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Syllabus

iSV"Tbus Main fact: Complicated time waveforms can be
ptical Fourier . .

Transform expressed as a sum of sine and cosine waves.
Organization

e Why bother? Sine/cosine are the only bounded
Averages waves that stay the same when differentiated.

Any electronic circuit:
sine wave in = sine wave out (same frequency).

Joseph Fourier

1768-1830

Hard problem: Complicated waveform — electronic circuit— output = 7

Easier problem: Complicated waveform — sum of sine waves
— linear electronic circuit (= obeys superposition)

— add sine wave outputs — output = ?

Syllabus: Preliminary maths (1 lecture)
Fourier series for periodic waveforms (4 lectures)

Fourier transform for aperiodic waveforms (3 lectures)
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Optical Fourier Transform

SV"Oab:_s . A pair of prisms can split light up into its component frequencies (colours).
ptical Fourier L. . .

> Transform This is called Fourier Analysis.

Organization . . .

e A second pair can re-combine the frequencies.

Averages This is called Fourier Synthesis.

Fourier Synthesis

Fourier Analysis

We want to do the same thing with mathematical signals instead of light.
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Organization

Tl o 8 lectures: feel free to ask questions

;ragio;.:zataon e Textbook: Riley, Hobson & Bence “Mathematical Methods for Physics
1: Sums and and Engineering”, ISBN:978052167971-8, Chapters [4], 12 & 13

verages

e Lecture slides (including animations) and problem sheets + answers
available via Blackboard or from my website:
http://www.ee.ic.ac.uk/hp/staff/dmb/courses/E1Fourier/E1Fourier.htm

e Email me with any errors in slides or problems and if answers are
wrong or unclear
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Syllabus

Optical Fourier
Transform

Organization

1: Sums and
Averages

Geometric Series
Infinite Geometric
Series

Dummy Variables

Dummy Variable
Substitution

Averages
Average Properties
Periodic Waveforms

Averaging Sin and
Cos

Summary

1: Sums and Averages
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Geometric Series

Syllabus

Optical Fourier
Transform

Organization

1: Sums and
Averages

> Geometric Series
Infinite Geometric
Series

Dummy Variables

Dummy Variable
Substitution

Averages
Average Properties
Periodic Waveforms

Averaging Sin and
Cos

Summary

A geometric series is a sum of terms that increase or decrease by a constant
factor, x:

S=a+azx+az®+...+ax"
The sequence of terms themselves is called a geometric progression.

We use a trick to get rid of most of the terms:

S—a+ar+azx®+...+ax" !+ az™
xS = axr +ar® +axd+... +ax™+ ax™t!

Now subtract the lines to get: S —2S=(1—-2)5 =a — az"t!

a = first term n + 1 = number of terms

\ o

Divide by 1 — x to get:

S =ax 1_3}
Example:
S=34+6+12424 [a=3, =2 n+1=4]
1—-2% —15 __
—5 =3 X = =45

E1.10 Fourier Series and Transforms (2014-5509)

Sums and Averages: 1 -6 / 14



Infinite Geometric Series

Syllabus

Optical Fourier
Transform

Organization

1: Sums and
Averages

Geometric Series
Infinite Geometric
Series

Dummy Variables

Dummy Variable
Substitution

Averages
Average Properties
Periodic Waveforms

Averaging Sin and
Cos

Summary

A finite geometric series: S, =a +ax +azx’>+ -+ az" =a

What is the limit as n — oo?

If |z| < 1 then 2" — 0 which gives

n—oo
Soo :CL—'—CLCC—l—a,;CQ—F...:aﬁ: ﬁ
Example 1:
0.4+ 0.04+0.004 +...= 2L =04

Example 2: (alternating signs)

1_£C7’L—|—1
1l—=x

a = first term

v

T xr = factor

la =04, z =0.1]

2
Example 3:
14+2+4+.. . #5=L=-1 la=1, z =2]
The formula S = a4+ az 4+ az® 4 ... = % is only valid for |z| < 1
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Dummy Variables

Syllabus

Optical Fourier
Transform

Organization

1: Sums and
Averages

Geometric Series
Infinite Geometric
Series

> Dummy Variables

Dummy Variable
Substitution

Averages
Average Properties
Periodic Waveforms

Averaging Sin and
Cos

Summary

Using a ) sign, we can write the geometric series more compactly:

Sp=a+ar+azx®+...+ax" =3 "_, az"
[Note: 2% = 1 in this context even when z = 0]

Here r is a dummy variable: you can replace it with anything else

" axr” = " ooaxk = " ar®
ZT_O k=0 a=0

Dummy variables are undefined outside the summation so they sometimes
get re-used elsewhere in an expression:

S 2+ 3= (Ix R )+ (3x ) =154 12 =27

The two dummy variables are both called r but they have no connection
with each other at all (or with any other variable called r anywhere else).
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Dummy Variable Substitution

Syllabus

Optical Fourier
Transform

Organization

1: Sums and
Averages

Geometric Series
Infinite Geometric
Series

Dummy Variables

Dummy Variable
Substitution

Averages
Average Properties
Periodic Waveforms

Averaging Sin and
Cos

Summary

We can derive the formula for the geometric series using ) | notation:
Sn = _,ax” and xS, = > "_ ax"
We need to manipulate the second sum to involve z".

