E1.10 Fourier Series and Transforms

Problem Sheet 4 - Solutions

1. $\int_{-\infty}^{\infty} \delta(t-3) t^{3} e^{-t} d t=\left[t^{3} e^{-t}\right]_{t=3}=3^{3} e^{-3}=27 \times 0.498=1.344$.
2. (a) $\int_{-\infty}^{\infty} \delta(t-6) t^{2} d t=\left[t^{2}\right]_{t=6}=36$
(b) Substituting $t=3 \tau$ gives $\int_{-\infty}^{\infty} \delta(3 \tau-6) 9 \tau^{2} 3 d \tau=27 \int_{-\infty}^{\infty} \delta(3(\tau-2)) \tau^{2} d \tau$
$=27 \int_{-\infty}^{\infty} \frac{1}{|3|} \delta(\tau-2) \tau^{2} d \tau=9\left[\tau^{2}\right]_{\tau=2}=36$. We here use the relation that $|c| \delta(c x)=\delta(x)$.
3. $2 x^{2} \delta(8-2 x)=2 x^{2} \delta(-2(x-4))=\frac{2 x^{2}}{|-2|} \delta(x-4)=x^{2} \delta(x-4)=16 \delta(x-4)$.
4. (a) $V(f)=\int_{-\infty}^{\infty} e^{-|t|} e^{-i 2 \pi f t} d t=\int_{-\infty}^{0} e^{t} e^{-i 2 \pi f t} d t+\int_{0}^{\infty} e^{-t} e^{-i 2 \pi f t} d t$ $=\frac{1}{1-i 2 \pi f}\left[e^{(1-i 2 \pi f) t}\right]_{t=-\infty}^{0}+\frac{1}{-1-i 2 \pi f}\left[e^{(-1-i 2 \pi f) t}\right]_{t=0}^{\infty}=\frac{1}{1-i 2 \pi f}-\frac{1}{-1-i 2 \pi f}=\frac{2}{1+4 \pi^{2} f^{2}}$. Notice that in the first step we split the integral up into the two ranges of t for which the quantity $|t|$ is equal to $-t$ and $+t$ respectively; this is necessary for any integral involving absolute values. Also notice that $e^{(a+b i) t}$ is zero at $t=+\infty$ if $a<0$ and zero at $t=-\infty$ if $a>0$.
(b) If $v_{1}(t)=v(a t)$ then $V_{1}(f)=\frac{1}{|a|} V\left(\frac{f}{a}\right)=\frac{2 a^{2}}{a^{2}+4 \pi^{2} f^{2}}$.

If $v_{2}(t)=v(t-b)$ then $V_{2}(f)=e^{-i 2 \pi f b} V(f)=\frac{2 e^{-i 2 \pi f b}}{1+4 \pi^{2} f^{2}}$.
If $w(t)=V(t)=\frac{2}{1+4 \pi^{2} t^{2}}$ then $W(f)=v(-f)=e^{-|f|}$. However we want $v_{3}(t)=0.5 w\left(\frac{t}{2 \pi}\right)$ so $V_{3}(f)=0.5 \times 2 \pi \times W(2 \pi f)=\pi e^{-|2 \pi f|}$.
5.

$$
\begin{aligned}
X(f)= & \int_{-\infty}^{\infty} t^{2} e^{-|t|} e^{-i 2 \pi f t} d t \\
= & \int_{-\infty}^{0} t^{2} e^{t} e^{-i 2 \pi f t} d t+\int_{0}^{\infty} t^{2} e^{-t} e^{-i 2 \pi f t} d t \\
= & \int_{-\infty}^{0} t^{2} e^{(1-i 2 \pi f) t} d t+\int_{0}^{\infty} t^{2} e^{(-1-i 2 \pi f) t} d t \\
= & {\left[\left((1-i 2 \pi f)^{2} t^{2}-2(1-i 2 \pi f) t+2\right) \frac{e^{(1-i 2 \pi f) t}}{(1-i 2 \pi f)^{3}}\right]_{t=-\infty}^{0} } \\
& +\left[\left((-1-i 2 \pi f)^{2} t^{2}-2(-1-i 2 \pi f) t+2\right) \frac{e^{(-1-i 2 \pi f) t}}{(-1-i 2 \pi f)^{3}}\right]_{t=0}^{\infty} \\
= & 2\left(\frac{1}{(1-i 2 \pi f)^{3}}-\frac{1}{(-1-i 2 \pi f)^{3}}\right) \\
= & \frac{4+48 \pi^{2} f^{2}}{\left(1+4 \pi^{2} f^{2}\right)^{3}}
\end{aligned}
$$

6. $X(f)=\int_{-\infty}^{\infty} x(t) e^{-i 2 \pi f t} d t=\int_{-\infty}^{\infty} \delta(t) e^{-i 2 \pi f t} d t=\left[e^{-i 2 \pi f t}\right]_{t=0}$. Note that this is the same for all values of f and is called a "flat" or "white" spectrum. The inverse transform is

$$
\delta(t)=\int_{-\infty}^{\infty} X(f) e^{i 2 \pi f t} d f=\int_{-\infty}^{\infty} e^{i 2 \pi f t} d f
$$

