Mathematics 1A - Sample Questions

Information for Candidates:

Calculators are not permitted in this exam.
i) How many roots does the following equation have, and what are they?
[2 marks]

$$
f(x)=x^{2}-4 x+4
$$

ii) Give an example of a polynomial with real coefficients which has two imaginary roots and no other roots.
iii) Show that the following function $g(x)$ must have a real root in the range $-1<x<1$,

$$
g(x)=x^{3}-3 x+1
$$

[6 marks]
b) Using the geometry of Fig 1.1 below, derive the trigonometric identity for $\sin (A+B)$. Use the notation where, for example, $R N$ represents the length of the segment between points R and N. Note that $M R$ and $T P$ are parallel, the two angles indicates by $*$ are equal and that all four angles indicated by the symbol • are equal.

Figure 1.1
c)
i) A certain complex number X has a modulus $|X|=3$. Find the value of $|Y|$, where $Y=X X^{*}$.
ii) Given the following relation:

$$
r_{2} \exp \left(i \theta_{2}\right)=r_{1} \exp \left(i \theta_{1}\right)+i r_{1} \exp \left(i \theta_{1}\right)
$$

find expressions for each of r_{2} and θ_{2} in terms of r_{1} and θ_{1}. [4 marks]
iii) Find all the unique solutions for the equation $Z^{5}=1$ where Z is a complex number.
iv) Find the value of Y in the form $A+i B$ where $Y=\sqrt{X}$ and $X=$ $2+i 2 \sqrt{3}$. [Hint: a calculator is not required.] [4 marks]
2. Let a be a positive real number and $g(x)$ a function defined for all real values of x as

$$
g(x)=a^{x}+a^{-x}
$$

a) Show that, if $a \neq 1, g$ is strictly increasing for $x>0$ and strictly decreasing for $x<0$.
[5 marks]
b) Let $a=e$, sketch the graph of the function $f(x)=e^{x}+e^{-x}$, and the graph of the function $h(x)=\frac{1}{f(x)}$. Identify and classify the stationary points of $f(x)$ and $h(x)$.
[12 marks]
c) Compute the integral $I(t)=\int_{0}^{t} h(x) d x$.
d) Find the limit of $I(t)$ for $t \rightarrow+\infty$ and give a geometric interpretation of the value of the integral.
3. The Fourier series for a real-valued periodic function, $u(t)$, with period $T=\frac{1}{F}$ is given by

$$
u(t)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} a_{n} \cos 2 \pi n F t+b_{n} \sin 2 \pi n F t
$$

a) By using the identities

$$
\begin{aligned}
\cos \theta & =\frac{1}{2}\left(e^{j \theta}+e^{-j \theta}\right) \\
\sin \theta & =\frac{-j}{2}\left(e^{j \theta}-e^{-j \theta}\right)
\end{aligned}
$$

where $j=\sqrt{-1}$, show that this may also be written as

$$
u(t)=\sum_{n=-\infty}^{\infty} U_{n} e^{j 2 \pi n F t}
$$

and derive expressions for the complex coefficients, U_{n}, in terms of a_{n} and b_{n}. [7 marks]
b) Explain the relationship between the coefficients U_{-n} and $U_{+n} . \quad$ [3 marks]
c) \quad Suppose $u(t)$ has period $T=8$ and, over the interval $-4 \leq t<4$ is given by

$$
u(t)= \begin{cases}5 & \text { for }-1 \leq t<1 \\ 0 & \text { otherwise }\end{cases}
$$

Determine the complex coefficients, U_{n} by evaluating the Fourier analysis integral

$$
U_{n}=\frac{1}{T} \int_{-\frac{1}{2} T}^{\frac{1}{2} T} u(t) e^{-j 2 \pi n F t} d t
$$

[8 marks]
d) The function $v(t)$ is said to be "antiperiodic" if $v\left(t+\frac{1}{2} T\right)=-v(t)$.

Suppose that the antiperiodic function $v(t)$ has period $T=8$ and satisfies $v(t)=$ $u(t)$ over the range $-2 \leq t<2$.