Use the substitution s=r+1&r=s—1.
Substitute for r everywhere it occurs (including both limits)
+1 +1
xSy =Y rax®=> """ ax"

It is essential to sum over exactly the same set of values when substituting
for dummy variables.

Subtracting gives (1 — z)S,, = S, — xS, =Y ._,az" — Y. "z

r € [1, n] is common to both sums, so extract the remaining terms:
(1—2)S, =az® —az"™t 4+ > ax" = > az”
—az’ —ax"tl =q (1 — x”“)

1_xn—|—1

Hence: Sp = a7
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Averages

Syllabus

Optical Fourier
Transform

Organization

1: Sums and
Averages

Geometric Series
Infinite Geometric
Series

Dummy Variables

Dummy Variable
Substitution

> Averages
Average Properties
Periodic Waveforms

Averaging Sin and
Cos

Summary

If a signal varies with time, we can plot its waveform, z(%).

The average value of x(t) in the range Th <t <Tj is

1 15 T
To—1T7 Jt=T}

() ry o) = (t)dt

mt)
<X 1y / \-/
]

The area under the curve x(t) is equal to the area of the rectangle
defined by 0 and ()7, 7).

Angle brackets alone, (x), denotes the average value over all time

(#(t)) = lima Bsoo (z())[_a 4B
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Average

Properties

Syllabus

Optical Fourier
Transform

Organization

1: Sums and
Averages

Geometric Series
Infinite Geometric
Series

Dummy Variables

Dummy Variable
Substitution

Averages
> Average Properties
Periodic Waveforms

Averaging Sin and
Cos

Summary

The properties of averages follow from the properties of integrals:

Addition:
Add a constant:

Constant multiple:

where the constants a and ¢ do not depend on time.

For example:

() +yO)iry 1) = oz Jior, (@) +y(1)) dt

T2 -1 t:2T1 flf(t)dt ™ T2—T1 t=2T1 y(t)dt

) i1y ) T W) 1, 1y

But beware: (x(t) x y(t)) # (x(t)) x (y(t)).
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Periodic

Waveforms

Syllabus

Optical Fourier
Transform

Organization

1: Sums and
Averages

Geometric Series
Infinite Geometric
Series

Dummy Variables

Dummy Variable
Substitution

Averages
Average Properties

Periodic

Waveforms
Averaging Sin and
Cos

Summary

A periodic waveform with period T repeats itself at intervals of T":
r(t+T)=x(t) = x(t + kT) = x(t) for any integer k.

The smallest T' > 0 for which x(t+7T) =«
period. The fundamental frequency is F' =

AVAWAWAWAWAWA

VLY

—_—

/N

t) Vt is the fundamental

Il

For a periodic waveform, (z(t)) equals the average over one period.
It doesn’'t make any difference where in a period you start or how many
whole periods you take the average over.

Example:
x(t) = |sint|
() =+ [ |sint| dt= = [” sintdt
= L [-cost]p=2(1+1) =2 ~0.637
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[proof that x(t + kT') = x(t)]

Proof that x(t + T) = z(t) Vt = z(t £ kT) = z(t) Vt, Vk € Z

We use induction. Let Hj be the hypothesis that (¢t + kT') = x(t) Vt. Under the assumption that
xz(t+7T) = z(t) Vt, we will show that if Hy, is true, then so are Hy11 and Hy_;. Since we know that
Hy is definitely true, this implies that Hy, is true for all integers k, i.e. for all k € Z.

[0 Suppose Hy is true, i.e. (7 + kT) = x(7) V7. Now set 1 =t + T. This gives z(t + T + kT) =
x(t + T) Vt. But, we assume that z(t + T) = z(t), soxz(t + (k+1)T) = z(t + T + kKT) =
x(t+7T)=xz(T)Vt. Hence Hy1is true.

[0  Now suppose Hy is true as before but this time set 7 = ¢ — T'. Substituting this into u(7 4+ kT") =

u(T) gives u(t—T+kT) = u(t—T). Substituting it also into u(7+7") = u(7) gives u(t) = u(t—T).
Finally, combining these two identities gives u (t + (k — 1)T") = u(t) which is Hy_.
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Averaging Sin and Cos

Syllabus

Optical Fourier
Transform

Organization

1: Sums and
Averages

Geometric Series
Infinite Geometric
Series

Dummy Variables

Dummy Variable
Substitution

Averages
Average Properties
Periodic Waveforms

Averaging Sin and
D> Cos

Summary

A sine wave, z(t) = sin 2w Ft, has a frequency F and a period T = +
so that, sin (27F (¢t + +)) = sin (27 Ft + 27) = sin 27 Ft.

