E1.10 Fourier Series and Transforms

Problem Sheet 2 - Solutions

1. (a) The fundamental frequency is $\frac{1000\pi}{2\pi} = 500 \,\text{Hz}$ and the period is $\frac{2\pi}{1000\pi} = 2 \,\text{ms}$.

(b) For a mixture of cosine waves, the fundamental period is the lowest common multiple (LCM) of the periods of the constituent waves. In this case the frequencies of the two waves are $500\,\mathrm{Hz}$ and $625 \,\mathrm{Hz}$ with periods 2 ms and 1.6 ms respectively. The LCM of 2 and 1.6 is 8 ms corresponding to a frequency of 125 Hz. Alternatively, you can obtain the same answer by finding the highest common factor (HCF) of the two frequencies. Notice that the addition of even a tiny amplitude at 625 Hz has quadrupled the fundamental period.

(c) The periods of the two constituent waves are here 2 ms and $\frac{2\pi}{1000} = 6.28 \dots ms$. Since the second of these is irrational, there is no LCM and the resultant waveform is not periodic at all (or equivalently its period is ∞).

2. (a) Yes. (b) No.

We have $T = 2\pi$, so $\int_0^T \left| \frac{1}{\sin t} \right| dt = 2 \int_0^\pi \frac{1}{\sin t} dt = 2 \left[\ln \left(\tan \left(0.5t \right) \right) \right]_0^\pi = 2 \ln \left(\frac{\tan 0.5\pi}{\tan 0} \right) = 2 \ln \frac{\infty}{0} = \infty.$ (c) Yes for a similar reason to the previous part since $\int_0^T \sqrt{\frac{1}{\tau}} d\tau = \left[\sqrt{\tau} \right]_0^T = \sqrt{T} < \infty.$

- (d) No since it is not periodic. (e) Yes; this function is a triangle wave with period 1.
- 3. The fundamental frequency is the highest common factor of the constituent frequencies, i.e. $2000\pi \, rad/s =$ 1 kHz. So, setting F = 1000, we have $u(t) = 1 + 2\cos(2\pi 3Ft) + 3\sin(2\pi 2Ft)$. So the Fourier coefficients are $a_0 = 2$, $b_2 = 3$, $a_3 = 2$ with all other coefficients zero.
- 4. (a) The non-zero Fourier coefficients are $a_1 = 2$ and $b_1 = -4$. (b) The non-zero complex Fourier coefficients are $U_{-1} = 1 - 2i$ and $U_1 = 1 + 2i$. We see that U_1 is exactly half the value of the phasor and that U_{-1} is the complex conjugate of U_1 .
- 5. We need to express $\cos^4 \theta$ in terms of components of the form $\cos n\theta$. We can do this by writing

$$\cos^{4} \theta = \frac{1}{16} \left(e^{i\theta} + e^{-i\theta} \right)^{4}$$

= $\frac{1}{16} \left(e^{i4\theta} + 4e^{i2\theta} + 6 + 4e^{-i2\theta} + e^{-i4\theta} \right)$
= $\frac{1}{16} \left(2\cos 4\theta + 8\cos 2\theta + 6 \right)$

From this we find that the fundamental frequency is actually $4000\pi \text{ rad/s} = 2 \text{ kHz}$ and the non-zero Fourier coefficients are therefore $a_0 = \frac{3}{4}$, $a_1 = \frac{1}{2}$ and $a_2 = \frac{1}{8}$.

6. (a) From the formulae on slide 2-11 of the notes (and observing that $F = \frac{1}{T} = \frac{1}{2}$),

$$a_n = \frac{2}{T} \int_{-1}^{1} u(t) \cos(2\pi nFt) dt$$

$$= \int_{-1}^{1} 3t \cos(\pi nt) dt$$

$$= \frac{3}{\pi^2 n^2} [\pi nt \sin(\pi nt) + \cos(\pi nt)]_{t=-1}^{1}$$

$$= 0$$

$$b_n = \int_{-1}^{1} 3t \sin(\pi nt) dt$$

$$= \frac{3}{\pi^2 n^2} [-\pi nt \cos(\pi nt) + \sin(\pi nt)]_{t=-1}^{1}$$

$$= \frac{-6}{\pi n} \cos(\pi n) = \frac{-6(-1)^n}{\pi n}$$

Note that the b_n expression applies only for $n \ge 1$. Notice also that the a_n are all zero because u(t)is a real-valued odd function and that the coefficient magnitudes are $\propto n^{-1}$ which is a characteristic of waveforms that include a discontinuity.

(b) We have $U_0 = \frac{1}{2}a_0 = 0$ and, for $n \ge 1$,

$$U_{\pm n} = \frac{1}{2} \left(a_{|n|} \mp i b_{|n|} \right) = \frac{\pm i 3 \left(-1 \right)^n}{\pi |n|}$$

from which $U_n = \frac{i3(-1)^n}{\pi n}$. Again, we note that U_n is purely imaginary because u(t) is a real-valued odd function.

