Fourier Series and Transforms

Revision Lecture

The Basic Idea

Real v Complex

Series v Transform

Fourier Analysis

Power Conservation

Gibbs Phenomenon

Coefficient Decay

Rate

Periodic Extension

Dirac Delta Function

Fourier Transform

Convolution

Correlation

Fourier Series and Transforms Revision Lecture

The Basic Idea

Fourier Series and Transforms Revision Lecture The Basic Idea Real v Complex Series v Transform Fourier Analysis Power Conservation Gibbs Phenomenon Coefficient Decay Rate Periodic Extension Dirac Delta Function Fourier Transform Convolution Correlation

Periodic signals can be written as a sum of sine and cosine waves:

$$u(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos 2\pi n F t + b_n \sin 2\pi n F t\right)$$

$$= \frac{1}{\sqrt{1/2}} + 0.65 \sin(2\pi F t)$$

$$+ \frac{1}{\sqrt{1/2}} + 0.26 \sin(2\pi F t)$$

$$+ \frac{1}{\sqrt{1/2}} + \frac{1}{\sqrt{1/2}} +$$

Fundamental Period: the smallest T>0 for which u(t+T)=u(t). Fundamental Frequency: $F=\frac{1}{T}$. The $n^{\rm th}$ harmonic is at frequency nF. Some waveforms need infinitely many harmonics (countable infinity).

+

Real versus Complex Fourier Series

Fourier Series and Transforms
Revision Lecture
The Basic Idea
Real v Complex
Series v Transform
Fourier Analysis
Power Conservation
Gibbs Phenomenon
Coefficient Decay
Rate
Periodic Extension
Dirac Delta Function
Fourier Transform
Convolution

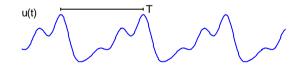
Correlation

All the algebra is much easier if we use $e^{i\omega t}$ instead of $\cos\omega t$ and $\sin\omega t$

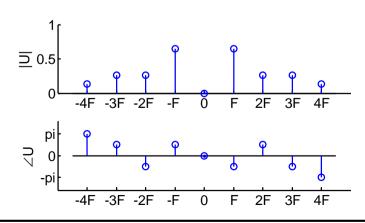
$$u(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos 2\pi n F t + b_n \sin 2\pi n F t \right)$$

Substitute:
$$\cos \omega t = \frac{1}{2} e^{i\omega t} + \frac{1}{2} e^{-i\omega t}$$
 $\sin \omega t = \frac{-i}{2} e^{i\omega t} + \frac{i}{2} e^{-i\omega t}$ $u(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(\frac{1}{2} (a_n - ib_n) e^{i2\pi nFt} + \frac{1}{2} (a_n + ib_n) e^{-i2\pi nFt} \right)$ $= \sum_{n=-\infty}^{\infty} U_n e^{i2\pi nFt}$

- $U_{+n} = \frac{1}{2} (a_n ib_n)$ and $U_{-n} = \frac{1}{2} (a_n + ib_n)$.
- U_{+n} and U_{-n} are complex conjugates.
- U_{+n} is half the equivalent phasor in Analysis of Circuits.



Plot the magnitude spectrum and phase spectrum:

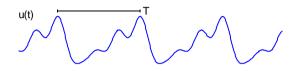


Fourier Series versus Fourier Transform

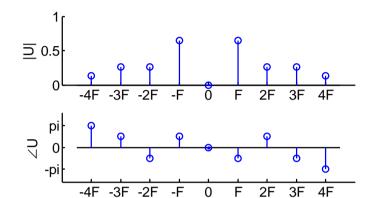
Fourier Series and Transforms
Revision Lecture
The Basic Idea
Real v Complex
Series v Transform
Fourier Analysis
Power Conservation
Gibbs Phenomenon
Coefficient Decay
Rate
Periodic Extension
Dirac Delta Function
Fourier Transform
Convolution

Correlation

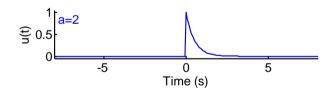
Periodic signals → Fourier Series → Discrete spectrum



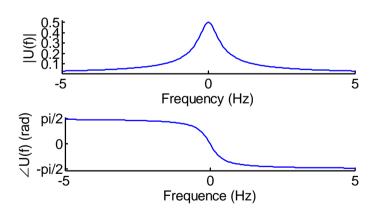
$$u(t) = \sum_{n=-\infty}^{\infty} U_n e^{i2\pi nFt}$$



ullet Aperiodic signals o Fourier Transformo Continuous Spectrum



$$u(t) = \int_{f=-\infty}^{\infty} U(f)e^{i2\pi ft}df$$



- Both types of spectrum are conjugate symmetric.
- If u(t) is periodic, its Fourier transform consists of Dirac δ functions with amplitudes $\{U_n\}$.