(sin 2w F't) = =+ fi sin (27 F't) dt =0 [N\ /N
:TO = S - \/ \\/

Time (ms)

Also, (cos2mF't) = 0 except for the case F' = 0 since cos 270t = 1.

0 F+#0

Hence: (sin27Ft) =0 and (cos2mFt) =
1 FF=0

Also: (™) = (cos 2 F't + isin 27 F't)
= (cos 2w F't) 4 i (sin 2n F't)

{0 F#0

1 F=0
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Summary

Syllabus

Optical Fourier
Transform

Organization

1: Sums and
Averages

Geometric Series
Infinite Geometric
Series

Dummy Variables

Dummy Variable
Substitution

Averages

Average Properties

Periodic Waveforms

Averaging Sin and
Cos

> Summary

Sum of geometric series (see RHB Chapter 4)
o Finite series: S = a X 1_1”3_—n+1

e
o Infinite series: S = %= but only if || <1

1
Dummy variables

o Commonly re-used elsewhere in expressions

o Substitutions must cover exactly the same set of values
(t)dt

1 Ts

Averages: <x>[T1,T2] = Ty—T Jt=T, X

Periodic waveforms: x(t + kT') = x(t) for any integer k
o Fundamental period is the smallest T°
o Fundamental frequency is F = &
o For periodic waveforms, () is the average over any integer

number of periods
o (sin27Ft) =0
0 F+#0

o (cos2mEt) = (™) = L P
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> 2: Fourier Series

Periodic Functions

Fourier Series
Why Sin and Cos
Waves?

Dirichlet Conditions
Fourier Analysis

Trigonometric
Products

Fourier Analysis

Fourier Analysis
Example

Linearity

Summary

2: Fourier Series
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Periodic Functions

2: Fourier Series

> Periodic Functions

Fourier Series
Why Sin and Cos
Waves?

Dirichlet Conditions
Fourier Analysis

Trigonometric
Products

Fourier Analysis

Fourier Analysis
Example

Linearity

Summary

A function, u(t), is periodic with period T' if u(t +T) = u(t) Vt
e Periodic with period T = Periodic with period kT Vk € Z*

The fundamental period is the smallest T' > 0 for which u(t + T') = u(t)
T

M

If you add together functions with different periods the fundamental period
is the lowest common multiple (LCM) of the individual fundamental
periods.

Example:
o u(t) =cosdnt = Tu:j—;_05
o (t)z cosbprt = T, §2—04
w(t) = u(t) + 0.1v(t = lem(0.5, 0.4) = 2.0

— T, —T1,=0.4

%%WW TS
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Fourier

Series

2: Fourier Series

Periodic Functions

> Fourier Series
Why Sin and Cos
Waves?

Dirichlet Conditions
Fourier Analysis

Trigonometric
Products

Fourier Analysis

Fourier Analysis
Example

Linearity

Summary

If u(t) has fundamental period T and fundamental frequency F' = # then,

in most cases, we can express it as a (possibly infinite) sum of sine and
cosine waves with frequencies 0, F', 2F, 3F, ---.

T

SN NN\

The Fourier series for u(t) is

u(t) =

sin 2w F't

—0.4 sin272F't
+0.4 sin 273 F't

—0.2 cos2m4F't

[b1 = 1]

[b; = —0.4]
[bs = 0.4]
a1 = —0.2]

u(t) =2 + 57 (a, cos 2mnFt + b, sin 2rnFt)

The Fourier coefficients of wu(t) are ag, a1, - --

and bl, bQ,

The n!™ harmonic of the fundamental is the component at a frequency nF.
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Why Sin

and Cos Waves?

2: Fourier Series

Periodic Functions

Fourier Series
Why Sin and Cos
> Waves?

Dirichlet Conditions
Fourier Analysis

Trigonometric
Products

Fourier Analysis

Fourier Analysis
Example

Linearity

Summary

Why are engineers obsessed with sine waves?
Answer: Because ...

1. A sine wave remains a sine wave of the same frequency when you
(a) multiply by a constant,
(b) add onto to another sine wave of the same frequency,
(c) differentiate or integrate or shift in time

2. Almost any function can be expressed as a sum of sine waves
o Periodic functions — Fourier Series
o Aperiodic functions — Fourier Transform

3. Many physical and electronic systems are
(a) composed entirely of constant-multiply/add/differentiate
(b) linear: u(t) — x(t) and v(t) — y(t)
means that u(t) + v(t) — z(t) + y(t)
= sum of sine waves — sum of sine waves

In these lectures we will use T' for the fundamental period and F' = % for
the fundamental frequency.
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Dirichlet

Conditions

2: Fourier Series

Periodic Functions

Fourier Series
Why Sin and Cos
Waves?