Sketch dimensioned graphs of both $u(t)$ and $v(t)$ over the range $-10 \leq t \leq 10$. [5 marks]
i) Show that, by dividing the integration range into two halves, the Fourier analysis integral may be expressed as

$$
V_{n}=\frac{1}{T} \int_{-\frac{1}{2} T}^{0} v(t) e^{-j 2 \pi n F t} d t+\frac{1}{T} \int_{-\frac{1}{2} T}^{0} v\left(t+\frac{1}{2} T\right) e^{-j 2 \pi n F\left(t+\frac{1}{2} T\right)} d t
$$

ii) Show that $e^{-j 2 \pi n F \frac{1}{2} T}=1$ if n is an even integer. [2 marks]
iii) Hence show that, if $v(t)$ is antiperiodic, its complex Fourier coefficients, V_{n}, are zero for even values of n.
[3 marks]

Mathematics 1A-Sample Questions

********* Solutions $* * * * * * * * *$

Information for Candidates:

Calculators are not permitted in this exam.

1. a)
i) How many roots does the following equation have, and what are they?
[2 marks]

$$
f(x)=x^{2}-4 x+4
$$

$f(x)$ is a second order polynomial and so has 2 roots. The can be found using the quadratic equation or by factorizing as $f(x)=(x-$ $2)(x-2)$. So the roots are identical: $x=\{2,2\}$.
ii) Give an example of a polynomial with real coefficients which has two imaginary roots and no other roots.
[4 marks]

A polynomial with 2 roots must be a quadratic. The quadratic equation, $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$, shows that for imaginary roots, the linear term must have a coefficient, b, of zero and that the other two coefficients must have the same sign. Thus the answer is any equation $a x^{2}+c=0$ where a and c have the same sign. For example $x^{2}+1=0$ has roots $x= \pm i$.
iii) Show that the following function $g(x)$ must have a real root in the range $-1<x<1$,

$$
g(x)=x^{3}-3 x+1
$$

[6 marks]

Differentiating gives $g^{\prime}(x)=3 x^{2}-3$ and $g^{\prime}(x)=0$ for $x= \pm 1$. Therefore, the slope changes sign at these two values of x.
Evaluating $g(x)$ at these values gives $g(-1)=3$ and $g(+1)=-1$. Since these have opposite signs and $g(x)$ is a continuous function, it must cross the x-axis between $x=-1$ and $x=+1$ and have a root at the corresponding value of x.
b) Using the geometry of Fig 1.1 below, derive the trigonometric identity for $\sin (A+B)$. Use the notation where, for example, $R N$ represents the length of the segment between points R and N. Note that $M R$ and $T P$ are parallel, the two angles indicates by $*$ are equal and that all four angles indicated by the symbol • are equal.
[6 marks]

Figure 1.1

From the triangle $O P T, O P \cos B=T N+N P$ and, since $M R=T N, O P \cos B=$ $M R+N P$. We can see that $M R=O R \sin A$ and $N P=R P \cos A$. From triangle $O R P$, we get $O R=O P \sin (A+B)$ and $R P=O P \cos (A+B)$. Putting all this together gives

$$
\begin{equation*}
O P \cos B=M R+N P=O R \sin A+R P \cos A=O P(\sin (A+B) \sin A+\cos (A+B) \cos A) \tag{1.1}
\end{equation*}
$$

In a similar way, we can write

$$
\begin{aligned}
O P \sin B & =O T=O M-M T=O M-R N \\
& =O R \cos B-R P \sin A=O P(\sin (A+B) \cos A-\cos (A+B) \sin A)
\end{aligned}
$$

Now, divide (1.1) and (1.2) by $O P$ and then take $\sin A \times(1.1)+\cos A \times(1.2)$ to get

$$
\begin{aligned}
\sin A \cos B+\cos A \sin B= & \sin A(\sin (A+B) \sin A+\cos (A+B) \cos A) \\
& +\cos A(\sin (A+B) \cos A-\cos (A+B) \sin A) \\
= & \sin (A+B) \sin ^{2} A+\sin (A+B) \cos ^{2} A+\text { two terms that cancel } \\
= & \sin (A+B)\left(\sin ^{2} A+\cos ^{2} A\right)=\sin (A+B)
\end{aligned}
$$

c) i) A certain complex number X has a modulus $|X|=3$. Find the value of $|Y|$, where $Y=X X^{*}$.

