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E1.10 Fourier Series and Transforms

Problem Sheet 4 - Solutions

1.
´∞
−∞ δ(t− 3)t3e−tdt =

[
t3e−t

]
t=3

= 33e−3 = 27× 0.498 = 1.344.

2. (a)
´∞
−∞ δ(t− 6)t2 dt =

[
t2
]
t=6

= 36

(b) Substituting t = 3τ gives
´∞
−∞ δ(3τ − 6)9τ2 3dτ = 27

´∞
−∞ δ(3 (τ − 2))τ2 dτ

= 27
´∞
−∞

1
|3|δ(τ − 2)τ2 dτ = 9

[
τ2
]
τ=2

= 36. We here use the relation that |c| δ(cx) = δ(x).

3. 2x2δ(8− 2x) = 2x2δ (−2 (x− 4)) = 2x2

|−2|δ (x− 4) = x2δ (x− 4) = 16δ (x− 4).

4. (a) V (f) =
´∞
−∞ e−|t|e−i2πftdt=

´ 0
−∞ ete−i2πftdt+

´∞
0
e−te−i2πftdt

= 1
1−i2πf

[
e(1−i2πf)t

]0
t=−∞ + 1

−1−i2πf
[
e(−1−i2πf)t

]∞
t=0

= 1
1−i2πf −

1
−1−i2πf = 2

1+4π2f2 . Notice that in

the first step we split the integral up into the two ranges of t for which the quantity |t| is equal to
−t and +t respectively; this is necessary for any integral involving absolute values. Also notice that
e(a+bi)t is zero at t = +∞ if a < 0 and zero at t = −∞ if a > 0.

(b) If v1(t) = v(at) then V1(f) = 1
|a|V

(
f
a

)
= 2a2

a2+4π2f2 .

If v2(t) = v(t− b) then V2(f) = e−i2πfbV (f) = 2e−i2πfb

1+4π2f2 .

If w(t) = V (t) = 2
1+4π2t2 then W (f) = v(−f) = e−|f |. However we want v3(t) = 0.5w

(
t
2π

)
so

V3(f) = 0.5× 2π ×W (2πf) = πe−|2πf |.

5.

X(f) =

ˆ ∞
−∞

t2e−|t|e−i2πftdt

=

ˆ 0

−∞
t2ete−i2πftdt+

ˆ ∞
0

t2e−te−i2πftdt

=

ˆ 0

−∞
t2e(1−i2πf)tdt+

ˆ ∞
0

t2e(−1−i2πf)tdt

=

[(
(1− i2πf)

2
t2 − 2 (1− i2πf) t+ 2

) e(1−i2πf)t

(1− i2πf)
3

]0
t=−∞

+

[(
(−1− i2πf)

2
t2 − 2 (−1− i2πf) t+ 2

) e(−1−i2πf)t

(−1− i2πf)
3

]∞
t=0

= 2

(
1

(1− i2πf)
3 −

1

(−1− i2πf)
3

)

=
4 + 48π2f2

(1 + 4π2f2)
3

6. X(f) =
´∞
−∞ x(t)e−i2πftdt=

´∞
−∞ δ(t)e−i2πftdt=

[
e−i2πft

]
t=0

1. Note that this is the same for all
values of f and is called a “flat” or “white” spectrum. The inverse transform is

δ(t) =

ˆ ∞
−∞

X(f)ei2πftdf =

ˆ ∞
−∞

ei2πftdf.

If we now substitute τ = 2π
α t, we obtain

´∞
−∞ eiαfτdf = δ

(
α
2π τ
)

= 2π
|α|δ(τ). Alternatively, we could

substitute ν = 2π
α f to obtain δ(t) = 2π

α

´∞
f=−∞ eiανtdν. The new limits (in terms of ν) are either

ν = ∓∞ if α > 0 or else ν = ±∞ if α < 0 and in the latter case we need to reverse the order of the
limits and multiply by −1. Thus we end up with δ(t) = 2π

|α|
´∞
f=−∞ eiανtdν which is the same result

as before.

7. X(f) =
´∞
−∞ 10e−i2πftdt = 10δ(f). This follows from the answer to question 6 with α = −2π.
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8. The Fourier transform of a periodic waveform is iust the complex Fourier series coefficients multiplied
by delta functions at the appropriate positive and negative frequencies. So X(f) = 6δ(f + 100) +
6δ(f − 100) + 4iδ(f + 200)− 4iδ(f − 200).

9. The complex Fourier series coefficients are Vn = F
´ 0.5t
−0.5T δ(t)e

−i2πFtdt = F
[
e−i2πFt

]
t=0

= F (i.e.
the same for all n). In fact, x(t) is equal to v(t) but iust written in a different way. So, from the
theorem on page 6-8 of the notes, X(f) =

∑∞
n=−∞Xnδ(f − nF ) = F

∑∞
n=−∞ δ(f − nF ). Thus the

Fourier transform of an impulse train with spacing 1
F is another impulse train with spacing F .

10. (a) If v(t) = X(t) = cos 100t, then V (f) = 1
2δ(f + 50

π ) + 1
2δ(f −

50
π ). So, from the duality theorem,

x(f) = V (−f), so x(t) = 1
2δ(t+ 50

π ) + 1
2δ(t−

50
π ).