(c) We can calculate the V_n directly by integrating over an interval that does not include a discontinuity.

$$V_{0} = \frac{1}{2} \int_{0}^{2} v(t) dt = \frac{1}{2} \int_{0}^{2} (t-1) dt = 0$$

for $n \neq 0$: $V_{n} = \frac{1}{2} \int_{0}^{2} v(t) e^{-i\pi nt} dt$
 $= \frac{3}{2} \int_{0}^{2} (t-1) e^{-i\pi nt} dt$
 $= \frac{3}{2\pi^{2}n^{2}} \left[(1+i\pi n (t-1)) e^{-i\pi nt} \right]_{t=0}^{2}$
 $= \frac{3i\pi n}{\pi^{2}n^{2}} = \frac{3i}{\pi n}$

An alternative way to calculate V_n is to use the time-shifting formula:

$$v(t) = u(t-1) \Rightarrow V_n = U_n e^{-i2\pi nF}$$
$$= U_n e^{-in\pi}$$
$$= (-1)^n U_n.$$

Notice that time-shifting a waveform changes the phases of the V_n but not the magnitudes.

(d) The complex Fourier transform of x(t) = 4 is just $X_0 = 4$ with all other coefficients zero. So, since the Fourier transform is linear, if w(t) = 2v(t) + x(t) we must have $W_n = 2V_n + X_n$ which means that $W_0 = 4$ and, for $n \neq 0$, $W_n = \frac{6i}{\pi n}$.

- 7. (a) $u(t) = 2.5 + 2\cos(2\pi Ft) + \sin(2\pi Ft) + 3\cos(4\pi Ft)$.
 - (b) $U_{\pm n} = \frac{1}{2} \left(a_{|n|} \mp i b_{|n|} \right)$ from which $U_{-2:2} = [1.5, 1 + 0.5i, 2.5, 1 0.5i, 1.5]$. Notice that, since u(t) is real, U_{-n} is the complex conjugate of U_{+n} .
- 8. The Fourier transform of a real-valued signal is purely real or purely imaginary if it is even or odd respectively. So we have the following: (a) real (b) imaginary (c) neither (d) real (e) neither (f) real (g) imaginary (g) imaginary.
- 9. All the even-numbered Fourier coefficients of a waveform are zero if it is anti-periodic which, in this case with T = 2, means that u(t) = -u(t-1) for $0 \le t < 1$; note that you only need to prove this relationship for half a period since the periodicity relationship, u(t) = u(t + T), then means that it applies for the other half. So we have the following ("Yes" means it is anti-periodic):
 - (a) Yes: $\sin \pi t = -\sin (\pi t \pi)$ and of course the Fourier transform has only a single component with $b_1 = 1$ or, equivalently, $X_{\pm 1} = \mp i$.
 - (b) Yes: for $0 \le t < 1$, u(t) = -t and u(t-1) = (t-1) + 1 = t = -u(t)
 - (c) No: for $0 \le t < 1$, u(t) = 1 t but $u(t-1) = (t-1) + 1 = t \ne -u(t)$. Note however that v(t) = u(t) 0.5 is anti-periodic since, for $0 \le t < 1$, v(t) = u(t) 0.5 = t + 0.5 = -((1 (t-1)) 0.5) = -(u(t-1) 0.5) = -v(t-1). Thus the only non-zero even harmonic of u(t) is $U_0 = 0.5$.
 - (d) Yes: for $0 \le t < 1$, u(t) = t(1-t) and u(t-1) = (t-1)(1+(t-1)) = (t-1)t = -u(t)
 - (e) No: for $0 \le t < 1$, $u(t) = t(t^2 1)$ but $u(t 1) = (t 1)^3 (t 1) = t(t^2 3t + 2t) \ne -u(t)$.

10. (a) We note that the fundamental frequency is $F = \frac{1}{4}$.

$$U_n = \frac{1}{4} \int_0^1 e^{-i0.5\pi nt} dt = \frac{i}{4 \times 0.5\pi n} \left(e^{-i0.5\pi n} - 1 \right)$$
$$= \frac{ie^{-i0.25\pi n}}{2\pi n} \left(e^{-i0.25\pi n} - e^{i0.25\pi n} \right)$$
$$= \frac{ie^{-i0.25\pi n}}{2\pi n} \times -2i \sin 0.25\pi n$$
$$= \frac{\sin 0.25\pi n}{\pi n} \times e^{-i0.25\pi n}$$

We know that $\sin \theta = 0$ whenever θ is a multiple of π , so $U_n = 0$ whenever n is a non-zero multiple of 4.

(b) By the time-shift formula $V_n = U_n e^{i2\pi nF0.5} = U_n e^{i0.25\pi n} = \frac{\sin 0.25\pi n}{\pi n}$. Since v(t) is real and symmetric, V_n will also be real and symmetric. The time-shifting affects only the phase and so $|V_n| = |U_n|$.

(c) By linearity and the time-shift formula, $W_n = V_n (1 + e^{i2\pi nF2}) = V_n (1 + e^{i\pi n}) = V_n (1 + (-1)^n)$. The quantity $(1 + (-1)^n)$ equals 2 for even values of n and 0 for odd values of n. Since in addition, $V_n = 0$ when n is a non-zero multiple of 4, W_n is only non-zero for n = 0 and for odd multiplies of 2. In fact, the period of w(t) is 2 rather than 4 which explains why $W_n = 0$ for all odd values of n. In addition, when considered with a period of 2, $(w(t) - W_0)$ is anti-periodic and so all its even Fourier coefficients will be zero.