E1.10 Fourier Series and Transforms

Problem Sheet 3 - Solutions

1. (a) We have $u(t)=\cos ^{2} t=\frac{1}{2}+\frac{1}{2} \cos 2 t$. So the fundamental period is $T=\pi$ and the fundamental frequency is $F=\frac{1}{T}=\frac{1}{\pi}$. The Fourier coefficients are $a_{0}=1$ and $a_{1}=\frac{1}{2}$, so the complex Fourier coefficients are $U_{0}=\frac{1}{2}, U_{-1}=U_{1}=\frac{1}{4}$.
(b) $P_{u}=\frac{1}{\pi} \int_{0}^{\pi} \cos ^{4} t d t=\frac{1}{32 \pi}[12 t+8 \sin 2 t+\sin 4 t]_{0}^{\pi}=\frac{1}{32 \pi}(12 \pi+0+0)=\frac{3}{8}$.
(c) $\sum_{n=-\infty}^{\infty}\left|U_{n}\right|^{2}=\left(\frac{1}{4}\right)^{2}+\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{4}\right)^{2}=\frac{3}{8}$. Also $\frac{1}{4} a_{0}^{2}+\frac{1}{2} \sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right)=\frac{1}{4} \times 1^{2}+\frac{1}{2} \times\left(\frac{1}{2}\right)^{2}=\frac{3}{8}$. Note that the formula for Parseval's theorem is much more elegant and memorable when using complex Fourier coefficients.
2. (a) We have

$$
\begin{aligned}
U_{n} & =\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} u(t) e^{-i 2 \pi n F t} d t \\
& =\frac{1}{1} \int_{-\frac{a}{2}}^{\frac{a}{2}} a^{-1} e^{-i 2 \pi n t} d t \\
& =\frac{i}{2 a n \pi}\left[e^{-i 2 \pi n t}\right]_{t=-\frac{a}{2}}^{\frac{a}{2}} \\
& =\frac{-i}{2 a n \pi}\left(e^{i \pi n a}-e^{-i \pi n a}\right) \\
& =\frac{\sin a n \pi}{a n \pi}
\end{aligned}
$$

Note that U_{n} is real-valued and even as expected since $u(t)$ is real-valued and even.
(b) From the formula $U_{0}=\left.\frac{\sin a n \pi}{a n \pi}\right|_{n=0}$ but this is not defined so we either determine U_{0} directly from the original integral as $U_{0}=\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} u(t) d t=1$ or else as a limit: $U_{0}=\lim _{n \rightarrow 0} \frac{\sin a n \pi}{a n \pi}$. We can find this limit using L'Hôpital's rule: $\lim _{n \rightarrow 0} \frac{\sin a n \pi}{a n \pi}=\left.\frac{a \pi \cos a n \pi}{a \pi}\right|_{n=0}=1$ or, equivalently, by using the small angle approximation, $\sin x \approx x$, which is exact for $x=0$ and gives $U_{0}=\lim _{n \rightarrow 0} \frac{\sin a n \pi}{a n \pi}=$ $\frac{a n \pi}{a n \pi}=1$. It is always true that $U_{0}=\langle u(t)\rangle$ so since the average value of $u(t)$ is 1 for all values of a, it follows that U_{0} will not depend on a.
(c) We can calculate

$$
\begin{aligned}
\left.\left.\langle | u(t)\right|^{2}\right\rangle & =\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} u^{2}(t) d t \\
& =\int_{-\frac{w}{2}}^{\frac{w}{2}} w^{-2} d t \\
& =\frac{1}{w}
\end{aligned}
$$

So, by Parseval's theorem, we know that

$$
\begin{aligned}
\sum_{n=-\infty}^{\infty}\left|U_{n}\right|^{2} & =\sum_{n=-\infty}^{\infty}\left(\frac{\sin w n \pi}{w n \pi}\right)^{2} \\
& \left.=\left.\langle | u(t)\right|^{2}\right\rangle=\frac{1}{w}
\end{aligned}
$$