Dirichlet
> Conditions

Fourier Analysis

Trigonometric
Products

Fourier Analysis

Fourier Analysis
Example

Linearity

Summary

Not all u(t) can be expressed as a Fourier Series.

Peter Dirichlet derived a set of sufficient conditions.

The function u(t) must satisfy:

e periodic and single-valued
o [V |u®)|dt < oo
e finite number of maxima/minima per period
e finite number of finite discontinuities per
period
Good:
sin(t) t?
Badi x
tan (t) sin ()

Peter Dirichlet
1805-1859

SN NS

quantized

AN

oo halving steps
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Fourier

Analysis

2: Fourier Series

Periodic Functions

Fourier Series

Why Sin and Cos
Waves?

Dirichlet Conditions
D> Fourier Analysis

Trigonometric
Products

Fourier Analysis

Fourier Analysis
Example

Linearity

Summary

Suppose that u(t) satisfies the Dirichlet conditions so that

u(t) =2 + > 7, (a, cos 2mnFt + b, sin 2rnFt)
Question: How do we find a,, and b,,?
Answer: We use a clever trick that relies on taking averages.

(x(t)) equals the average of z(t) over any integer number of periods:
T
(x(t)) = 7 [,_,x(t)dt

Remember, for any integer n, (sin2mnFt) =0

0 0

(cos2mnF't) = n7
1 n=0

Finding a,, and b,, is called Fourier analysis.
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Trigonometric Products

2: Fourier Series

sin(z + y) = sinx cosy £ cos x sin y

Periodic Functions

. 1 . 1 .

Fourier Series = SIN X COSYy = = sIn(x + + = sin(xr —

Why Sin and Cos Y 2 ( y) 2 ( y)

‘I’D"j‘;fl; i cos(x £ y) = cosx cosy F sinx sin y

Fourier Analysis = cosxcosy = = cos(x + y) + 3 cos(z — y)
Trigonometric . .

> Products sinzsiny = 3 cos(z — y) — 5 cos(x + y)

Fourier Analysis

B Set x = 2rmF't, y = 2mrnF't (with m +n # 0) and take time-averages:

;u'::::ryy o (sin(2mrmFt)cos (2mrnF't)

)
= (3 sin(2m (m + n) Ft)) + (5 sin(2r (m — n) Ft)) =0
o (cos(2mmkFt)cos (2mnF't))

= (3 cos(2m (m +n) Ft)) + (5 cos(2m (m — n) Ft))= {? m#n
3 m=n
o (sin(2rmF't)sin (2mnFt))
= (3 cos(2m (m — ) Ft)) — (} cos(2r (m + n) Ft))= {? mrr
5 M=n
Summary: (sincos) =0 [provided that m + n # 0]
(sinsin) = (coscos) = % if m = n or otherwise = 0.
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[ Trigonometric Products Proofs]

Proof that cosxcosy = % cos(z +y) + % cos(xz — y)
We know that

cos(z + y) = cosx cosy — sinzxsiny

cos(z — y) = cosx cosy + sinxsiny
Adding these two gives

cos(z + y) + cos(x — y) = 2cosx cosy
From which: cosxcosy = % cos(x +vy) + % cos(z — y)

Subtracting instead of adding gives: sinzsiny = % cos(z —y) — % cos(z + y)

0 m#n

m=mn

Proof that <% cos(2m (m + n) Ft)> + <% cos(2m (m —n) Ft)> = {l
2

We are assuming that m and n are integers with m 4+ n # 0 and we use the result that (cos 27 ft) is
zero unless f = 0 in which case (cos2w0t) = 1 . The frequency of the first term, cos(27 (m + n) F't),
is (m + n) F which is definitely non-zero (because of our assumption that m 4+ n # 0) and so the
average of this cosine wave is zero. The frequency of the second term is (m — n) F' and this is zero
only if m = n. So it follows that the entire expression is zero unless m = n in which case the second
term gives a value of % Since m and n are integers, we can take the averages over a time interval T’
and be sure that this includes an integer number of periods for both terms.
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Fourier

Analysis

2: Fourier Series

Periodic Functions

Fourier Series
Why Sin and Cos
Waves?

