\triangleright 8: Correlation

Cross-Correlation

Signal Matching
Cross-corr as
Convolution
Normalized Cross-corr
Autocorrelation
Autocorrelation
example
Fourier Transform
Variants
Scale Factors
Summary
Spectrogram

8: Correlation

Cross-Correlation

8: Correlation
D Cross-Correlation Signal Matching Cross-corr as Convolution
Normalized Cross-corr
Autocorrelation Autocorrelation example
Fourier Transform Variants
Scale Factors

Summary

Spectrogram

The cross-correlation between two signals $u(t)$ and $v(t)$ is

$$
\begin{aligned}
w(t)=u(t) \otimes v(t) \triangleq & \int_{-\infty}^{\infty} u^{*}(\tau) v(\tau+t) d \tau \\
& =\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau \quad[\text { sub: } \tau \rightarrow \tau-t]
\end{aligned}
$$

The complex conjugate, $u^{*}(\tau)$ makes no difference if $u(t)$ is real-valued but makes the definition work even if $u(t)$ is complex-valued.

Correlation versus Convolution:

$$
\begin{aligned}
& u(t) \otimes v(t)=\int_{-\infty}^{\infty} u^{*}(\tau) v(\tau+t) d \tau \\
& u(t) * v(t)=\int_{-\infty}^{\infty} u(\tau) v(t-\tau) d \tau
\end{aligned}
$$

[correlation]
[convolution]
Unlike convolution, the integration variable, τ, has the same sign in the arguments of $u(\cdots)$ and $v(\cdots)$ so the arguments have a constant difference instead of a constant sum (i.e. $v(t)$ is not time-flipped).

Notes: (a) The argument of $w(t)$ is called the "lag" (= delay of u versus v).
(b) Some people write $u(t) \star v(t)$ instead of $u(t) \otimes v(t)$.
(c) Some swap u and v and/or negate t in the integral.

It is all rather inconsistent $(\underset{)}{ }$.

Signal Matching

8: Correlation

Cross-Correlation

\triangleright Signal Matching

Cross-corr as

Convolution
Normalized Cross-corr
Autocorrelation
Autocorrelation
example
Fourier Transform

Variants

Scale Factors
Summary
Spectrogram

Cross correlation is used to find where two signals match: $u(t)$ is the test waveform.

Example 1:
$v(t)$ contains $u(t)$ with an unknown delay and added noise.
$w(t)=u(t) \otimes v(t)$ $=\int u^{*}(\tau-t) v(\tau) d t$ gives a peak at the time lag where $u(\tau-t)$ best matches $v(\tau)$; in this case at $t=450$
Example 2:
$y(t)$ is the same as $v(t)$ with more noise $z(t)=u(t) \otimes y(t)$ can still detect the correct time delay (hard for humans)

Example 3:
$p(t)$ contains $-u(t)$ so that
$q(t)=u(t) \otimes p(t)$ has a negative peak

Cross-correlation as Convolution

8: Correlation

Cross-Correlation

Signal Matching

Cross-corr as

\triangleright Convolution
Normalized Cross-corr
Autocorrelation
Autocorrelation
example
Fourier Transform

Variants

Scale Factors
Summary
Spectrogram

Correlation: $w(t)=u(t) \otimes v(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau$
If we define $x(t)=u^{*}(-t)$ then

$$
\begin{aligned}
x(t) * v(t) \triangleq & \triangleq \int_{-\infty}^{\infty} x(t-\tau) v(\tau) d \tau=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau \\
& =u(t) \otimes v(t)
\end{aligned}
$$

Fourier Transform of $x(t)$:

$$
\begin{aligned}
X(f) & =\int_{-\infty}^{\infty} x(t) e^{-i 2 \pi f t} d t=\int_{-\infty}^{\infty} u^{*}(-t) e^{-i 2 \pi f t} d t \\
& =\int_{-\infty}^{\infty} u^{*}(t) e^{i 2 \pi f t} d t=\left(\int_{-\infty}^{\infty} u(t) e^{-i 2 \pi f t} d t\right)^{*} \\
& =U^{*}(f)
\end{aligned}
$$

$$
\text { So } w(t)=x(t) * v(t) \quad \Rightarrow \quad W(f)=X(f) V(f)=U^{*}(f) V(f)
$$

Hence the Cross-correlation theorem:

$$
\begin{aligned}
w(t) & =u(t) \otimes v(t) \quad \Leftrightarrow \quad W(f)=U^{*}(f) V(f) \\
& =u^{*}(-t) * v(t)
\end{aligned}
$$