Fourier Analysis

Fourier Series and Transforms Revision Lecture The Basic Idea Real v Complex Series v Transform > Fourier Analysis **Power Conservation** Gibbs Phenomenon Coefficient Decay Rate Periodic Extension Dirac Delta Function Fourier Transform Convolution Correlation

Fourier Series:
$$u(t) = \sum_{n=-\infty}^{\infty} U_n e^{i2\pi nFt}$$

Fourier Analysis = "how do you work out the Fourier coefficients, U_n ?"

Key idea:
$$\langle e^{i\omega t} \rangle = \langle \cos \omega t + i \sin \omega t \rangle = \begin{cases} 1 & \text{if } \omega = 0 \\ 0 & \text{otherwise} \end{cases}$$

$$\Rightarrow$$
 Orthogonality: $\left\langle e^{i2\pi nFt} \times e^{-i2\pi mFt} \right\rangle = \begin{cases} 1 & \text{for } m=n\\ 0 & \text{for } m\neq n \end{cases}$

So, to find a particular coefficient, U_m , we work out

$$\langle u(t)e^{-i2\pi mFt}\rangle = \langle \left(\sum_{n=-\infty}^{\infty} U_n e^{i2\pi nFt}\right) e^{-i2\pi mFt}\rangle$$

$$= \sum_{n=-\infty}^{\infty} U_n \left\langle e^{i2\pi nFt} e^{-i2\pi mFt}\right\rangle$$

$$= U_m \qquad \text{[since all other terms are zero]}$$

Calculate the average by integrating over any integer number of periods

$$U_m = \langle u(t)e^{-i2\pi mFt}\rangle = \frac{1}{T}\int_{t=0}^T u(t)e^{-i2\pi mFt}dt$$

Notice the negative sign in Fourier analysis: in order to extract the term in the series containing $e^{+i2\pi mFt}$ we need to multiply by $e^{-i2\pi mFt}$.

Power Conservation

Fourier Series and Transforms Revision Lecture The Basic Idea Real v Complex Series v Transform Fourier Analysis Power Conservation Gibbs Phenomenon Coefficient Decay Rate Periodic Extension Dirac Delta Function Fourier Transform Convolution Correlation

Fourier Series:
$$u(t) = \sum_{n=-\infty}^{\infty} U_n e^{i2\pi nFt}$$

Average power in
$$u(t)$$
: $P_u \triangleq \left\langle |u(t)|^2 \right\rangle = \frac{1}{T} \int_0^T u^2(t) dt$ [$u(t)$ real]

Average power in Fourier component n:

$$\left\langle \left| U_n e^{i2\pi nFt} \right|^2 \right\rangle = \left\langle \left| U_n \right|^2 \left| e^{i2\pi nFt} \right|^2 \right\rangle = \left| U_n \right|^2$$

Power conservation (Parseval's Theorem):

$$P_{u} = \left\langle \left| u(t) \right|^{2} \right\rangle = \sum_{n=-\infty}^{\infty} \left| U_{n} \right|^{2}$$

The average power in u(t) is equal to the sum of the average powers in all the Fourier components.

This is a consequence of orthogonality:

$$\left\langle \left| u(t) \right|^{2} \right\rangle = \left\langle \left(\sum_{n=-\infty}^{\infty} U_{n} e^{i2\pi nFt} \right) \left(\sum_{m=-\infty}^{\infty} U_{m}^{*} e^{-i2\pi mFt} \right) \right\rangle$$

$$= \left\langle \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} U_{n} U_{m}^{*} e^{i2\pi nFt} e^{-i2\pi mFt} \right\rangle$$

$$= \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} U_{n} U_{m}^{*} \left\langle e^{i2\pi nFt} e^{-i2\pi mFt} \right\rangle$$

$$= \sum_{n=-\infty}^{\infty} \left| U_{n} \right|^{2}$$

Gibbs Phenomenon

Fourier Series and Transforms
Revision Lecture
The Basic Idea
Real v Complex
Series v Transform
Fourier Analysis
Power Conservation
Gibbs Phenomenon
Coefficient Decay
Rate
Periodic Extension
Dirac Delta Function
Fourier Transform
Convolution

Correlation

Truncated Fourier Series: $u_N(t) = \sum_{n=-N}^{N} U_n e^{i2\pi nFt}$

Approximation error: $e_N(t) = u_N(t) - u(t)$

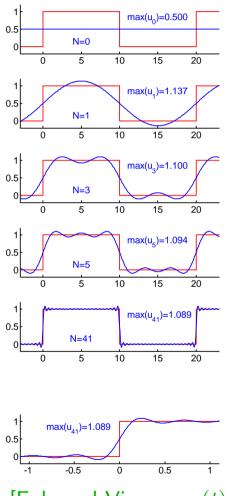
Average error power $P_{e_N} = \sum_{|n|>N} |U_n|^2$.