Dirichlet Conditions
Fourier Analysis

Trigonometric
Products

D> Fourier Analysis

Fourier Analysis
Example

Linearity

Summary

Find a,, and b, in u(t) =4 4+ > | (an cos 2mnE't + b, sin 2rnF't)

Answer: a,, = 2 (u(t) cos (2rnEF't)) = ( ) cos (2mnE't) dt
by, = 2 (u(t)sin (2mnFt)) = ( )sin (2mn F't) dt
Proof [ag]: 2 (u(t) cos (2n0F't)) = 2 (u (t)) 2 X QP =ag

Proof [a,, n > 0]:
2 (u(t) cos (2mnFt))
= 2 (% cos (2mnFt)) + > .2 2(a, cos (2mrFt) cos (2mnFt))
+ > 2(b, sin (27 F't) cos (2mnFt))

Term 1: 2 (% cos (2rnFt)) =0
ap, T=n

0 r#n
(2mnFt)) = ay

0

Term 2: 2{a, cos (2nrFt) cos (2mrnFt)) = {

= > 1 2{a, cos (2mrF't) cos
Term 3: 2 (b, sin 2wrF't cos (2mrnF't))

Proof [b,,, n > 0]: same method as for a,,
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Fourier Analysis Example

2: Fourier Series

Periodic Functions

Fourier Series
Why Sin and Cos
Waves?

Dirichlet Conditions
Fourier Analysis
Trigonometric

Truncated Series:

un(t) = 5 + ij:l (an cos2mnEt + by, sin 2rnF't)

Pulse: T = 20, width W = %, height A =8

10

5

o—

Products _ 2 T 2mnt o 5 10 15 20 25
Fourier Analysis Un = T fO M//U/(t) cOS T dt 10 N=0
Fourier Analysis — 2 2mnt 5
> Example T fO A COs TV[th 0_(.) . —— 2._
Linearity _ 2AT [.:. 2mnt PP °
Summary  2mnT [Sln T ]O 12£,: N=1 :Ill
— A SlIl 27T§L_,W — A Sln —_— 0
nm nm 0 5 10 15 20 25
T . 10 _
bp = 2 [, u(t)sin 22Ldt 1/ " N
0
— 2}‘47;1; [— COS %} g)/V . 0 5 10 15 20 25
= = (1 —cos &t . =S
nm ( 2 ) OUZ. . XV
0 5 10 15 20 25
n |0 1 2 3 4 5 6 10 N-10
5
8 —8 8 IAV VA_L
079 1 P 0 3T O 571 O i o 5 10 15 20 25
8 16 8 8 16 " =
bn 7y 27 3 0 57 s z ! J
0 5 10 15 20 25
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[Small Angle Approximation]

In the previous example, we can obtain ag by noting that GTO = (u(t)), the average value of the
waveform which must be ATW = 2. From this, ag = 4. We can, however, also derive this value from
the general expression.

The expression for a,, is am, = % sin 7 For the case, n = 0, this is difficult to evaluate because both

the numerator and denominator are zero. The general way of dealing with this situation is L'Hopital's
rule (see section 4.7 of RHB) but here we can use a simpler and very useful technique that is often
referred to as the “small angle approximation”. For small values of 0 we can approximate the standard
trigonometrical functions as: sinf ~ 0, cosf ~ 1 — 0.502 and tan ~ 0. These approximations are
obtained by taking the first three terms of the Taylor series; they are accurate to O(#3) and are exactly
correct when 9 = 0. When m = 0 we can therefore make an exact approximation to a, by writing
an = ni sin 2 ~ A« ”277 = % = 4. What we have implicitly done here is to assume that n is a
real number (mstead of an integer) and then taken the limit of a,, as n — 0,
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Linearity

2: Fourier Series

Periodic Functions

Fourier Series
Why Sin and Cos
Waves?

Dirichlet Conditions
Fourier Analysis

Trigonometric
Products

Fourier Analysis

Fourier Analysis
Example

> Linearity

Summary

Fourier analysis maps a function of time onto a set of Fourier coefficients:

u(t) = {an, bn}
This mapping is linear which means:
(1) For any =, if u(t) — {an, b,} then yu(t) = {va,, vb,}
(2) If u(t) — {an, bp} and u/(t) — {a’, b } then
(u(t) +u'(t)) = {an +az, bn + by, }
Proof for a,: (proof for b,, is similar)
) If 2 fo ) cos (2rnF't) dt = a,,, then
Tfo yu(t)) cos (2anF't) dt
=2 fOT u(t) cos (2rnFt) dt = va,

(2) If %fOT u(t) cos (27mFt) dt = an and
= fo )cos (2rnE't) dt = a!, then
2 [ (u (t) +u’(t))cos (27mFt) dt

= = fo ) cos (2rnFt) dt + = fo
= a, + a

) cos (2mnE't) dt
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Summary

2: Fourier Series

Periodic Functions

Fourier Series
Why Sin and Cos
Waves?