(b) x(t) =
´∞
−∞ cos (100f) ei2πftdf = 1

2

´∞
−∞

(
ei100f + e−i100f

)
ei2πftdf

= 1
2

´∞
−∞ ei(2π(t+ 50

π ))fdf + 1
2

´∞
−∞ ei(2π(t− 50

π ))fdf == 1
2δ(t+ 50

π ) + 1
2δ(t−

50
π ).

11. X(f) =
´ 0.5
−0.5 e

−i2πftdt= 1
−i2πf

[
e−i2πft

]0.5
t=−0.5 = 1

−i2πf ×−2i sinπf = sinπf
πf .

12. X(f) =
´∞
0
e−ate−i2πftdt=

´∞
0
e(−a−i2πf)tdt= 1

−a−i2πf
[
e(−a−i2πf)t

]∞
t=0

= −1
−a−i2πf = 1

a+i2πf . Note

that the value of e(−a−i2πf)t is zero at t =∞ provided that a > 0.

13. (a) x(t) = cos2(1000t) = 0.5+0.5 cos(2000t). The gains at these component frequencies are Y
X (i0) = 2

and Y
X (i2000) = 2

1+2i = 0.4− 0.8i. It follows (from phasors) that

y(t) = 1 + 0.2 cos(2000t) + 0.4 sin(2000t).

The Fourier transforms are X(f) = 0.5δ(f) + 0.25δ
(
f + 1000

π

)
+ 0.25δ

(
f − 1000

π

)
and Y (f) =

δ(f) + (0.1 + 0.2i) δ
(
f + 1000

π

)
+ (0.1− 0.2i) δ

(
f − 1000

π

)
. Note that the positive frequency term,

δ
(
f − 1000

π

)
, is multiplied by Y

X (i2πf) while the negative frequency term, δ
(
f + 1000

π

)
, is multiplied

by its complex conjugate, Y
X (−i2πf).

(b) From question 12 we know that X(f) = 1
i2πf+500 . So it follows that

Y (f) = X(f)× Y

X
(i2πf) =

1

i2πf + 500
× 2000

i2πf + 1000
=

2000

(i2πf + 500) (i2πf + 1000)

We can put the given expression over a common denominator: c
i2πf+500+ d

i2πf+1000 = i2πf(c+d)+1000c+500d
(i2πf+500)(i2πf+1000) .

Equating the numerator to 2000 gives c = 4 and d = −4. Hence y(t) =

{
4
(
e−500t − e−1000t

)
t ≥ 0

0 t < 0
.

14. y(t) =
´∞
−∞ x(τ)x(t − τ)dτ . The integrand is only non-zero when the arguments of both top-hat

functions lie in the range ±0.5. Thus we must have −0.5 < τ < 0.5 and also
−0.5 < t− τ < 0.5⇔ t− 0.5 < τ < t+ 0.5.

We can therefore write y(t) =
´min(0.5, t+0.5)

max(−0.5, t−0.5) dτ =

{´ t+0.5

−0.5 dτ t < 0´ 0.5
t−0.5 dτ t ≥ 0

. The integration range is

empty if |t| > 1 and so we can write y(t) =

{
1 + t t < 0

1− t t ≥ 0
which also equals y(t) =

{
1− |t| |t| ≤ 1

0 |t| > 1

as requested.

From the convolution theorem, Y (f) = X2(f) = sin2 πf
π2f2 .

15. [B] An “energy signal” has finite energy:
´∞
−∞ |x(t)|2 dt < ∞. A “power signal” has infinite energy

but finite power: limA,B→∞
1

B−A
´ B
−A |x(t)|2 dt < ∞. The answers are therefore (a) P, (b) P, (c) N,

(d) N, (e) N, (f) N, (g) E, (h) E, (i) P, (i) E, (i) P. The final example has zero average power but is
not an energy signal because it has infinite energy.
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16. (a) We substitute ω = 2πf to obtain:

X̃(ω) =
1

1 + ω2
+ 2i

(
δ(
ω

2π
+ 4)− δ( ω

2π
− 4)

)
=

1

1 + ω2
+ 2i

(
δ(
ω + 8π

2π
)− δ(ω − 8π

2π
)

)
=

1

1 + ω2
+ 4πi (δ(ω + 8π)− δ(ω − 8π)) .

The final line is obtained using the scaling formula for delta functions: |c| δ(cx) = δ(x). Thus we
see that in the angular-frequency version of the Fourier transform, any continuous functions of f
remain the same amplitude but delta functions are multiplied by 2π. The inverse transform is given
by x(t) = 1

2π

´∞
−∞ X̃(ω)eiωtdω; this can be obtained by changing the variable in the normal inverse

transform from f to ω.

(b) X̂(ω) is exactly the same as X̃(ω) but divided by
√

2π. So

X̃(ω) =
1√

2π (1 + ω2)
+
√

8πi (δ(ω + 8π)− δ(ω − 8π)) .

The inverse transform is the same as in the previous part but multiplied by
√

2π, i.e.

x(t) =
1√
2π

ˆ ∞
−∞

X̂(ω)eiωtdω.
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