega) \widetilde{V}(\omega)
$$

To obtain formulae for version (3) of the Fourier Transform, $\widehat{U}(\omega)$, substitute into the above formulae: $\widetilde{U}(\omega)=\sqrt{2 \pi} \widehat{U}(\omega)$.


8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram
- Cross-Correlation: $w(t)=u(t) \otimes v(t)$


## Summary

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram
- Cross-Correlation: $w(t)=u(t) \otimes v(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau$


## Summary

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram
- Cross-Correlation: $w(t)=u(t) \otimes v(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau$
- Used to find similarities between $v(t)$ and a delayed $u(t)$


## Summary

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram
- Cross-Correlation: $w(t)=u(t) \otimes v(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau$
- Used to find similarities between $v(t)$ and a delayed $u(t)$
- Cross-correlation theorem: $W(f)=U^{*}(f) V(f)$


## Summary

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram
- Cross-Correlation: $w(t)=u(t) \otimes v(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau$
- Used to find similarities between $v(t)$ and a delayed $u(t)$
- Cross-correlation theorem: $W(f)=U^{*}(f) V(f)$
- Cauchy-Schwarz Inequality: $|u(t) \otimes v(t)| \leq \sqrt{E_{u} E_{v}}$


## Summary

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram
- Cross-Correlation: $w(t)=u(t) \otimes v(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau$
- Used to find similarities between $v(t)$ and a delayed $u(t)$
- Cross-correlation theorem: $W(f)=U^{*}(f) V(f)$
- Cauchy-Schwarz Inequality: $|u(t) \otimes v(t)| \leq \sqrt{E_{u} E_{v}}$
$\triangleright$ Normalized cross-correlation: $\left|\frac{u(t) \otimes v(t)}{\sqrt{E_{u} E_{v}}}\right| \leq 1$


## Summary

## 8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram
- Cross-Correlation: $w(t)=u(t) \otimes v(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau$
- Used to find similarities between $v(t)$ and a delayed $u(t)$
- Cross-correlation theorem: $W(f)=U^{*}(f) V(f)$
- Cauchy-Schwarz Inequality: $|u(t) \otimes v(t)| \leq \sqrt{E_{u} E_{v}}$
$\triangleright$ Normalized cross-correlation: $\left|\frac{u(t) \otimes v(t)}{\sqrt{E_{u} E_{v}}}\right| \leq 1$
- Autocorrelation: $x(t)=u(t) \otimes u(t)$


## Summary

## 8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram
- Cross-Correlation: $w(t)=u(t) \otimes v(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau$
- Used to find similarities between $v(t)$ and a delayed $u(t)$
- Cross-correlation theorem: $W(f)=U^{*}(f) V(f)$
- Cauchy-Schwarz Inequality: $|u(t) \otimes v(t)| \leq \sqrt{E_{u} E_{v}}$
$\triangleright$ Normalized cross-correlation: $\left|\frac{u(t) \otimes v(t)}{\sqrt{E_{u} E_{v}}}\right| \leq 1$
- Autocorrelation: $x(t)=u(t) \otimes u(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) u(\tau) d \tau \leq E_{u}$


## Summary

## 8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram
- Cross-Correlation: $w(t)=u(t) \otimes v(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau$
- Used to find similarities between $v(t)$ and a delayed $u(t)$
- Cross-correlation theorem: $W(f)=U^{*}(f) V(f)$
- Cauchy-Schwarz Inequality: $|u(t) \otimes v(t)| \leq \sqrt{E_{u} E_{v}}$
$\triangleright$ Normalized cross-correlation: $\left|\frac{u(t) \otimes v(t)}{\sqrt{E_{u} E_{v}}}\right| \leq 1$
- Autocorrelation: $x(t)=u(t) \otimes u(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) u(\tau) d \tau \leq E_{u}$
- Wiener-Khinchin: $X(f)=$ energy spectral density, $|U(f)|^{2}$