Dirichlet Conditions
Fourier Analysis

Trigonometric
Products

Fourier Analysis

Fourier Analysis
Example

Linearity
> Summary

Fourier Series:
u(t) =4+ > >, (a, cos 2rnFt + b, sin 2nnFt)

Dirichlet Conditions: sufficient conditions for FS to exist
o Periodic, Single-valued, Bounded absolute integral
o Finite number of (a) max/min and (b) finite discontinuities

Fourier Analysis = “finding a,, and b,,"

o a, =2 (u(t)cos (2mrnFt))

£ 2 OT u(t) cos (2mn F't) dt
o b, =2 (u(t)sin (2rnFt))

= OT u(t) sin (2mnF't) dt
The mapping u(t) = {an, b, } is linear

For further details see RHB 12.1 and 12.2.
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3: Complex
D> Fourier Series

Euler's Equation
Complex Fourier
Series

Averaging Complex
Exponentials
Complex Fourier
Analysis

Fourier Series <
Complex Fourier
Series

Complex Fourier
Analysis Example
Time Shifting
Even/Odd Symmetry
Antiperiodic = Odd
Harmonics Only
Symmetry Examples

Summary

3: Complex Fourier Series
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Euler's Equation

3: Complex Fourier
Series

D> Euler's Equation
Complex Fourier
Series

Averaging Complex
Exponentials
Complex Fourier
Analysis

Fourier Series <
Complex Fourier
Series

Complex Fourier
Analysis Example

Time Shifting
Even/Odd Symmetry

Antiperiodic = Odd
Harmonics Only

Symmetry Examples

Summary

0

Euler's Equation: € = cos@ + isin6 [see RHB 3.3]

i0 | _—ib . _
Hence: cosf = % — %629 4+ %6—20
ginfh = el—e? _ _1

. 30 1. —i6
5 51€ —|—2ze

0

Most maths becomes simpler if you use €' instead of cos and sin 6

The Complex Fourier Series is the Fourier Series but written using e’

Examples where using € makes things simpler:

Using e®? Using cos @ and sin 6

el(0+9¢) — it pid cos (0 + ¢) = cos B cos ¢ — sin 0 sin ¢

elfeit = ¢i0+9) | cosfcosd = % cos (0 + ¢) + % cos (0 — ¢)

d _i0 _ : if d "
ge’” =1e decose— sin 0
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Complex Fourier Series

3: Complex Fourier
Series

Euler's Equation
Complex Fourier
Series

Averaging Complex

Exponentials

Complex Fourier

Analysis

Fourier Series <

Complex Fourier

Series

Complex Fourier

Analysis Example

Time Shifting

Even/Odd Symmetry

Antiperiodic = Odd

Harmonics Only

Symmetry Examples

Summary

Fourier Series: u(t) = % + >, (an cos2mnE't + b, sin 2rnF't)

Substitute: cosf = Let? + %e_w and

5 sin@ = —1iet? + %ie_w

2

u(t) =% +5 7 (an (56 + 377) + b, (—5ie” + 2ie™ "))

= 20 + 3  ((5an — 3iby) ™ F1) [0 = 27n F't]
£3°%  ((Lan + Liby) e-i2mFr)
=X U,ei2mnit
where [bo = 0]
r%an %ibn n>1
U, = < %ao n=20 = Uy, = % (a|n| + ib|n|)
500 + 5 1< =1

The U,, are normally complex except for Uy and satisty U,, = U*

Complex Fourier Series: u(t) =>"> __ Upe™ ™" [simpler ©]

E1.10 Fourier Series and Transforms (2014-5543)
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Averaging Complex Exponentials

3: Complex Fourier

- If x(t) has period % for some integer n (i.e. frequency % = nF):

Euler's Equation

(x(t)) £ F [iZo @ (t)dt

Averaging Complex

- Exponsntials This is the average over an integer number of cycles.

Complex Fourier
Analysis

Fourier Series For a complex exponential:

Complex Fourier
Series

Complex Fourier (2™ Ft) = (cos (2mnFt) + isin (2rnFt))

Analysis Example

Time Shifting = (cos (2mnFt)) + ¢ (sin (27nF't))

Even/Odd Symmetry
Antiperiodic = Odd 1 + OZ n = O

Harmonics Only

Symmetry Examples 0 + OZ n # O

Summary

Hence:

2t Ft\ __ 1 n=0
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Complex Fourier Analysis

3: Complex Fourier
Series

Euler's Equation

Complex Fourier

Series

Averaging Complex

Exponentials
Complex Fourier

D> Analysis

Fourier Series <>
Complex Fourier
Series

Complex Fourier
Analysis Example

Time Shifting
Even/Odd Symmetry

Antiperiodic = Odd
Harmonics Only

Symmetry Examples

Summary

Complex Fourier Series: u(t) = > 7 e U, et2mnkt

n—=

To find the coefficient, U,,, we multiply by something that makes all the
terms involving the other coefficients average to zero.

<u(t)e_i27mFt> — <Z$O:_OO UreiZW'rFte—ianFt>
— <Z$i_oo UreiQW(r—n)Ft>
D N A CL LD

All terms in the sum are zero, except for the one when n = r which equals
U,:

U, = (u(t)e” 2t [©]

This shows that the Fourier series coefficients are unique: you cannot have
two different sets of coefficients that result in the same function wu(t).

