E1.10 Fourier Series and Transforms

Problem Sheet 3 (Lectures 4, 5)

Key: $[\mathrm{A}]=$ easy $. . .[\mathrm{E}]=$ hard
Questions from RBH textbook: 12.19, 12.23, 12.25.

1. [C] (a) Determine the fundamental frequency, the Fourier coefficients and the complex Fourier coefficients of $u(t)=\cos ^{2} t$.
(b) Determine the power, $P_{u}=\left\langle u^{2}(t)\right\rangle$ where $\langle\cdots\rangle$ denotes the time average. Hint: $\cos ^{4} t=$ $\frac{1}{8} \cos 4 t+\frac{1}{2} \cos 2 t+\frac{3}{8}$.
(c) Show that Parseval's theorem applies: $P_{u}=\sum_{n=-\infty}^{\infty}\left|U_{n}\right|^{2}=\frac{1}{4} a_{0}^{2}+\frac{1}{2} \sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right)$.
2. [C] The even function $u(t)$ with period $T=1$ is defined in the region $|t| \leq \frac{1}{2}$ by $u(t)= \begin{cases}a^{-1} & |t| \leq \frac{a}{2} \\ 0 & |t|>\frac{a}{2}\end{cases}$ where $0<a<1$.
(a) Determine the complex Fourier coefficients, U_{n}.
(b) Explain why U_{0} does not depend on a.
(c) Show that $\sum_{n=-\infty}^{\infty}\left(\frac{\sin a n \pi}{a n \pi}\right)^{2}=\frac{1}{a}$.
3. [C] Determine the fundamental frequency and the complex Fourier Series coefficients of $x(t)=$ $(6+4 \cos 8 \pi t) \cos 20 \pi t$ in two ways: (a) by expanding our the product using trigonometrical formulae and (b) by convolving the Fourier coefficients of the two factors.
4. [C] (a) Give the complex Fourier coefficients, U_{n}, if $u(t)=\cos t$. (b) Show, by using the convolution theorem, that $v(t)=u^{2}(t)=\frac{1}{2} \cos 2 t+\frac{1}{2}$. (c) Show, by using the convolution theorem again that $w(t)=v^{2}(t)=u^{4}(t)=\frac{1}{8} \cos 4 t+\frac{1}{2} \cos 2 t+\frac{3}{8}$.
5. [C] Suppose $u(t)=\sin t$ and $v(t)=\left\{\begin{array}{ll}1 & 0 \leq t<\pi \\ 0 & \pi \leq t<2 \pi\end{array}\right.$ both with period $T=2 \pi$.
(a) Determine the complex Fourier coefficients U_{n} and V_{n}.
(b) If $w(t)=u(t) v(t)$, determine $W_{n}=U_{n} * V_{n}$ by convolving U_{n} and V_{n}.
6. [B] The waveform $u(t)$ has period $T=1$ and equals $u(t)=4 t-1$ for $0 \leq t<1$. If $u_{N}(t)=$ $\sum_{n=-N}^{N} U_{n} e^{i 2 \pi n t}$ estimate, for large N, the minimum value and maximum value of $u_{N}(t)$ and also the value of $u_{N}(0)$.
7. [B] The waveform $u(t)$ has period $T=1$. Estimate how rapidly U_{n} will decrease with $|n|$ when $u(t)$ in the range $0 \leq t<1$ is given by
(a) t,
(b) t^{2},
(c) $t(1-t)$,
(d) $t^{2}(1-t)^{2}$,
(e) $2 t^{3}-3 t^{2}+t+1$
8. [C] The waveform $u(t)$ has period $T_{u}=1$ and satisfies $u(t)=\exp t$ for $0 \leq t<1$. The waveform $v(t)$ has period $T_{v}=2$ and satisfies $v(t)=\exp |t|$ for $-1 \leq t<1$.
(a) Find expressions for the complex Fourier coefficients U_{n} and V_{n}.
(b) Calculate the average powers $\left\langle u^{2}(t)\right\rangle$ and $\left\langle v^{2}(t)\right\rangle$ and also those of $\left\langle u_{2}^{2}(t)\right\rangle$ and $\left\langle v_{2}^{2}(t)\right\rangle$ where $u_{N}(t)$ is the waveform formed by summing harmonics $-N$ to $+N$.
(c) Determine the average error powers $\left\langle\left(u(t)-u_{2}(t)\right)^{2}\right\rangle$ and $\left\langle\left(v(t)-v_{2}(t)\right)^{2}\right\rangle$.
