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Periodic signals can be written as a sum of sine and cosine waves:

u(t) = a0

2 +
∑∞

n=1 (an cos 2πnFt+ bn sin 2πnFt)

 Tu(t)

=

 T +0.65sin(2πFt)

+

 T/2
-0.26sin(2πFt)

+

 T/3
+0.26sin(2πFt)

+

 T/4

-0.13cos(2πFt)

Fundamental Period: the smallest T > 0 for which u(t+ T ) = u(t).
Fundamental Frequency: F = 1

T
. The nth harmonic is at frequency nF .

Some waveforms need infinitely many harmonics (countable infinity).
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All the algebra is much easier if we use eiωt instead of cosωt and sinωt

u(t) = a0

2 +
∑∞

n=1 (an cos 2πnFt+ bn sin 2πnFt)

Substitute: cosωt = 1
2e

iωt + 1
2e

−iωt sinωt = −i
2 eiωt + i

2e
−iωt

u(t) = a0

2 +
∑∞

n=1

(

1
2 (an − ibn) e

i2πnFt + 1
2 (an + ibn) e

−i2πnFt
)

=
∑∞

n=−∞ Une
i2πnFt

• U+n = 1
2 (an − ibn) and U−n = 1

2 (an + ibn) .

• U+n and U−n are complex conjugates.

• U+n is half the equivalent phasor in Analysis of Circuits.

 Tu(t)

Plot the magnitude spectrum
and phase spectrum:
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• Periodic signals → Fourier Series→ Discrete spectrum

 Tu(t)

u(t) =
∑∞

n=−∞ Une
i2πnFt
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• Aperiodic signals → Fourier Transform→ Continuous Spectrum
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• Both types of spectrum are conjugate symmetric.
• If u(t) is periodic, its Fourier transform consists of Dirac δ functions

with amplitudes {Un}.
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Fourier Series: u(t) =
∑∞

n=−∞ Une
i2πnFt

Fourier Analysis = “how do you work out the Fourier coefficients, Un ?”

Key idea:
〈

eiωt
〉

= 〈cosωt+ i sinωt〉 =

{

1 if ω = 0

0 otherwise

⇒ Orthogonality:
〈

ei2πnFt × e−i2πmFt
〉

=

{

1 for m = n

0 for m 6= n

So, to find a particular coefficient, Um, we work out
〈

u(t)e−i2πmFt
〉

=
〈 (

∑∞
n=−∞ Une

i2πnFt
)

e−i2πmFt
〉

=
∑∞

n=−∞ Un

〈

ei2πnFte−i2πmFt
〉

= Um [since all other terms are zero]

Calculate the average by integrating over any integer number of periods

Um =
〈

u(t)e−i2πmFt
〉

= 1
T

∫ T

t=0
u(t)e−i2πmFtdt

Notice the negative sign in Fourier analysis: in order to extract the term in
the series containing e+i2πmFt we need to multiply by e−i2πmFt.
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Fourier Series: u(t) =
∑∞

n=−∞ Une
i2πnFt

Average power in u(t): Pu ,

〈

|u(t)|2
〉

= 1
T

∫ T

0
u2(t)dt [u(t) real]

Average power in Fourier component n:
〈

∣

∣Une
i2πnFt

∣

∣

2
〉

=
〈

|Un|
2 ∣
∣ei2πnFt

∣

∣

2
〉

= |Un|
2

Power conservation (Parseval’s Theorem):

Pu =
〈

|u(t)|2
〉

=
∑∞

n=−∞ |Un|
2

The average power in u(t) is equal to the sum of the average
powers in all the Fourier components.

This is a consequence of orthogonality:
〈

|u(t)|
2
〉

=
〈(
∑∞

n=−∞ Une
i2πnFt

) (
∑∞

m=−∞ U∗
me−i2πmFt

)〉

=
〈
∑∞

n=−∞
∑∞

m=−∞ UnU
∗
mei2πnFte−i2πmFt

〉

=
∑∞

n=−∞
∑∞

m=−∞ UnU
∗
m

〈

ei2πnFte−i2πmFt
〉

=
∑∞

n=−∞ |Un|
2
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Truncated Fourier Series: uN (t) =
∑N

n=−N Une
i2πnFt

Approximation error: eN (t) = uN (t)− u(t)

Average error power PeN =
∑

|n|>N |Un|
2.

PeN → 0 monotonically as N → ∞.

Gibbs phenomenon

If u(t0) has a discontinuity of height h then:

• uN (t0) → the midpoint of the
discontinuity as N → ∞.

• uN (t) overshoots by ≈ ±9%× h at
t ≈ t0 ±

T
2N+1 .

• For large N , the overshoots move
closer to the discontinuity but do not
decrease in size.
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[Enlarged View: u41(t)]
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Fourier Series: u(t) =
∑∞

n=−∞ Une
i2πnFt

Integration:
v(t) =

∫ t

0
u(τ )dτ ⇒ Vn = 1

i2πnF Un

provided U0 = V0 = 0.