3. (a) Expanding the product gives $x(t)=6 \cos 20 \pi t+4 \cos 8 \pi t \cos 20 \pi t=6 \cos 20 \pi t+2 \cos 12 \pi t+$ $2 \cos 28 \pi t$. The fundamental frequency is the HCF of the frequencies of these three components (or, equivalently, of the original two components) and equals 2 Hz (or $4 \pi \mathrm{rad} / \mathrm{s}$). The three frequency components ar therefore at 5,3 and 7 times the fundamental frequency giving the coefficient set: $X_{-7:+7}=[1,0,3,0,1,0,0, \underline{0}, 0,0,1,0,3,0,1]$. Note that since $x(t)$ is even, the coefficients are
are symmetrical around X_{0} which is underlined.
(b) We can write $x(t)=u(t) v(t)$ where $u(t)=6+4 \cos 8 \pi t$ and $v(t)=\cos 20 \pi t$. Using the fundamental frequency of the output (i.e. 2 Hz), the coefficients of $u(t)$ and $v(t)$ are $U_{-2: 2}=[2,0, \underline{6}, 0,2]$ and $V_{-5: 5}=[0.5,0,0,0,0, \underline{0}, 0,0,0,0,0.5]$. To convolve these, we replace each non-zero entry in $V_{-5: 5}$ with a complete copy of $U_{-2: 2}$ scaled by the corresponding entry of $V_{-5: 5}$. This gives the same coefficients as in the previous part.
4. (a) The only non-zero coefficients are $U_{ \pm 1}=0.5$. (b) Convolving U_{n} with itself gives $V_{ \pm 2}=0.25$ and $V_{0}=0.25+0.25=0.5$. Thinverse Fourier transform gives $v(t)=\frac{1}{2} \cos 2 t+\frac{1}{2}$ as required. (c) Convolving V_{n} with itself gives $W_{ \pm 4}=0.25^{2}=0.0625, W_{ \pm 2}=0.5 \times 0.25+0.25 \times 0.5=0.25$ and $W_{0}=0.25^{2}+0.5^{2}+0.25^{2}=0.375$. Taking the inverse Fourier transform gives the required answer.
5. (a) $U_{-1}=\frac{i}{2}$ and $U_{1}=\frac{-i}{2}$. For V_{n} we write

$$
\begin{aligned}
V_{0} & =\frac{1}{2 \pi} \int_{0}^{\pi} e^{-i 0 t} d t=\frac{1}{2} \\
\text { for } n \neq 0: V_{n} & =\frac{1}{2 \pi} \int_{0}^{\pi} e^{-i n t} d t \\
& =\frac{i}{2 n \pi}\left[e^{-i n t}\right]_{0}^{\pi} \\
& =\frac{i}{2 n \pi}\left(e^{-i n \pi}-1\right) \\
& =\frac{i}{2 n \pi}\left((-1)^{n}-1\right) \\
& = \begin{cases}\frac{-i}{n \pi} & n \text { odd } \\
0 & n \text { even, } n \neq 0 \\
\frac{1}{2} & n=0\end{cases}
\end{aligned}
$$

Note that, except for its DC component of $V_{0}=\frac{1}{2}, v(t)$ is a real-valued, odd, anti-periodic function and therefore has purely imaginary coefficients with all even coefficients (except V_{0}) equal to zero.
(b) From the notes (slide 4-5) the convolution is defined by $W_{n}=U_{n} * V_{n}=V_{n} * U_{n}=\sum_{m=-\infty}^{\infty} V_{n-m} U_{m}$. Since $U_{m}=0$ except for $m= \pm 1$, the infinite sum actually only has two non-zero terms and $W_{n}=U_{1} V_{n-1}+U_{-1} V_{n+1}=\frac{i}{2}\left(V_{n+1}-V_{n-1}\right)$. If n is even, then $n+1$ and $n-1$ are both odd so, using the formula for V_{n} given above, $W_{n}=\frac{i}{2}\left(V_{n+1}-V_{n-1}\right)=\frac{i}{2}\left(\frac{-i}{(n+1) \pi}-\frac{-i}{(n-1) \pi}\right)=\frac{1}{2 \pi}\left(\frac{1}{n+1}-\frac{1}{n-1}\right)=$ $\frac{1}{2 \pi}\left(\frac{-2}{n^{2}-1}\right)=\frac{-1}{\left(n^{2}-1\right) \pi}$. If n is odd then $n+1$ and $n-1$ are both even and V_{n+1} and V_{n-1} are both zero unless $n+1$ or $n-1$ equals zero, i.e. unless $n= \pm 1$. So we have $W_{1}=\frac{i}{2}\left(-V_{0}\right)=\frac{-i}{4}$ and $W_{-1}=\frac{i}{2}\left(V_{0}\right)=\frac{i}{4}$. We can combine all these results to give