Since $Y=X X^{*}$, we can write $|Y|=|X|\left|X^{*}\right|=|X|^{2}=3^{2}=9$. We have used the facts that $|X Y|=|X| \times|Y|$ and that $\left|X^{*}\right|=|X|$.
ii) Given the following relation:

$$
r_{2} \exp \left(i \theta_{2}\right)=r_{1} \exp \left(i \theta_{1}\right)+i r_{1} \exp \left(i \theta_{1}\right)
$$

find expressions for each of r_{2} and θ_{2} in terms of r_{1} and θ_{1}. [4 marks]

To solve this algebraically, we can write

$$
\begin{aligned}
r_{2} \exp \left(i \theta_{2}\right) & =\left(r_{1}+i r_{1}\right) \exp \left(i \theta_{1}\right) \\
& =r_{1}(1+i) \exp \left(i \theta_{1}\right) \\
& =r_{1}\left(\sqrt{2} \exp \left(i \frac{\pi}{4}\right) \exp \left(i \theta_{1}\right)\right. \\
& =\sqrt{2} r_{1} \exp \left(i\left(\theta_{1}+\frac{\pi}{4}\right)\right)
\end{aligned}
$$

From this we get $r_{2}=\sqrt{2} r_{1}$ and $\theta_{2}=\theta_{1}+\frac{\pi}{4}$.
It is also possible to derive this graphically using geometry.
iii) Find all the unique solutions for the equation $Z^{5}=1$ where Z is a complex number.
[4 marks]

We have $z^{5}=1=\exp (i 2 \pi k)$ for any integer k. So therefore

$$
z=\sqrt[5]{1}=\exp \left(i \frac{2 \pi}{5} k\right)
$$

So taking $k=\{0,1,2,3,4\}$ gives $z=\left\{1, e^{i 0.4 \pi}, e^{i 0.8 \pi}, e^{i 1.2 \pi}, e^{i 1.6 \pi}\right\}$.
Any additional values of k just repeat these roots, e.g. $k=5$ gives $e^{i 2 \pi}=1$.
iv) Find the value of Y in the form $A+i B$ where $Y=\sqrt{X}$ and $X=$ $2+i 2 \sqrt{3}$. [Hint: a calculator is not required.] [4 marks]

We can write $X=2(1+i \sqrt{3})=2 \times 2 \angle 60^{\circ}=4 e^{i \frac{\pi}{3}}$. It follows that $Y=\sqrt{X}=2 e^{i \frac{\pi}{6}}=2 \angle 30^{\circ}$. Converting this to rectangular form gives $Y=\sqrt{3}+i$.

There are two very frequently arising right-angled triangles that you should know by heart:
(i) the triangle with sides $\{1,1, \sqrt{2}\}$ has angles $\left\{45^{\circ}, 45^{\circ}, 90^{\circ}\right\}$
(ii) the triangle with sides $\{1, \sqrt{3}, 2\}$ has angles $\left\{30^{\circ}, 60^{\circ}, 90^{\circ}\right\}$.

In terms of complex numbers, these translate to $1+i=\sqrt{2} \angle 45^{\circ}$, $1+i \sqrt{3}=2 \angle 60^{\circ}$ and $\sqrt{3}+i=2 \angle 30^{\circ}$.
2. Let a be a positive real number and $g(x)$ a function defined for all real values of x as

$$
g(x)=a^{x}+a^{-x} .
$$

a) Show that, if $a \neq 1, g$ is strictly increasing for $x>0$ and strictly decreasing for $x<0$.
[5 marks]