 $P_{e_N} \to 0$ monotonically as $N \to \infty$.

Gibbs phenomenon

If $u(t_0)$ has a discontinuity of height h then:

- $u_N(t_0) \to \text{the midpoint}$ of the discontinuity as $N \to \infty$.
- $u_N(t)$ overshoots by $\approx \pm 9\% \times h$ at $t \approx t_0 \pm \frac{T}{2N+1}$.
- For large N, the overshoots move closer to the discontinuity but do not decrease in size.



Coefficient Decay Rate

Fourier Series and Transforms Revision Lecture The Basic Idea Real v Complex Series v Transform Fourier Analysis Power Conservation Gibbs Phenomenon Coefficient Decay Rate Periodic Extension Dirac Delta Function Fourier Transform Convolution Correlation

Fourier Series: $u(t) = \sum_{n=-\infty}^{\infty} U_n e^{i2\pi nFt}$

Integration:

$$v(t) = \int_0^t u(\tau)d\tau \quad \Rightarrow \quad V_n = \frac{1}{i2\pi nF}U_n$$
 provided $U_0 = V_0 = 0$.

Differentiation:

$$w(t) = \frac{du(t)}{dt}$$
 \Rightarrow $W_n = i2\pi nF \times U_n$ provided $w(t)$ satisfies the Dirichlet conditions.

Coefficient Decay Rate:

$$u(t)$$
 has a discontinuity $\Rightarrow |U_n|$ is $O\left(\frac{1}{n}\right)$ for large $|n|$ $\frac{d^k u(t)}{dt^k}$ is the lowest derivative with a discontinuity $\Rightarrow |U_n|$ is $O\left(\frac{1}{n^{k+1}}\right)$ for large $|n|$

If the coefficients, U_n , decrease rapidly then only a few terms are needed for a good approximation.

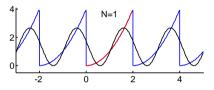
Periodic Extension

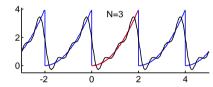
Fourier Series and Transforms Revision Lecture The Basic Idea Real v Complex Series v Transform Fourier Analysis **Power Conservation** Gibbs Phenomenon Coefficient Decay Rate Periodic Extension Dirac Delta Function Fourier Transform Convolution Correlation

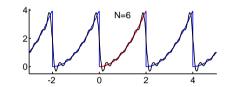
If u(t) is only defined over a finite range, [0, B], we can make it periodic by defining $u(t \pm B) = u(t)$.

• Coefficients are given by $U_n = \frac{1}{B} \int_0^B u(t) e^{-i2\pi nFt} dt$.

Example: $u(t) = t^2$ for $0 \le t < 2$

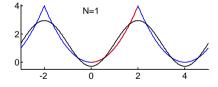


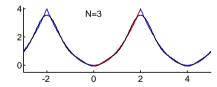


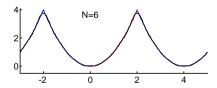


Symmetric extension:

• To avoid a discontinuity at t=T, we can instead make the period 2B and define u(-t)=u(+t).







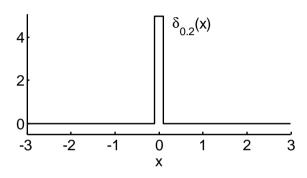
- Symmetry around t = 0 means coefficients are real-valued and symmetric $(U_{-n} = U_n^* = U_n)$.
- Still have a first-derivative discontinuity at t=B but now we have no Gibbs phenomenon and coefficients $\propto n^{-2}$ instead of $\propto n^{-1}$ so approximation error power decreases more quickly.

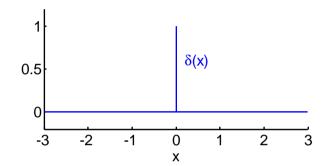
Dirac Delta Function

Fourier Series and Transforms Revision Lecture The Basic Idea Real v Complex Series v Transform Fourier Analysis **Power Conservation** Gibbs Phenomenon Coefficient Decay Rate Periodic Extension Dirac Delta **▶** Function Fourier Transform Convolution

Correlation

 $\delta(x)$ is the limiting case as $w \to 0$ of a pulse w wide and $\frac{1}{w}$ high It is an infinitely thin, infinitely high pulse at x = 0 with unit area.