$$
W_{n}= \begin{cases}0 & n \text { odd, } n \neq \pm 1 \\ \frac{-i}{4 n} & n= \pm 1 \\ \frac{-1}{\left(n^{2}-1\right) \pi} & n \text { even }\end{cases}
$$

6. We have $u(0-)=u(1-)=3$ but $u(0+)=-1$ so there is a discontinuity at $t=0$. Therefore $u_{N}(0) \rightarrow \frac{3+(-1))}{2}=1$. Notice that the actual value defined for $u(0)=0$ has no affect on this answer. Due to Gibbs phenomenon, $u_{N}(t)$ will undershoot and overshoot the discontinuity by about 9% of the discontinuity height: $3-(-1)=4$. So $0.09 * 4=0.36$. So the maximum value of $u_{N}(t)$ will be 3.36 and the minimum value will be -1.36 .
7. (a) $u(0)=0$ but $u(1)=1$ so the waveform has a discontinuity and the coefficients, U_{n}, will decrease $\propto|n|^{-1}$.
(b) $u(0)=0$ but $u(1)=1$ so the waveform again has a discontinuity and the coefficients, U_{n}, will decrease $\propto|n|^{-1}$.
(c) $u(0)=u(1)=0$ but $u^{\prime}(0) \neq u^{\prime}(1)$ so coefficients, U_{n}, will decrease $\propto|n|^{-2}$.
(d) The first non-equal derivative is $u^{\prime \prime}(0) \neq u^{\prime \prime}(1)$ so coefficients, U_{n}, will decrease $\propto|n|^{-3}$.
(e) $u(0)=u(1)=1$ and $u^{\prime}(0)=u^{\prime}(1)=1$. The first non-equal derivative is $-6=u^{\prime \prime}(0) \neq u^{\prime \prime}(1)=6$ so coefficients, U_{n}, will decrease $\propto|n|^{-3}$.
8. (a) $U_{n}=\frac{1}{T_{u}} \int_{0}^{1} e^{t} e^{-i 2 \pi n F_{u} t} d t=\int_{0}^{1} e^{(1-i 2 \pi n) t} d t=\frac{1}{1-i 2 \pi n}\left[e^{(1-i 2 \pi n) t}\right]_{t=0}^{1}=\frac{1}{1-i 2 \pi n}\left(e^{(1-i 2 \pi n)}-1\right)$
$=\frac{1}{1-i 2 \pi n}\left(e \times e^{-i 2 \pi n}-1\right)=\frac{1}{1-i 2 \pi n}(e-1)=\frac{e-1}{1-i 2 \pi n}$. Note that we use the fact that $e^{-i 2 \pi n}=1$ for any integer n.
$V_{n}=\frac{1}{T_{v}} \int_{-1}^{1} e^{|t|} e^{-i 2 \pi n F_{v} t} d t=\frac{1}{2}\left(\int_{-1}^{0} e^{-t} e^{-i \pi n t} d t+\int_{0}^{1} e^{t} e^{-i \pi n t} d t\right)$
$=\frac{1}{2}\left(\frac{1}{-1-i \pi n}\left(1-e^{-(-1-i \pi n)}\right)+\frac{1}{1-i \pi n}\left(e^{(1-i \pi n)}-1\right)\right)$
$=\frac{1}{2}\left(\frac{1}{-1-i \pi n}\left(1-e \times(-1)^{n}\right)+\frac{1}{1-i \pi n}\left(e \times(-1)^{n}-1\right)\right)$
$=\frac{(-1)^{n} e-1}{2}\left(\frac{1}{1+i \pi n}+\frac{1}{1-i \pi n}\right)=\frac{(-1)^{n} e-1}{2} \times \frac{2}{1+\pi^{2} n^{2}}=\frac{(-1)^{n} e-1}{1+\pi^{2} n^{2}}$. We see that this is real-symmetric (because $v(t)$ is real-symmetric) and that it decays $\propto n^{-2}$ because $v(t)$ is continuous but has gradient discontinuities at $t=0$ and $t=1$.
(b) $\left\langle u^{2}(t)\right\rangle=\frac{1}{T_{u}} \int_{0}^{1}\left(e^{t}\right)^{2} d t=\int_{0}^{1} e^{2 t} d t=\frac{1}{2}\left[e^{2 t}\right]_{t=0}^{1}=\frac{e^{2}-1}{2}=3.1945$.
$\left\langle v^{2}(t)\right\rangle=\left\langle u^{2}(t)\right\rangle=\frac{e^{2}-1}{2}$ since reflecting a waveform in time does not affect its power.
$\left\langle u_{2}^{2}(t)\right\rangle=\sum_{-2}^{2}\left|U_{n}\right|^{2}=U_{0}^{2}+2\left|U_{1}\right|^{2}+2\left|U_{2}\right|^{2}$
$=1.7183^{2}+2\left(0.2701^{2}+0.1363^{2}\right)=2.9525+0.1459+0.0372=3.1355$.
$\left\langle v_{2}^{2}(t)\right\rangle=\sum_{-2}^{2}\left|V_{n}\right|^{2}=V_{0}^{2}+2\left|V_{1}\right|^{2}+2\left|V_{2}\right|^{2}$
$=1.7183^{2}+2\left(0.3421^{2}+0.0424^{2}\right)=2.9525+0.2340+0.0036=3.1901$.