The derivative of g is $g^{\prime}(x)=a^{x} \ln (a)-a^{-x} \ln (a)=(\ln a)\left(a^{x}-a^{-x}\right)$. If $a>1$, then $\ln (a)>0$ and $g^{\prime}(x)$ is positive when $a^{x}-a^{-x}>0$, that is, when $x>0$. If $0<a<1$, then $\ln (a)<0$ and $g^{\prime}(x)$ is positive when $a^{x}-a^{-x}<0$, that is, when $x>0$. Then, g is strictly increasing for $x>0$ and strictly decreasing for $x<0$. Note that g is even and then the analysis of the function can be limited to $x>0($ or $x<0)$. Note also that the question explicitly says that $a>0$ so we need not consider negative values of a (which would result in $g(x)$ being complex-valued).
b) Let $a=e$, sketch the graph of the function $f(x)=e^{x}+e^{-x}$, and the graph of the function $h(x)=\frac{1}{f(x)}$. Identify and classify the stationary points of $f(x)$ and $h(x)$.
[12 marks]

The function $f(x)=e^{x}+e^{-x}=2 \cosh (x)$ is defined for all real values of x and is even. The graph can be obtained as a sum of the two known function e^{x} and e^{-x}. The first derivative is $f^{\prime}(x)=e^{x}-e^{-x}$, whereas the second derivative is $f^{\prime \prime}(x)=e^{x}+e^{-x} . f^{\prime}(x)=0$ has the unique solution $x=0 . f^{\prime \prime}(x)$ is always positive, since it is the sum of two positive functions, thus the function is convex. Then 0 is a minimum. The function $f(x)$ does not cross the x axis and goes to $+\infty$ when x goes to $\pm \infty$ (there are no asymptotes).

Figure S1.1 The function $f(x)$
The graph of the function $h(x)=\frac{1}{f(x)}$ can be deduced from the graph of $f(x)$. $h(x)$ is defined for all real values of x and it is always positive. The first derivative is $\frac{-\left(e^{x}-e^{-x}\right)}{\left(e^{x}+e^{-x}\right)^{2}}$, whereas the second derivative is $\frac{e^{2 x}+e^{-2 x}-6}{\left(e^{x}+e^{-x}\right)^{3}} . f^{\prime}(x)=0$ has the unique solution $x=0$. The functions $f(x)$ and $h(x)$ have increases and decreases "swapped", hence 0 is a maximum. We study the second derivative to determine the inflection points, namely we solve the equation $e^{2 x}+e^{-2 x}-6=0$. Let $z=e^{2 x}$, then $x=\ln (\sqrt{3 \pm 2 \sqrt{2}})=\ln (\sqrt{2} \pm 1)$ are the inflection points.

Figure S1.2 The function $h(x)$
c) Compute the integral $I(t)=\int_{0}^{t} h(x) d x$.
$I(t)=\int_{0}^{t} h(x) d x=\int_{0}^{t} \frac{1}{e^{x}+e^{-x}} d x=\int_{0}^{t} \frac{e^{x}}{e^{2 x}+1} d x$. Let $y=e^{x}$, then

$$
I(t)=\int_{1}^{e^{t}} \frac{d y}{y^{2}+1} d x=[\arctan (y)]_{1}^{t^{t}}=\arctan \left(e^{t}\right)-\frac{\pi}{4}
$$

d) Find the limit of $I(t)$ for $t \rightarrow+\infty$ and give a geometric interpretation of the value of the integral.

The value of $I(t)$ as $t \rightarrow+\infty$ is $\frac{\pi}{4}$. This value is the area under the curve $h(x)$ for $x>0$. Note that the area is bounded even though the considered region is open.

Figure S1.1 Area under the curve $h(x)$ for $x>0$.
3. The Fourier series for a real-valued periodic function, $u(t)$, with period $T=\frac{1}{F}$ is given by

$$
u(t)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} a_{n} \cos 2 \pi n F t+b_{n} \sin 2 \pi n F t
$$

a) By using the identities

$$
\begin{aligned}
\cos \theta & =\frac{1}{2}\left(e^{j \theta}+e^{-j \theta}\right) \\
\sin \theta & =\frac{-j}{2}\left(e^{j \theta}-e^{-j \theta}\right)
\end{aligned}
$$

where $j=\sqrt{-1}$, show that this may also be written as

$$
u(t)=\sum_{n=-\infty}^{\infty} U_{n} e^{j 2 \pi n F t}
$$

and derive expressions for the complex coefficients, U_{n}, in terms of a_{n} and b_{n}. [7 marks]