Note the sign of the exponent: “+" in the Fourier Series but “—" for
Fourier Analysis (in order to cancel out the “+4").
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Fourier Series <+ Complex Fourier Series

3: Complex Fourier
Series

Euler's Equation
Complex Fourier
Series
Averaging Complex
Exponentials
Complex Fourier
Analysis
Fourier Series <
Complex Fourier
Series
Complex Fourier
Analysis Example

Time Shifting
Even/Odd Symmetry

Antiperiodic = Odd
Harmonics Only

Symmetry Examples

Summary

u(t) =2 + > 7, (a, cos 2mnFt + b, sin 2rnFt)

_ o0 12t F't
_ Zn:—oo Une

We can easily convert between the two forms.

Fourier Coefficients — Complex Fourier Coefficients:

Uin —

5 (apn) F ibjn))

U, =U*,]

Complex Fourier Coefficients — Fourier Coefficients:

an = Uy, + U_,, = 2% (U,,)
by =i (U — U_p) = —25 (U,,)

The formula for a,, works even for n = 0.

[R = “real part”]

[S = “imaginary part”]
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[Complex functions of time]

In these lectures, we are assuming that u(t) is a periodic real-valued function of time. In this case we

can represent u(t) using either the Fourier Series or the Complex Fourier Series:

u(t) = 20 4 3%  (ay cos 2enFt + by sin 27nFt) = 3.°0 Uy, ei2mnlt

n=—oo

We have seen that the U,, coefficients are complex-valued and that U,, and U_,, are complex conjugates

so that we can write U_,, = U} .

In fact, the complex Fourier series can also be used when u(t) is a complex-valued function of time
(this is sometimes useful in the fields of communications and signal processing). In this case, it is still
true that u(t) = > 00 Une?™Ft but now U,, and U_,, are completely independent and normally

U_p, # U*. "
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Complex Fourier Analysis Example

3: Complex Fourier
Series

Euler's Equation

Complex Fourier
Series

T = 20, width W = £, height 4 =8
Method 1:

Averaging Complex _1 -] n a’?’L bn Un
Ex:oangenfiaho P U:l:n —_ §an :F Z§bn 3
Complex Fourier _6 1 6
2“5"}’5;55 ) Method 2: 5 4 I, 4
ourier Series < — = 9 —
mplex urier —1 5%.3 5%.3
g:rie:e Fourie Un — <u(t)€ ’L27T’I’LFt> _4 O
Con‘ip|ex Fouriei- 1 T 5 P
Analysis Example — L —14TMN —4 - 4
Time Shifting T fO 'U/(t)e dt _3 3_71' —|_ ?’3_7-(-
Even/Odd Symmetry 1 W _i2 't . 8
Antiperiodic :I> odd — T fO Ae emn dt —2 Z%
Harmonics Only 4 -4
Symmetry Examples — A |:6—ZQ7T7’LFt:| w - ]- ; _|_ ZE
Summary —12mnFT 0 O 4 2
_ A (1 B €—i27rnFW>
e Ll e x rHiF
__ Ae ' (ezwnFW . 6—17T'nFW) 9 0 16 . —8
i2mn 27 t 27
_ AeTimnEW . =8 8 =4, ;=4
o nm S (TL?TFW) 3 31 3 3 + 2 31
— 8 in (T ot 4 0 0 0
= & sin (25) e 0 0 o
O | 55 B¢ B¢ T 'Bx
6 | 0 &  ig
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Time Shifting

3: Complex Fourier
Series

Euler's Equation
Complex Fourier
Series

Averaging Complex
Exponentials
Complex Fourier
Analysis

Fourier Series <
Complex Fourier
Series

Complex Fourier
Analysis Example

> Time Shifting
Even/Odd Symmetry

Antiperiodic = Odd
Harmonics Only

Symmetry Examples

Summary

oo 12T F't
n—=—oo U’ne

Complex Fourier Series: u(t) = >
If v(t) is the same as u(t) but delayed by a time 7: v(t) = u(t — 7)
u(t) = °F°_ U,e?mFt-m) =y
=% Y ei2mnFt
where V,, = U, e 27nET

Example:
u(t) = 6cos (2 F't)

Fourier: a1 =6, by =0

(Une—zanFT) ezanFt

5
u(t)
0
-5 W

0 0.5 1 15 2

Complex: U:|:1 = %Cl,l + %Zbl =3

v(t) = 6sin (20 Ft) = u(t — 7) ZL/M
Time delay: 7 = %iFT: 5 NS NS

0 0.5 1 15 2

B~ =

iy

Complex: Vi = Uje 2 = —3i
Vo1 =U_1€'2 = +3i

Note: If u(t) is a sine wave, U; equals half the corresponding phasor.
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Even/Odd Symmetry