Note that, unlike convolution, correlation is not associative or commutative:

$$
v(t) \otimes u(t)=v^{*}(-t) * u(t)=u(t) * v^{*}(-t)=w^{*}(-t)
$$

Normalized Cross-correlation

8: Correlation

Cross-Correlation

Signal Matching

Cross-corr as

 Convolution
Normalized

\triangle Cross-corr
Autocorrelation Autocorrelation example
Fourier Transform Variants
Scale Factors
Summary
Spectrogram

Correlation: $w(t)=u(t) \otimes v(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau$
If we define $y(t)=u\left(t-t_{0}\right)$ for some fixed t_{0}, then $E_{y}=E_{u}$:

$$
\begin{aligned}
E_{y}=\int_{-\infty}^{\infty}|y(t)|^{2} d t= & \int_{-\infty}^{\infty}\left|u\left(t-t_{0}\right)\right|^{2} d t \\
& =\int_{-\infty}^{\infty}|u(\tau)|^{2} d \tau=E_{u} \quad\left[t \rightarrow \tau+t_{0}\right]
\end{aligned}
$$

Cauchy-Schwarz inequality: $\left|\int_{-\infty}^{\infty} y^{*}(\tau) v(\tau) d \tau\right|^{2} \leq E_{y} E_{v}$

$$
\Rightarrow\left|w\left(t_{0}\right)\right|^{2}=\left|\int_{-\infty}^{\infty} u^{*}\left(\tau-t_{0}\right) v(\tau) d \tau\right|^{2} \leq E_{y} E_{v}=E_{u} E_{v}
$$

but t_{0} was arbitrary, so we must have $|w(t)| \leq \sqrt{E_{u} E_{v}}$ for all t
We can define the normalized cross-correlation

$$
z(t)=\frac{u(t) \otimes v(t)}{\sqrt{E_{u} E_{v}}}
$$

with properties: (1) $|z(t)| \leq 1$ for all t

$$
\text { (2) }\left|z\left(t_{0}\right)\right|=1 \Leftrightarrow v(\tau)=\alpha u\left(\tau-t_{0}\right) \text { with } \alpha \text { constant }
$$

[Cauchy-Schwarz Inequality Proof]

You do not need to memorize this proof
We want to prove the Cauchy-Schwarz Inequality: $\left|\int_{-\infty}^{\infty} u^{*}(t) v(t) d t\right|^{2} \leq E_{u} E_{v}$ where $E_{u} \triangleq \int_{-\infty}^{\infty}|u(t)|^{2} d t$.
Suppose we define $w \triangleq \int_{-\infty}^{\infty} u^{*}(t) v(t) d t$. Then,

$$
\begin{aligned}
0 & \leq \int\left|E_{v} u(t)-w^{*} v(t)\right|^{2} d t & {\left[|\cdots|^{2} \text { always } \geq 0\right] } \\
& =\int\left(E_{v} u^{*}(t)-w v^{*}(t)\right)\left(E_{v} u(t)-w^{*} v(t)\right) d t & {\left[|z|^{2}=z^{*} z\right] } \\
& =E_{v}^{2} \int u^{*}(t) u(t) d t+|w|^{2} \int v^{*}(t) v(t) d t-w^{*} E_{v} \int u^{*}(t) v(t) d t-w E_{v} \int u(t) v^{*}(t) d t & \\
& =E_{v}^{2} \int|u(t)|^{2} d t+|w|^{2} \int|v(t)|^{2} d t-E_{v} w^{*} w-E_{v} w w^{*} & {[\text { definition of } w] } \\
& =E_{v}^{2} E_{u}+|w|^{2} E_{v}-2|w|^{2} E_{v}=E_{v}\left(E_{u} E_{v}-|w|^{2}\right) & {\left[|z|^{2}=z^{*} z\right] }
\end{aligned}
$$

Unless $E_{v}=0$ (in which case, $v(t) \equiv 0$ and the C-S inequality is true), we must have $|w|^{2} \leq E_{u} E_{v}$ which proves the C-S inequality.
Also, $E_{u} E_{v}=|w|^{2}$ only if we have equality in the first line, that is, $\int\left|E_{v} u(t)-w^{*} v(t)\right|^{2} d t=0$ which implies that the integrand is zero for all t.
This implies that $u(t)=\frac{w^{*}}{E_{v}} v(t)$.
So we have shown that $E_{u} E_{v}=|w|^{2}$ if and only if $u(t)$ and $v(t)$ are proportional to each other.