By making the given substitution, we get

$$
\begin{aligned}
u(t) & =\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} a_{n} \cos 2 \pi n F t+b_{n} \sin 2 \pi n F t \\
& =\frac{1}{2} a_{0}+\frac{1}{2} \sum_{n=1}^{\infty} a_{n}\left(e^{j 2 \pi n F t}+e^{-j 2 \pi n F t}\right)-j b_{n}\left(e^{j 2 \pi n F t}-e^{-j 2 \pi n F t}\right) \\
& =\frac{1}{2} a_{0}+\frac{1}{2} \sum_{n=1}^{\infty}\left(a_{n}-j b_{n}\right) e^{j 2 \pi n F t}+\left(a_{n}+j b_{n}\right) e^{-j 2 \pi n F t} \\
& =\frac{1}{2} \sum_{n=-\infty}^{\infty} U_{n} e^{j 2 \pi n F t}
\end{aligned}
$$

where

$$
U_{n}= \begin{cases}a_{n}-j b_{n} & n>0 \\ a_{0} & n=0 \\ a_{-n}+j b_{-n} & n<0\end{cases}
$$

Alternatively, if we define $b_{0}=0$ we can write this as a single expression:

$$
U_{n}=a_{|n|}-j b_{|n|} \operatorname{sgn}(n)
$$

where the sign function is

$$
\operatorname{sgn}(n)= \begin{cases}+1 & n>0 \\ 0 & n=0 \\ -1 & n<0\end{cases}
$$

b) Explain the relationship between the coefficients U_{-n} and $U_{+n} . \quad$ [3 marks]

If n is positive, then $U_{n}=a_{n}-j b_{n}$ whereas $U_{-n}=a_{n}+j b_{n}$. Since the coefficients a_{n} and b_{n} are real-valued, U_{-n} is the complex conjugate of U_{n}.
c) Suppose $u(t)$ has period $T=8$ and, over the interval $-4 \leq t<4$ is given by

$$
u(t)= \begin{cases}5 & \text { for }-1 \leq t<1 \\ 0 & \text { otherwise }\end{cases}
$$

Determine the complex coefficients, U_{n} by evaluating the Fourier analysis integral

$$
U_{n}=\frac{1}{T} \int_{-\frac{1}{2} T}^{\frac{1}{2} T} u(t) e^{-j 2 \pi n F t} d t
$$

[8 marks]

$$
\begin{aligned}
U_{n} & =\frac{1}{T} \int_{-\frac{1}{2} T}^{\frac{1}{2} T} u(t) e^{-j 2 \pi n F t} d t \\
& =\frac{1}{T} \int_{-1}^{1} 5 e^{-j 2 \pi n F t} d t \\
& =\frac{5}{-j 2 \pi n F T}\left[e^{-j 2 \pi n F t}\right]_{-1}^{1} \\
& =\frac{5}{-j 2 \pi n}\left(e^{-j 2 \pi n F}-e^{j 2 \pi n F}\right) \\
& =\frac{5}{-j 2 \pi n}(-2 j \sin 2 \pi n F) \\
& =\frac{5 \sin 2 \pi n F}{\pi n}
\end{aligned}
$$

Note that in the fourth line we use the relationship $F T=1$. In the fifth line we use $e^{j \theta}-e^{-j \theta}=2 j \sin \theta$ which can easily be deduced from $e^{j \theta}=\cos \theta+j \sin \theta$ but is also worth remembering in its own right. Note too that $\int e^{\alpha t} d t=\frac{1}{\alpha} e^{\alpha t}$ even if α is complex.
d) The function $v(t)$ is said to be "antiperiodic" if $v\left(t+\frac{1}{2} T\right)=-v(t)$.

Suppose that the antiperiodic function $v(t)$ has period $T=8$ and satisfies $v(t)=$ $u(t)$ over the range $-2 \leq t<2$.

