Ver 3808

E1.10 Fourier Series and Transforms

Problem Sheet 1 (Lecture 1)

Key: $[A] = easy \dots [E] = hard$

Questions from RBH textbook: 4.2, 4.8.

- 1. [B] Using the geometric progression formula, evaluate $\sum_{r=1}^{5} 3^r$.
- 2. [B] Determine expressions not involving a summation for (a) $\sum_{r=1}^{10} 3x^{2r}$, (b) $\sum_{r=0}^{10} \frac{2}{x^r}$, (c) $\sum_{r=0}^R x^r y^{r-2}$, (d) $\sum_{r=0}^R (-1)^r$.
- 3. [B] In the expression $\sum_{r=1}^{5} 3^r$, make the substitution r = m + 1 and then evaluate the resultant expression.
- 4. [C] Determine a simplified expression not involving a summation for $\sum_{r=-N}^{N} e^{j\omega r}$ for $N \ge 0$.
- 5. [C] Determine a simplified expression for $\sum_{r=0}^{R-1} e^{j2\pi rR^{-1}}$ for $R \ge 1$. Ensure your answer is correct even when R = 1.
- 6. [C] Determine the value of $\sum_{n=0}^{N} \sum_{m=1}^{M} 2x^{m-n}$.
- 7. [C] If $x(t) = \sin t$, determine (a) $\langle x(t) \rangle$, (b) $\langle |x(t)| \rangle$ and (c) $\langle x^2(t) \rangle$ where $\langle \cdots \rangle$ denotes the time-average.
- 8. [C] The first two normalized Legendre polynomials are $P_0(t) = 1$ and $P_1(t) = \sqrt{3}t$. (a) Show that $\langle P_0^2(t) \rangle_{[-1,1]} = \langle P_1^2(t) \rangle_{[-1,1]} = 1$ and $\langle P_0(t)P_1(t) \rangle_{[-1,1]} = 0$ where $\langle \cdots \rangle_{[-1,1]}$ denotes the average over the interval -1 < t < 1. (b) If $P_2(t) = at^2 + bt + c$, find the coefficients a, b and c such that
 - $\left\langle P_0(t)P_2(t)\right\rangle_{[-1,1]} = \left\langle P_1(t)P_2(t)\right\rangle_{[-1,1]} = 0 \text{ and } \left\langle P_2^2(t)\right\rangle_{[-1,1]} = 1$