Autocorrelation

8: Correlation

Cross-Correlation

Signal Matching

Cross-corr as

Convolution
Normalized Cross-corr \triangleright Autocorrelation Autocorrelation example
Fourier Transform Variants
Scale Factors
Summary
Spectrogram

The correlation of a signal with itself is its autocorrelation:

$$
w(t)=u(t) \otimes u(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) u(\tau) d \tau
$$

The autocorrelation at zero lag:

$$
\begin{aligned}
w(0) & =\int_{-\infty}^{\infty} u^{*}(\tau-0) u(\tau) d \tau \\
& =\int_{-\infty}^{\infty} u^{*}(\tau) u(\tau) d \tau \\
& =\int_{-\infty}^{\infty}|u(\tau)|^{2} d \tau=E_{u}
\end{aligned}
$$

The autocorrelation at zero lag, $w(0)$, is the energy of the signal.
The normalized autocorrelation: $\quad z(t)=\frac{u(t) \otimes u(t)}{E_{u}}$

$$
\text { satisfies } z(0)=1 \text { and }|z(t)| \leq 1 \text { for any } t
$$

Wiener-Khinchin Theorem: [Cross-correlation theorem when $v(t)=u(t)$]

$$
w(t)=u(t) \otimes u(t) \quad \Leftrightarrow \quad W(f)=U^{*}(f) U(f)=|U(f)|^{2}
$$

The Fourier transform of the autocorrelation is the energy spectrum.

Autocorrelation example

8: Correlation

Cross-Correlation

Signal Matching

Cross-corr as

Convolution
Normalized Cross-corr
Autocorrelation
Autocorrelation
D example
Fourier Transform

Variants

Scale Factors
Summary
Spectrogram

Cross-correlation is used to find when two different signals are similar. Autocorrelation is used to find when a signal is similar to itself delayed.

First graph shows $s(t)$ a segment of the microphone signal from the initial vowel of "early" spoken by me. The waveform is "quasi-periodic" = "almost periodic but not quite".

Second graph shows normalized autocorrelation, $z(t)=\frac{s(t) \otimes s(t)}{E_{s}}$. $z(0)=1$ for $t=0$ since a signal always matches itself exactly. $z(t)=0.82$ for $t=6.2 \mathrm{~ms}=$ one period lag (not an exact match). $z(t)=0.53$ for $t=12.4 \mathrm{~ms}=$ two periods lag (even worse match).

Fourier Transform Variants

8: Correlation

Cross-Correlation

Signal Matching
Cross-corr as Convolution
Normalized Cross-corr
Autocorrelation
Autocorrelation
example
Fourier Transform
\triangleright Variants
Scale Factors
Summary
Spectrogram

There are three different versions of the Fourier Transform in current use.
(1) Frequency version (we have used this in lectures)
$U(f)=\int_{-\infty}^{\infty} u(t) e^{-i 2 \pi f t} d t \quad u(t)=\int_{-\infty}^{\infty} U(f) e^{i 2 \pi f t} d f$

- Used in the communications/broadcasting industry and textbooks.
- The formulae do not need scale factors of 2π anywhere.
(-) () ()
(2) Angular frequency version

$$
\widetilde{U}(\omega)=\int_{-\infty}^{\infty} u(t) e^{-i \omega t} d t \quad u(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \widetilde{U}(\omega) e^{i \omega t} d \omega
$$

Continuous spectra are unchanged: $\widetilde{U}(\omega)=U(f)=U\left(\frac{\omega}{2 \pi}\right)$
However δ-function spectral components are multiplied by 2π so that

$$
U(f)=\delta\left(f-f_{0}\right) \quad \Rightarrow \quad \widetilde{U}(\omega)=2 \pi \times \delta\left(\omega-2 \pi f_{0}\right)
$$

- Used in most signal processing and control theory textbooks.
(3) Angular frequency + symmetrical scale factor
$\widehat{U}(\omega)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} u(t) e^{-i \omega t} d t \quad u(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \widehat{U}(\omega) e^{i \omega t} d \omega$ In all cases $\widehat{U}(\omega)=\frac{1}{\sqrt{2 \pi}} \widetilde{U}(\omega)$
- Used in many Maths textbooks (mathematicians like symmetry)

Scale Factors

8: Correlation

Cross-Correlation

Signal Matching

Cross-corr as

Fourier Transform using Angular Frequency:

$$
\widetilde{U}(\omega)=\int_{-\infty}^{\infty} u(t) e^{-i \omega t} d t \quad u(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \widetilde{U}(\omega) e^{i \omega t} d \omega
$$

Any formula involving $\int d f$ will change to $\frac{1}{2 \pi} \int d \omega \quad[$ since $d \omega=2 \pi d f$]
Parseval's Theorem:

$$
\begin{aligned}
& \int u^{*}(t) v(t) d t=\frac{1}{2 \pi} \int \widetilde{U}^{*}(\omega) \widetilde{V}(\omega) d \omega \\
& E_{u}=\int|u(t)|^{2} d t=\frac{1}{2 \pi} \int|\widetilde{U}(\omega)|^{2} d \omega
\end{aligned}
$$