Sketch dimensioned graphs of both $u(t)$ and $v(t)$ over the range $-10 \leq t \leq 10$.

Graphs of $u(t)$ and $v(t)$ are shown below:

i) Show that, by dividing the integration range into two halves, the Fourier analysis integral may be expressed as

$$
V_{n}=\frac{1}{T} \int_{-\frac{1}{2} T}^{0} v(t) e^{-j 2 \pi n F t} d t+\frac{1}{T} \int_{-\frac{1}{2} T}^{0} v\left(t+\frac{1}{2} T\right) e^{-j 2 \pi n F\left(t+\frac{1}{2} T\right)} d t
$$

[5 marks]

We can split up the integral into two halves and then make the substitution $t=\tau+\frac{1}{2} T$ in the second one:

$$
\begin{aligned}
V_{n} & =\frac{1}{T} \int_{-\frac{1}{2} T}^{\frac{1}{2} T} v(t) e^{-j 2 \pi n F t} d t \\
& =\frac{1}{T} \int_{-\frac{1}{2} T}^{0} v(t) e^{-j 2 \pi n F t} d t+\frac{1}{T} \int_{0}^{\frac{1}{2} T} v(t) e^{-j 2 \pi n F t} d t \\
& =\frac{1}{T} \int_{-\frac{1}{2} T}^{0} v(t) e^{-j 2 \pi n F t} d t+\frac{1}{T} \int_{-\frac{1}{2} T}^{0} v\left(\tau+\frac{1}{2} T\right) e^{-j 2 \pi n F\left(\tau+\frac{1}{2} T\right)} d \tau \\
& =\frac{1}{T} \int_{-\frac{1}{2} T}^{0} v(t) e^{-j 2 \pi n F t} d t+\frac{1}{T} \int_{-\frac{1}{2} T}^{0} v\left(t+\frac{1}{2} T\right) e^{-j 2 \pi n F\left(t+\frac{1}{2} T\right)} d t
\end{aligned}
$$

where in the last line we have made the substitution $\tau=t$.
ii) Show that $e^{-j 2 \pi n F \frac{1}{2} T}=1$ if n is an even integer. [2 marks]

$$
\begin{aligned}
e^{-j 2 \pi n F \frac{1}{2} T} & =e^{-j 2 \pi n \frac{1}{2}} \\
& =e^{-j \pi n} \\
& =\cos n \pi-j \sin n \pi
\end{aligned}
$$

In the first line we made use of the fact that $F T=1$. If n is an even integer, then $n \pi$ is a multiple of 2π and so $\cos n \pi=1$ and $\sin n \pi=0$. Hence $e^{-j 2 \pi n F \frac{1}{2} T}=1$.
iii) Hence show that, if $v(t)$ is antiperiodic, its complex Fourier coefficients, V_{n}, are zero for even values of n.
[3 marks]

From part d)i), we have

$$
\begin{aligned}
V_{n} & =\frac{1}{T} \int_{-\frac{1}{2} T}^{0} v(t) e^{-j 2 \pi n F t} d t+\frac{1}{T} \int_{-\frac{1}{2} T}^{0} v\left(t+\frac{1}{2} T\right) e^{-j 2 \pi n F\left(t+\frac{1}{2} T\right)} d t \\
& =\frac{1}{T} \int_{-\frac{1}{2} T}^{0} v(t) e^{-j 2 \pi n F t} d t-\frac{1}{T} \int_{-\frac{1}{2} T}^{0} v(t) e^{-j 2 \pi n F \tau} e^{-j 2 \pi n F \frac{1}{2} T} d t \\
& =\frac{1}{T} \int_{-\frac{1}{2} T}^{0} v(t) e^{-j 2 \pi n F t} d t-\frac{1}{T} \int_{-\frac{1}{2} T}^{0} v(t) e^{-j 2 \pi n F t} d t \\
& =0
\end{aligned}
$$

where in the second and third lines respectively we have used the relationships $v\left(t+\frac{1}{2} T\right)=-v(t)$ and $e^{-j 2 \pi n F \frac{1}{2} T}=1$.