If we now substitute $\tau=\frac{2 \pi}{\alpha} t$, we obtain $\int_{-\infty}^{\infty} e^{i \alpha f \tau} d f=\delta\left(\frac{\alpha}{2 \pi} \tau\right)=\frac{2 \pi}{|\alpha|} \delta(\tau)$. Alternatively, we could substitute $\nu=\frac{2 \pi}{\alpha} f$ to obtain $\delta(t)=\frac{2 \pi}{\alpha} \int_{f=-\infty}^{\infty} e^{i \alpha \nu t} d \nu$. The new limits (in terms of ν) are either $\nu=\mp \infty$ if $\alpha>0$ or else $\nu= \pm \infty$ if $\alpha<0$ and in the latter case we need to reverse the order of the limits and multiply by -1 . Thus we end up with $\delta(t)=\frac{2 \pi}{|\alpha|} \int_{f=-\infty}^{\infty} e^{i \alpha \nu t} d \nu$ which is the same result as before.
7. $X(f)=\int_{-\infty}^{\infty} 10 e^{-i 2 \pi f t} d t=10 \delta(f)$. This follows from the answer to question 6 with $\alpha=-2 \pi$.
8. The Fourier transform of a periodic waveform is iust the complex Fourier series coefficients multiplied by delta functions at the appropriate positive and negative frequencies. So $X(f)=6 \delta(f+100)+$ $6 \delta(f-100)+4 i \delta(f+200)-4 i \delta(f-200)$.
9. The complex Fourier series coefficients are $V_{n}=F \int_{-0.5 T}^{0.5 t} \delta(t) e^{-i 2 \pi F t} d t=F\left[e^{-i 2 \pi F t}\right]_{t=0}=F$ (i.e. the same for all n). In fact, $x(t)$ is equal to $v(t)$ but iust written in a different way. So, from the theorem on page 6-8 of the notes, $X(f)=\sum_{n=-\infty}^{\infty} X_{n} \delta(f-n F)=F \sum_{n=-\infty}^{\infty} \delta(f-n F)$. Thus the Fourier transform of an impulse train with spacing $\frac{1}{F}$ is another impulse train with spacing F.
10. (a) If $v(t)=X(t)=\cos 100 t$, then $V(f)=\frac{1}{2} \delta\left(f+\frac{50}{\pi}\right)+\frac{1}{2} \delta\left(f-\frac{50}{\pi}\right)$. So, from the duality theorem, $x(f)=V(-f)$, so $x(t)=\frac{1}{2} \delta\left(t+\frac{50}{\pi}\right)+\frac{1}{2} \delta\left(t-\frac{50}{\pi}\right)$.
(b) $x(t)=\int_{-\infty}^{\infty} \cos (100 f) e^{i 2 \pi f t} d f=\frac{1}{2} \int_{-\infty}^{\infty}\left(e^{i 100 f}+e^{-i 100 f}\right) e^{i 2 \pi f t} d f$
$=\frac{1}{2} \int_{-\infty}^{\infty} e^{i\left(2 \pi\left(t+\frac{50}{\pi}\right)\right) f} d f+\frac{1}{2} \int_{-\infty}^{\infty} e^{i\left(2 \pi\left(t-\frac{50}{\pi}\right)\right) f} d f==\frac{1}{2} \delta\left(t+\frac{50}{\pi}\right)+\frac{1}{2} \delta\left(t-\frac{50}{\pi}\right)$.
11. $X(f)=\int_{-0.5}^{0.5} e^{-i 2 \pi f t} d t=\frac{1}{-i 2 \pi f}\left[e^{-i 2 \pi f t}\right]_{t=-0.5}^{0.5}=\frac{1}{-i 2 \pi f} \times-2 i \sin \pi f=\frac{\sin \pi f}{\pi f}$.
12. $X(f)=\int_{0}^{\infty} e^{-a t} e^{-i 2 \pi f t} d t=\int_{0}^{\infty} e^{(-a-i 2 \pi f) t} d t=\frac{1}{-a-i 2 \pi f}\left[e^{(-a-i 2 \pi f) t}\right]_{t=0}^{\infty}=\frac{-1}{-a-i 2 \pi f}=\frac{1}{a+i 2 \pi f}$. Note that the value of $e^{(-a-i 2 \pi f) t}$ is zero at $t=\infty$ provided that $a>0$.
13. (a) $x(t)=\cos ^{2}(1000 t)=0.5+0.5 \cos (2000 t)$. The gains at these component frequencies are $\frac{Y}{X}(i 0)=2$ and $\frac{Y}{X}(i 2000)=\frac{2}{1+2 i}=0.4-0.8 i$. It follows (from phasors) that