Waveform Multiplication: (convolution implicitly involves integration)

$$
w(t)=u(t) v(t) \Rightarrow \widetilde{W}(\omega)=\frac{1}{2 \pi} \widetilde{U}(\omega) * \widetilde{V}(\omega)
$$

Spectrum Multiplication: (multiplication \nRightarrow integration)

$$
w(t)=u(t) * v(t) \Rightarrow \widetilde{W}(\omega)=\widetilde{U}(\omega) \widetilde{V}(\omega)
$$

To obtain formulae for version (3) of the Fourier Transform, $\widehat{U}(\omega)$, substitute into the above formulae: $\widetilde{U}(\omega)=\sqrt{2 \pi} \widehat{U}(\omega)$.

Summary

8: Correlation

Cross-Correlation

 Signal Matching Cross-corr as ConvolutionNormalized Cross-corr
Autocorrelation
Autocorrelation
example
Fourier Transform Variants
Scale Factors
\triangleright Summary
Spectrogram

- Cross-Correlation: $w(t)=u(t) \otimes v(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) v(\tau) d \tau$
- Used to find similarities between $v(t)$ and a delayed $u(t)$
- Cross-correlation theorem: $W(f)=U^{*}(f) V(f)$
- Cauchy-Schwarz Inequality: $|u(t) \otimes v(t)| \leq \sqrt{E_{u} E_{v}}$
\triangleright Normalized cross-correlation: $\left|\frac{u(t) \otimes v(t)}{\sqrt{E_{u} E_{v}}}\right| \leq 1$
- Autocorrelation: $x(t)=u(t) \otimes u(t)=\int_{-\infty}^{\infty} u^{*}(\tau-t) u(\tau) d \tau \leq E_{u}$
- Wiener-Khinchin: $X(f)=$ energy spectral density, $|U(f)|^{2}$
- Used to find periodicity in $u(t)$
- Fourier Transform using ω :
- Continuous spectra unchanged; spectral impulses multiplied by 2π
- In formulae: $\int d f \rightarrow \frac{1}{2 \pi} \int d \omega ; \omega$-convolution involves an integral

$$
\text { For further details see RHB Chapter } 13.1
$$

Spectrogram

8: Correlation

Cross-Correlation

 Signal Matching
Cross-corr as

 ConvolutionNormalized Cross-corr
Autocorrelation
Autocorrelation
example
Fourier Transform Variants
Scale Factors
Summary
\triangleright Spectrogram

Spectrogram of "Merry Christmas" spoken by Mike Brookes

[Complex Fourier Series]

All waveforms have period $T=1 . \delta_{\text {condition }}$ is 1 whenever "condition" is true and otherwise 0 .

Waveform	$x(t)$ for $\|t\|<0.5$	X_{n}
Square wave	$2 \delta_{\|t\|<0.25}-1$	$\frac{2 \sin 0.5 \pi n}{\pi n} \times \delta_{n \neq 0}$
Pulse of width d	$\delta_{\|t\|<0.5 d}$	$\frac{\sin \pi d n}{\pi n}$
Sawtooth wave	$2 t$	$\frac{i(-1)^{n}}{\pi n} \times \delta_{n \neq 0}$
Triangle wave	$1-4\|t\|$	$\frac{2\left(1-(-1)^{n}\right)}{\pi^{2} n^{2}}$

[Fourier Transform Properties A]

You need not memorize these properties. All integrals are $\int_{-\infty}^{\infty}$

Property	$x(t)$	$X f)$
Forward	$x(t)$	$\int x(t) e^{-i 2 \pi f t} d t$
Inverse	$\int X(f) e^{i 2 \pi f t} d f$	$X(f)$
Spectral Zero	$\int x(t) d t$	$=X(0)$
Temporal Zero	$x(0)$	$=\int X(f) d f$
Duality	$X(t)$	$x(-f)$
Reversal	$x(-t)$	$X(-f)$
conjugate	$x^{*}(t)$	$X^{*}(-f)$
Temporal Derivative	$\frac{d^{n}}{d t^{n}} x(t)$	$(i 2 \pi f)^{n} X(f)$
Spectral Derivative	$(-i 2 \pi t)^{n} x(t)$	$\frac{d^{n}}{d f^{n}} X(f)$
Integral	$\int_{-\infty}^{t} x(\tau) d \tau$	$\frac{1}{i 2 \pi f} X(f)+\frac{1}{2} X(0) \delta(f)$
Scaling	$x(\alpha t+\beta)$	$\frac{1}{\alpha \alpha} e^{\frac{2 i \pi f \beta}{\alpha}} X\left(\frac{f}{\alpha}\right)$
Time Shift	$x(t-T)$	$X(f) e^{-i 2 \pi f T}$
Frequency Shift	$x(t) e^{i 2 \pi F t}$	$X(f-F)$