We see that, for the same number of harmonics, $v_{2}(t)$ fits the exponential much better than $u_{2}(t)$ over the range $0 \leq t<1$ and that it includes much more of the energy of $u(t)$.
(c) We can use Parseval's theorem to calculate the power of the error, $\left\langle\left(u(t)-u_{2}(t)\right)^{2}\right\rangle$. We know that $u(t)=\sum_{-\infty}^{+\infty} U_{n} e^{i 2 \pi n t}$ and that $u_{2}(t)=\sum_{-2}^{+2} U_{n} e^{i 2 \pi n t}$, so it follows that $u(t)-u_{2}(t)=$ $\sum_{|n|>2} U_{n} e^{i 2 \pi n t}$. Applying Parseval's theorem to these threee expressions gives $\left\langle u^{2}(t)\right\rangle=\sum_{-\infty}^{+\infty}\left|U_{n}\right|^{2}$, $\left\langle u_{2}^{2}(t)\right\rangle=\sum_{-2}^{+2}\left|U_{n}\right|^{2}$ and $\left\langle\left(u(t)-u_{2}(t)\right)^{2}\right\rangle=\sum_{|n|>2}\left|U_{n}\right|^{2}$. By subtracting the first two of these equations, we can see that $\left\langle u^{2}(t)\right\rangle-\left\langle u_{2}^{2}(t)\right\rangle=\left\langle\left(u(t)-u_{2}(t)\right)^{2}\right\rangle$ and so, from part $(\mathrm{b}),\left\langle\left(u(t)-u_{2}(t)\right)^{2}\right\rangle=$ $\left\langle u^{2}(t)\right\rangle-\left\langle u_{2}^{2}(t)\right\rangle=3.1945-3.1355=0.0590$. Likewise $\left\langle\left(v(t)-v_{2}(t)\right)^{2}\right\rangle=3.1945-3.1901=$ 0.0044. Note that, for arbitrary functions $x(t)$ and $y(t)$ having the same period, the relationship $\left\langle(x(t)-y(t))^{2}\right\rangle=\left\langle x^{2}(t)\right\rangle-\left\langle y^{2}(t)\right\rangle$ is only true if $\langle x(t) y(t)\rangle=0$ or, equivalently, if they have non-overlapping Fourier series (i.e. X_{n} and Y_{n} are never both non-zero for any n).