## Summary

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram
- Cross-Correlation: $w(t)=u(t) \otimes v(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau$
- Used to find similarities between $v(t)$ and a delayed $u(t)$
- Cross-correlation theorem: $W(f)=U^{*}(f) V(f)$
- Cauchy-Schwarz Inequality: $|u(t) \otimes v(t)| \leq \sqrt{E_{u} E_{v}}$
$\triangleright$ Normalized cross-correlation: $\left|\frac{u(t) \otimes v(t)}{\sqrt{E_{u} E_{v}}}\right| \leq 1$
- Autocorrelation: $x(t)=u(t) \otimes u(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) u(\tau) d \tau \leq E_{u}$
- Wiener-Khinchin: $X(f)=$ energy spectral density, $|U(f)|^{2}$
- Used to find periodicity in $u(t)$


## Summary

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram
- Cross-Correlation: $w(t)=u(t) \otimes v(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau$
- Used to find similarities between $v(t)$ and a delayed $u(t)$
- Cross-correlation theorem: $W(f)=U^{*}(f) V(f)$
- Cauchy-Schwarz Inequality: $|u(t) \otimes v(t)| \leq \sqrt{E_{u} E_{v}}$
$\triangleright$ Normalized cross-correlation: $\left|\frac{u(t) \otimes v(t)}{\sqrt{E_{u} E_{v}}}\right| \leq 1$
- Autocorrelation: $x(t)=u(t) \otimes u(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) u(\tau) d \tau \leq E_{u}$
- Wiener-Khinchin: $X(f)=$ energy spectral density, $|U(f)|^{2}$
- Used to find periodicity in $u(t)$
- Fourier Transform using $\omega$ :
- Continuous spectra unchanged; spectral impulses multiplied by $2 \pi$


## Summary

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram
- Cross-Correlation: $w(t)=u(t) \otimes v(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau$
- Used to find similarities between $v(t)$ and a delayed $u(t)$
- Cross-correlation theorem: $W(f)=U^{*}(f) V(f)$
- Cauchy-Schwarz Inequality: $|u(t) \otimes v(t)| \leq \sqrt{E_{u} E_{v}}$
$\triangleright$ Normalized cross-correlation: $\left|\frac{u(t) \otimes v(t)}{\sqrt{E_{u} E_{v}}}\right| \leq 1$
- Autocorrelation: $x(t)=u(t) \otimes u(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) u(\tau) d \tau \leq E_{u}$
- Wiener-Khinchin: $X(f)=$ energy spectral density, $|U(f)|^{2}$
- Used to find periodicity in $u(t)$
- Fourier Transform using $\omega$ :
- Continuous spectra unchanged; spectral impulses multiplied by $2 \pi$
- In formulae: $\int d f \rightarrow \frac{1}{2 \pi} \int d \omega ; \omega$-convolution involves an integral


## Summary

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram
- Cross-Correlation: $w(t)=u(t) \otimes v(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau$
- Used to find similarities between $v(t)$ and a delayed $u(t)$
- Cross-correlation theorem: $W(f)=U^{*}(f) V(f)$
- Cauchy-Schwarz Inequality: $|u(t) \otimes v(t)| \leq \sqrt{E_{u} E_{v}}$
$\triangleright$ Normalized cross-correlation: $\left|\frac{u(t) \otimes v(t)}{\sqrt{E_{u} E_{v}}}\right| \leq 1$
- Autocorrelation: $x(t)=u(t) \otimes u(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) u(\tau) d \tau \leq E_{u}$
- Wiener-Khinchin: $X(f)=$ energy spectral density, $|U(f)|^{2}$
- Used to find periodicity in $u(t)$
- Fourier Transform using $\omega$ :
- Continuous spectra unchanged; spectral impulses multiplied by $2 \pi$
- In formulae: $\int d f \rightarrow \frac{1}{2 \pi} \int d \omega ; \omega$-convolution involves an integral

For further details see RHB Chapter 13.1

## Spectrogram

8: Correlation

- Cross-Correlation
- Signal Matching
- Cross-corr as Convolution
- Normalized Cross-corr
- Autocorrelation
- Autocorrelation example
- Fourier Transform Variants
- Scale Factors
- Summary
- Spectrogram

Spectrogram of "Merry Christmas" spoken by Mike Brookes (..$)$