$$
y(t)=1+0.2 \cos (2000 t)+0.4 \sin (2000 t) .
$$

The Fourier transforms are $X(f)=0.5 \delta(f)+0.25 \delta\left(f+\frac{1000}{\pi}\right)+0.25 \delta\left(f-\frac{1000}{\pi}\right)$ and $Y(f)=$ $\delta(f)+(0.1+0.2 i) \delta\left(f+\frac{1000}{\pi}\right)+(0.1-0.2 i) \delta\left(f-\frac{1000}{\pi}\right)$. Note that the positive frequency term, $\delta\left(f-\frac{1000}{\pi}\right)$, is multiplied by $\frac{Y}{X}(i 2 \pi f)$ while the negative frequency term, $\delta\left(f+\frac{1000}{\pi}\right)$, is multiplied by its complex conjugate, $\frac{Y}{X}(-i 2 \pi f)$.
(b) From question 12 we know that $X(f)=\frac{1}{i 2 \pi f+500}$. So it follows that

$$
Y(f)=X(f) \times \frac{Y}{X}(i 2 \pi f)=\frac{1}{i 2 \pi f+500} \times \frac{2000}{i 2 \pi f+1000}=\frac{2000}{(i 2 \pi f+500)(i 2 \pi f+1000)}
$$

We can put the given expression over a common denominator: $\frac{c}{i 2 \pi f+500}+\frac{d}{i 2 \pi f+1000}=\frac{i 2 \pi f(c+d)+1000 c+500 d}{(i 2 \pi f+500)(i 2 \pi f+1000)}$.
Equating the numerator to 2000 gives $c=4$ and $d=-4$. Hence $y(t)=\left\{\begin{array}{ll}4\left(e^{-500 t}-e^{-1000 t}\right) & t \geq 0 \\ 0 & t<0\end{array}\right.$.
14. $y(t)=\int_{-\infty}^{\infty} x(\tau) x(t-\tau) d \tau$. The integrand is only non-zero when the arguments of both top-hat functions lie in the range ± 0.5. Thus we must have $-0.5<\tau<0.5$ and also
$-0.5<t-\tau<0.5 \Leftrightarrow t-0.5<\tau<t+0.5$.
We can therefore write $y(t)=\int_{\max (-0.5, t-0.5)}^{\min (0.5, t+0.5)} d \tau=\left\{\begin{array}{ll}\int_{-0.5}^{t+0.5} d \tau & t<0 \\ \int_{t-0.5}^{0.5} d \tau & t \geq 0\end{array}\right.$. The integration range is empty if $|t|>1$ and so we can write $y(t)=\left\{\begin{array}{ll}1+t & t<0 \\ 1-t & t \geq 0\end{array}\right.$ which also equals $y(t)= \begin{cases}1-|t| & |t| \leq 1 \\ 0 & |t|>1\end{cases}$ as requested.
From the convolution theorem, $Y(f)=X^{2}(f)=\frac{\sin ^{2} \pi f}{\pi^{2} f^{2}}$.
15. [B] An "energy signal" has finite energy: $\int_{-\infty}^{\infty}|x(t)|^{2} d t<\infty$. A "power signal" has infinite energy but finite power: $\lim _{A, B \rightarrow \infty} \frac{1}{B-A} \int_{-A}^{B}|x(t)|^{2} d t<\infty$. The answers are therefore (a) P , (b) P , (c) N , (d) N , (e) N , (f) N , (g) E, (h) E, (i) P, (i) E, (i) P. The final example has zero average power but is not an energy signal because it has infinite energy.
16. (a) We substitute $\omega=2 \pi f$ to obtain:

$$
\begin{aligned}
\widetilde{X}(\omega) & =\frac{1}{1+\omega^{2}}+2 i\left(\delta\left(\frac{\omega}{2 \pi}+4\right)-\delta\left(\frac{\omega}{2 \pi}-4\right)\right) \\
& =\frac{1}{1+\omega^{2}}+2 i\left(\delta\left(\frac{\omega+8 \pi}{2 \pi}\right)-\delta\left(\frac{\omega-8 \pi}{2 \pi}\right)\right) \\
& =\frac{1}{1+\omega^{2}}+4 \pi i(\delta(\omega+8 \pi)-\delta(\omega-8 \pi))
\end{aligned}
$$

The final line is obtained using the scaling formula for delta functions: $|c| \delta(c x)=\delta(x)$. Thus we see that in the angular-frequency version of the Fourier transform, any continuous functions of f remain the same amplitude but delta functions are multiplied by 2π. The inverse transform is given by $x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \widetilde{X}(\omega) e^{i \omega t} d \omega$; this can be obtained by changing the variable in the normal inverse transform from f to ω.
(b) $\widehat{X}(\omega)$ is exactly the same as $\widetilde{X}(\omega)$ but divided by $\sqrt{2 \pi}$. So

$$
\widetilde{X}(\omega)=\frac{1}{\sqrt{2 \pi}\left(1+\omega^{2}\right)}+\sqrt{8 \pi} i(\delta(\omega+8 \pi)-\delta(\omega-8 \pi)) .
$$

The inverse transform is the same as in the previous part but multiplied by $\sqrt{2 \pi}$, i.e.

$$
x(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \widehat{X}(\omega) e^{i \omega t} d \omega
$$