Differentiation:
w(t) = du(t)

dt
⇒ Wn = i2πnF × Un

provided w(t) satisfies the Dirichlet conditions.

Coefficient Decay Rate:
u(t) has a discontinuity ⇒ |Un| is O

(

1
n

)

for large |n|

dku(t)
dtk

is the lowest derivative with a discontinuity

⇒ |Un| is O
(

1
nk+1

)

for large |n|

If the coefficients, Un, decrease rapidly then only a few terms are
needed for a good approximation.



Periodic Extension

Fourier Series and
Transforms
Revision Lecture

The Basic Idea

Real v Complex

Series v Transform

Fourier Analysis

Power Conservation

Gibbs Phenomenon
Coefficient Decay
Rate

⊲ Periodic Extension

Dirac Delta Function

Fourier Transform

Convolution

Correlation

E1.10 Fourier Series and Transforms (2015-6200) Revision Lecture: – 9 / 13

If u(t) is only defined over a finite range, [0, B], we can make it periodic by
defining u(t±B) = u(t).

• Coefficients are given by Un = 1
B

∫ B

0
u(t)e−i2πnFtdt.

Example: u(t) = t2 for 0 ≤ t < 2
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Symmetric extension:
• To avoid a discontinuity at t = T , we can instead make the period

2B and define u(−t) = u(+t).
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• Symmetry around t = 0 means coefficients are real-valued and
symmetric (U−n = U∗

n = Un).
• Still have a first-derivative discontinuity at t = B but now we have

no Gibbs phenomenon and coefficients ∝ n−2 instead of ∝ n−1 so
approximation error power decreases more quickly.
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δ(x) is the limiting case as w → 0 of a pulse w wide and 1
w

high
It is an infinitely thin, infinitely high pulse at x = 0 with unit area.
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• Area:
∫∞
−∞ δ(x)dx = 1

• Scaling: δ(cx) = 1
|c|δ(x)

• Shifting: δ(x− a) is a pulse at x = a and is zero everywhere else

• Multiplication: f(x)× δ(x− a) = f(a)× δ(x− a)

• Integration:
∫∞
−∞ f(x)× δ(x− a)dx = f(a)

• Fourier Transform: u(t) = δ(t) ⇔ U(f) = 1

• We plot hδ(x) as a pulse of height |h| (instead of its true height of ∞)
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Fourier Transform: u(t) =
∫∞
−∞ U(f)ei2πftdf

U(f) =
∫∞
−∞ u(t)e−i2πftdt

• An “Energy Signal” has finite energy ⇔ Eu =
∫∞
−∞ |u(t)|

2
dt < ∞

◦ Complex-valued spectrum, U(f), decays to zero as f → ±∞

◦ Energy Conservation: Eu = EU where EU =
∫∞
−∞ |U(f)|2 df
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• Periodic Signals → Dirac δ functions at harmonics.
Same complex-valued amplitudes as Un from Fourier Series

 Tu(t)
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Convolution: w(t) = u(t) ∗ v(t) ⇔ w(t) =
∫∞
−∞ u(τ )v(t− τ )dτ

[In the integral, the arguments of u( ) and v( ) add up to t]

∗ acts algebraically like × : Commutative, Associative, Distributive over +.
Identity element is δ(t): u(t) ∗ δ(t) = u(t)

Multiplication in either the time or frequency domain
is equivalent to convolution in the other domain:

w(t) = u(t) ∗ v(t) ⇔ W (f) = U(f)V (f)
y(t) = u(t)v(t) ⇔ Y (f) = U(f) ∗ V (f)

Example application:

• Impulse Response: [, y(t) for x(t) = δ(t)]

h(t) = 1
RC

e−
t

RC for t ≥ 0

• Frequency Response: H(f) = 1
1+i2πfRC

• Convolution: y(t) = h(t) ∗ x(t)

• Multiplication: Y (f) = H(f)X(f)
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Cross-correlation:
w(t) = u(t)⊗ v(t) ⇔ w(t) =

∫∞
−∞ u∗(τ − t)v(τ )dτ

[In the integral, the arguments of u∗( ) and v( ) differ by t]

⊗ is not commutative or associative (unlike ∗)

Cauchy-Schwartz Inequality ⇒ Bound on |w(t)|

• For all values of t: |w(t)|2 ≤ EuEv

• u(t− t0) is an exact multiple of v(t) ⇔ |w(t0)|
2 = EuEv

Normalized cross-correlation: w(t)√
EuEv

has a maximum absolute value of 1

• Cross-correlation is used to find the time shift, t0, at which two
signals match and also how well they match.

• Auto-correlation is the cross-correlation of a signal with itself: used to
find the period of a signal (i.e. the time shift where it matches itself).
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