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E1.10 Fourier Series and Transforms
Problem Sheet 3 - Solutions

. (a) We have u(t) = cos®t = 3 + 3 cos 2t. So the fundamental period is T = 7 and the fundamental

frequency is F' = T = % The Fourier coefficients are ag = 1 and a1 = %, so the complex Fourier

coefficients are Uy = %, U_1 =U; ==

(b) P, =% [ cost tdt = 55— [12t + 881n2t—|—sm4t] = (12r+0+0) =

2 2 2

© X2 U= () + ()24 (1) =2 Also L2+ 152 (a2 +82) = le%%x (1) =2
Note that the formula for Parseval’s theorem is much more elegant and memorable when using
complex Fourier coefficients.

2. (a) We have

sin anm

anm

Note that U, is real-valued and even as expected since u(t) is real-valued and even.

(b) From the formula Uy = Sinent

anr | o Put this is not defined so we either determine Uy directly

sin anm

T
from the original integral as Uy = % [ 2r u(t)dt =1 or else as a limit: Uy = lim,,_o oant. We can
2 .
find this limit using L’Hopital’s rule: lim,, o S22 = =245 =1 or, equivalently, by using
sin anm

the small angle approximation, sinz ~ x, which is exact for x = 0 and gives Uy = lim,,_q L =
4B — 1. It is always true that Uy = (u (t)) so since the average value of u(t) is 1 for all values of q,

1t follows that Uy will not depend on a.

(c) We can calculate

(lu@)P) =

So, by Parseval’s theorem, we know that

oo

oo . 2
9 sin wnm
>l = % ()

(o)) = -

3. (a) Expanding the product gives z(t) = 6cos 207t + 4 cos 8nt cos 20mt = 6 cos 207t + 2 cos 127t +
2 cos28wt. The fundamental frequency is the HCF of the frequencies of these three components (or,
equivalently, of the original two components) and equals 2Hz (or 47w rad/s). The three frequency
components ar therefore at 5, 3 and 7 times the fundamental frequency giving the coefficient set:
X_747=11,0,3,0,1,0,0,0,0,0, 1, 0, 3, 0, 1]. Note that since x(¢t) is even, the coefficients are
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are symmetrical around Xy which is underlined.

(b) We can write z(t) = u(t)v(t) where u(t) = 6 + 4 cos 87t and v(t) = cos 207t. Using the funda-
mental frequency of the output (i.e. 2Hz), the coeflicients of u(t) and v(t) are U_2.2 = [2, 0, 6, 0, 2]
and V_5.5 = [0.5,0,0,0,0,0, 0,0, 0, 0, 0.5]. To convolve these, we replace each non-zero entry in
V_5.5 with a complete copy of U_s.5 scaled by the corresponding entry of V_5.5. This gives the same
coeflicients as in the previous part.

4. (a) The only non-zero coefficients are Uy; = 0.5. (b) Convolving U,, with itself gives Vis = 0.25
and Vo = 0.25 + 0.25 = 0.5. Thinverse Fourier transform gives v(t) = 1 cos2t + 1 as required.
(c) Convolving V,,with itself gives W4 = 0.25% = 0.0625, Wis = 0.5 x 0.25 + 0.25 x 0.5 = 0.25 and
Wy = 0.252 +0.5% + 0.25%2 = 0.375. Taking the inverse Fourier transform gives the required answer.

5. (a) U_1 = % and Uy = 5%, For V,, we write

1 T 1
Vo = — 0y = =
0 277/0 ¢ 2
1 " —int
forn#0:V, = — e ""dt
2T 0
_ L —int]™
- onm le ]0
i —inmT
- 1
2nm (e )
)
= ((-1)" -1
(1) 1)
;—Tf nodd
= 0 neven,n#0
% n=>0

Note that, except for its DC component of Vy = %, v(t) is a real-valued, odd, anti-periodic function
and therefore has purely imaginary coefficients with all even coefficients (except Vj) equal to zero.