- Area: $\int_{-\infty}^{\infty} \delta(x) dx = 1$
- Scaling: $\delta(cx) = \frac{1}{|c|}\delta(x)$
- Shifting: $\delta(x-a)$ is a pulse at x=a and is zero everywhere else
- Multiplication: $f(x) \times \delta(x a) = f(a) \times \delta(x a)$
- Integration: $\int_{-\infty}^{\infty} f(x) \times \delta(x-a) dx = f(a)$
- Fourier Transform: $u(t) = \delta(t) \Leftrightarrow U(f) = 1$
- We plot $h\delta(x)$ as a pulse of height |h| (instead of its true height of ∞)

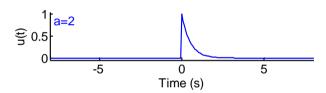
Fourier Transform

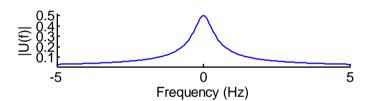
Fourier Series and Transforms Revision Lecture The Basic Idea Real v Complex Series v Transform Fourier Analysis **Power Conservation** Gibbs Phenomenon Coefficient Decay Rate Periodic Extension Dirac Delta Function Fourier Transform Convolution Correlation

Fourier Transform:
$$u(t) = \int_{-\infty}^{\infty} U(f) e^{i2\pi ft} df$$

$$U(f) = \int_{-\infty}^{\infty} u(t) e^{-i2\pi ft} dt$$

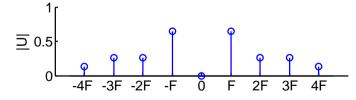
- An "Energy Signal" has finite energy $\Leftrightarrow E_u = \int_{-\infty}^{\infty} |u(t)|^2 dt < \infty$
 - \circ Complex-valued spectrum, U(f), decays to zero as $f o \pm \infty$
 - \circ Energy Conservation: $E_u=E_U$ where $E_U=\int_{-\infty}^{\infty}\left|U(f)\right|^2df$





• Periodic Signals \to Dirac δ functions at harmonics. Same complex-valued amplitudes as U_n from Fourier Series





$$\circ$$
 $E_u = \infty$ but ave power is $P_u = \left\langle \left| u(t) \right|^2 \right\rangle = \sum_{n=-\infty}^{\infty} \left| U_n \right|^2$

Convolution

Fourier Series and Transforms Revision Lecture The Basic Idea Real v Complex Series v Transform Fourier Analysis Power Conservation Gibbs Phenomenon Coefficient Decay Rate Periodic Extension Dirac Delta Function Fourier Transform Convolution
 Convo Correlation

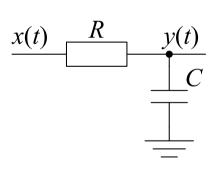
Convolution:
$$w(t) = u(t) * v(t) \Leftrightarrow w(t) = \int_{-\infty}^{\infty} u(\tau) v(t-\tau) d\tau$$
 [In the integral, the arguments of $u(\cdot)$ and $v(\cdot)$ add up to t]

* acts algebraically like \times : Commutative, Associative, Distributive over +. Identity element is $\delta(t)$: $u(t)*\delta(t)=u(t)$

Multiplication in either the time or frequency domain is equivalent to convolution in the other domain:

Example application:

- Impulse Response: $[\stackrel{\triangle}{=} y(t) \text{ for } x(t) = \delta(t)]$ $h(t) = \frac{1}{RC} e^{-\frac{t}{RC}} \text{ for } t \geq 0$
- Frequency Response: $H(f) = \frac{1}{1+i2\pi fRC}$
- Convolution: y(t) = h(t) * x(t)
- Multiplication: Y(f) = H(f)X(f)



Correlation

Fourier Series and Transforms Revision Lecture The Basic Idea Real v Complex Series v Transform Fourier Analysis Power Conservation Gibbs Phenomenon Coefficient Decay Rate Periodic Extension Dirac Delta Function Fourier Transform Convolution **○** Correlation

Cross-correlation:

$$w(t) = u(t) \otimes v(t) \quad \Leftrightarrow \quad w(t) = \int_{-\infty}^{\infty} u^*(\tau - t) v(\tau) d\tau$$
 [In the integral, the arguments of $u^*(\cdot)$ and $v(\cdot)$ differ by t]

 \otimes is **not** commutative or associative (unlike *)

Cauchy-Schwartz Inequality \Rightarrow Bound on |w(t)|

- For all values of t: $|w(t)|^2 \le E_u E_v$
- $u(t-t_0)$ is an exact multiple of $v(t) \Leftrightarrow |w(t_0)|^2 = E_u E_v$

Normalized cross-correlation: $\frac{w(t)}{\sqrt{E_u E_v}}$ has a maximum absolute value of 1

- Cross-correlation is used to find the time shift, t_0 , at which two signals match and also how well they match.
- Auto-correlation is the cross-correlation of a signal with itself: used to find the period of a signal (i.e. the time shift where it matches itself).