[Fourier Transform Properties B]

You need not memorize these properties. All integrals are $\int_{-\infty}^{\infty}$

Property	$x(t)$	$X f)$
Linearity	$\alpha x(t)+\beta y(t)$	$\alpha X(f)+\beta Y(f)$
Multiplication	$x(t) y(t)$	$X(f) * Y(f)$
Convolution	$x(t) * y(t)$	$X(f) Y(f)$
Correlation	$x(t) \otimes y(t)$	$X^{*}(f) Y(f)$
Autocorrelation	$x(t) \otimes x(t)$	$\|X(f)\|^{2}$
Parseval or	$\int x^{*}(t) y(t) d t$	$=\int X^{*}(f) Y(f) d f$
Plancherel	$E_{x}=\int\|x(t)\|^{2} d t$	$=\int\|X(f)\|^{2} d f$
Repetition	$\sum_{n} x(t-n T)$	$\left\|\frac{1}{T}\right\| \sum_{k} X\left(\frac{k}{T}\right) \delta\left(f-\frac{k}{T}\right)$
Sampling	$\sum_{n} x(n T) \delta(t-n T)$	$\left\|\frac{1}{T}\right\| \sum_{k} X\left(f-\frac{k}{T}\right)$
Modulation	$x(t) \cos (2 \pi F t)$	$\frac{1}{2} X(f-F)+\frac{1}{2} X(f+F)$

Convolution: $x(t) * y(t)=\int x(\tau) y(t-\tau) d \tau$
Cross-correlation: $x(t) \otimes y(t)=\int x^{*}(\tau) y(\tau+t) d \tau=\int x^{*}(\tau-t) y(\tau) d \tau$

[Fourier Transform Pairs]

You need not memorize these pairs.

$x(t)$	$X(f)$	$x(t)$	$X(f)$
$\delta(t)$	1	1	$\delta(f)$
$\operatorname{rect}(t)$	$\frac{\sin (\pi f)}{\pi f}$	$\frac{\sin (t)}{t}$	$\pi \operatorname{rect}(\pi f)$
$\operatorname{tri}(t)$	$\frac{\sin ^{2}(\pi f)}{\pi^{2} f^{2}}$	$\frac{\sin ^{2}(t)}{t^{2}}$	$\pi \operatorname{tri}(\pi f)$
$\cos (2 \pi \alpha t)$	$\frac{1}{2} \delta(f+\alpha)+\frac{1}{2} \delta(f-\alpha)$	$\sin (2 \pi \alpha t)$	$\frac{i}{2} \delta(f+\alpha)-\frac{i}{2} \delta(f-\alpha)$
$e^{-\alpha t} u(t)$	$\frac{1}{\alpha+2 \pi i f}$	$t e^{-\alpha t} u(t)$	$\frac{1}{(\alpha+2 \pi i f)^{2}}$
$e^{-\alpha\|t\|}$	$\frac{2 \alpha}{\alpha^{2}+4 \pi^{2} f^{2}}$	$e^{-\pi t^{2}}$	$e^{-\pi f^{2}}$
$\operatorname{sgn}(t)$	$\frac{1}{i \pi f}$	$u(t)$	$\frac{1}{2} \delta(f)+\frac{1}{2 \pi i f}$
$\sum_{n=-\infty}^{\infty} \delta(t-n T)$	$\left\|\frac{1}{T}\right\| \sum_{k=-\infty}^{\infty} \delta\left(f-\frac{k}{T}\right)$		

Elementary Functions:

$$
\begin{aligned}
& \operatorname{rect}(t)= \begin{cases}1, & |t|<0.5 \\
0, & \text { elsewhere }\end{cases} \\
& \operatorname{tri}(t)= \begin{cases}1-|t|, & |t|<1 \\
0, & \text { elsewhere }\end{cases} \\
& \operatorname{sgn}(t)= \begin{cases}-1, & t<0 \\
0, & t=0 \\
1, & t>0\end{cases} \\
& u(t)=\frac{1}{2}(1+\operatorname{sgn}(t))= \begin{cases}0, & x<0 \\
0.5, & x=0 \\
1, & x>0\end{cases}
\end{aligned}
$$