(b) From the notes (slide 4-5) the convolution is defined by W,, = U, *V,, = V,,xU, = > > Ve Unm.

m=—o00
Since U,, = 0 except for m = =41, the infinite sum actually only has two non-zero terms and

W, =U1Vp1+U_ 1V = % (Vag1 — Vi—1). If nis even, then n+1 and n—1 are both odd so, using
the formula for V,, given above, W,, = % (Vag1 = Vior) = % (ﬁ — %) =1 (L — L) —

n—1)m 27 \ n+1 n—1
L ( ~2 ) = ﬁ If n is odd then n + 1 and n — 1 are both even and V,,41 and V,,_; are both

27 \ n2—1 n2—1
zero unless n + 1 or n — 1 equals zero, i.e. unless n = £1. So we have Wy = §(=Vp) = 7* and

W_1 =% (Vp) = £. We can combine all these results to give

0 nodd, n # £1
W, =S n =+l
ﬁ neven
6. We have u(0—) = u(1—) = 3 but u(0+) = —1 so there is a discontinuity at ¢ = 0. Therefore

un(0) — %_1)) = 1. Notice that the actual value defined for «(0) = 0 has no affect on this answer.
Due to Gibbs phenomenon, uy () will undershoot and overshoot the discontinuity by about 9% of
the discontinuity height: 3 — (—1) = 4. So 0.09 x4 = 0.36. So the maximum value of uy(t) will be
3.36 and the minimum value will be —1.36.

7. (a) u(0) =0 but u(1) = 1 so the waveform has a discontinuity and the coefficients, U,,, will decrease
o [n| 7t
(b) w(0) = 0 but u(1) = 1 so the waveform again has a discontinuity and the coefficients, U,,, will
decrease o |n| "

(¢) u(0) = u(1) = 0 but «/(0) # /(1) so coefficients, U,,, will decrease o |n| 2.
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(d) The first non-equal derivative is u”(0) # u”(1) so coefficients, U,,, will decrease o |n| .

(e) u(0) = u(1) =1 and v/(0) = v/(1) = 1. The first non-equal derivative is —6 = v (0) # v”(1) =6
so coefficients, U,, will decrease o |n| >,

1 s 1 o s 1 s
8. (a) U, = %u o ete—i2mnFut gy — f() 6(1 127rn)tdt: 1_1‘1271—71 [6(1 errn)t]t:O: 1_1‘127771 (6(1 i2wn) _ 1)
=1+ (exe @™ —1)=—L_— (e—1)= %5—. Note that we use the fact that e=**"" =1 for

any integer n.

V, = T% fi1 eltl=izmnFutgy — 1 (fgl e—te—imntgs | fol etefi'n'ntdt)

=3 (s (1= ) g (0 1))
=3 (= = ex (1)) 4 e (e x (<) = 1)
= (_1)56_1 <1+17m + 1_17”1) = (_1);‘3_1 X 1+§2n2 = (;2:22_21. We see that this is real-symmetric

(because v(t) is real-symmetric) and that it decays oc n~2 because v(t) is continuous but has gradient
discontinuities at t = 0 and ¢ = 1. ) ,
(b) (u2(t)) = = [ ()’ dt= [} e*dt= 1L [¢*],_ = <5 = 3.1945.
(v3(t)) = (u*(t)) = L;l since reflecting a waveform in time does not affect its power.
2 2 2 2
(W3 (1) = 3%, |Unl” = U§ + 2|01 [ + 2|0y
= 1.71832 + 2 (0.27012 + 0.1363%) = 2.9525 + 0.1459 + 0.0372 = 3.1355.

(3(1) = 225 |Val* = V§ +2 VA" + 2| Vaf*
= 1.7183% + 2 (0.34212 + 0.04247) = 2.9525 + 0.2340 + 0.0036 = 3.1901.

u(t) u(t)
2 g2
=
1 ‘ ‘ 1

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

lu,O

We see that, for the same number of harmonics, va(t) fits the exponential much better than us(t)
over the range 0 < ¢ < 1 and that it includes much more of the energy of wu(t).

(¢) We can use Parseval’s theorem to calculate the power of the error, <(u(t) —uQ(t))2>. We
know that u(t) = 7% U™ and that ug(t) = 3272 U,e’?™ | so it follows that u(t) — ug(t) =
> nj>2 Un€™"". Applying Parseval’s theorem to these threee expressions gives (u?(t)) = ST,
(u3(t)) = J_rg |U,|> and <(u(t) — ug(t))2> =D |n|>2 U, |>. By subtracting the first two of these
equations, we can see that (u?(t))—(u3(t)) = <(u(t) — ug (t))2> and so, from part (b), <(u(t) - uQ(t))2> =
(u2(t)) — (u(t)) = 3.1945 — 3.1355 = 0.0590. Likewise <(v(t) —’Ug(t))2> — 3.1945 — 3.1901 =
0.0044. Note that, for arbitrary functions z(t) and y(¢) having the same period, the relationship

<(m(t) — y(t))2> = (22(t)) — (y2(t)) is only true if (z(t)y(t)) = 0 or, equivalently, if they have
non-overlapping Fourier series (i.e. X,, and Y,, are never both non-zero for any n).
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