3: Complex Fourier
Series

Euler's Equation (
Complex Fourier

Series (
Averaging Complex

Exponentials ( ]. ) +
Complex Fourier

Analysis ( 1 ) +
Fourier Series <>

Complex Fourier

Series Proof of (2): u(t) even = U, even

Con‘ip|ex Fouriei' ) T o ( )Ft

Analysis Example S —127T(—N

Time Shifting U_n T fo u(t) € dt
Even/Odd 1 =T

Symmetry — T 0 U(-:IS)G_ZanFx(—d:U)
Antiperiodic = Odd O_
Harmonics Only 1 —12mnFx
Symmetry Examples — T Jr=—T U(—x)e dl‘
S
i — 1 0 u(x)e—i%rnF:cdx — U
T Jx=-T — Un

Proof of (3): u(t) odd = U, odd
Same as before, except for the last line:

O o
=5 [ —u(z)e 2™y = U,

1) u(t)

2) u(t) even [u(t) =u(—-t)] <« U, even[U, =U_,)]

3) u(t) odd [u(t) = —u(—-t)] < U, odd[U, =-U_,]
t

(2 ) real & even < U, real & even [U,, =U*,, = U_,)]
(3) u(t) real & odd <« U, imaginary & odd [U,, =U*, = —-U_,)]

[substitute z = —{]

[reverse the limits]

leven: u(—z) = u(x)]

lodd: u(—x) = —u(x)]
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Antiperiodic = Odd Harmonics Only

3: Complex Fourier
Series

Euler's Equation
Complex Fourier
Series
Averaging Complex
Exponentials
Complex Fourier
Analysis
Fourier Series <
Complex Fourier
Series
Complex Fourier
Analysis Example
Time Shifting
Even/Odd Symmetry
Antiperiodic =
Odd Harmonics
> Only

Symmetry Examples

Summary

A waveform, u(t), is anti-periodic if u(t + 37) = —u(t).
If u(t) is anti-periodic then U,, = 0 for n even.

Proof:
Define v(t) = u(t + %), then

(1) v(t) = —u(t) =V, = -U,
(2) v(t) equals u(t) but delayed by —Z

2
V= U, ei2mF g — [ ginT — U, neven
—U,, nodd
Hence for n even: V,, = -U, =U, = U, =0
Example:

Uos.s = [0, 3+ 24, 0, 4, 0, 1] U[0:5]=[0, 3+2j, 0, }, 0, 1]
Odd harmonics only < 5| /J /‘”
Second half of each period is the g V“\\/“v v“\'\/\v o
negative of the first half. ! !

-1 -0.5 0 0.5 1
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Symmetry Examples

3: Complex Fourier
Series

Euler's Equation
Complex Fourier
Series
Averaging Complex
Exponentials
Complex Fourier
Analysis
Fourier Series <
Complex Fourier
Series
Complex Fourier
Analysis Example
Time Shifting
Even/Odd Symmetry
Antiperiodic = Odd
Harmonics Only
Symmetry
> Examples

Summary

All these examples assume that u(t) is real-valued < U_,, = UZ,,.
u[0:2J=[0, 2, -1]

(1) Even u(t) < real U,
Uz = [0, 2, —1]

(2) Odd u(t) < imaginary U,
Ups = [0, —2i, 4, i]

(3) Anti-periodic u(t)
< odd harmonics only

U();l = [O, —i]

(4) Even harmonics only
& period is really 27

UO:4 — [27 07 27 07 1]

S AN oN

1 05 0 05 1
U[0:3]=[0, -2j, j, ]]

AEATANEY

AVAERV,

-1 -0.5 0 0.5 1
U[0:1]=[0, -]]

O N D O

-1 -0.5 0 0.5 1

U[0:4]=[2, 0, 2, 0, 1]
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Summary

3: Complex Fourier
Series

Euler's Equation
Complex Fourier
Series

Averaging Complex
Exponentials
Complex Fourier
Analysis

Fourier Series <
Complex Fourier
Series

Complex Fourier
Analysis Example

Time Shifting
Even/Odd Symmetry

Antiperiodic = Odd
Harmonics Only

Symmetry Examples

> Summary

Fourier Series:
u(t) =9 + > (a, cos2ninFt + by, sin 2rnF't)

2
Complex Fourier Series: u(t) = Z;O:_OO U, et2mnEt
0 Un — <’U,(t)€_i27rnFt> é % OT u(t)e—i27rnFtdt

o Since u(t) is real-valued, U,, = U*
o FS—CFS: Uyp = 3aj, F isbyy
o CFS—FS:a,=U, +U_,
b, =1 (U, —U_,)
u(t) real and even < u(—t) = u(t)
< U, is real-valued and even < b,, = 0Vn

u(t) real and odd < u(—t) = —u(t)
< U, is purely imaginary and odd < a,, = 0Vn

u(t) anti-periodic < u(t + ) = —ul(t)
< odd harmonics only < ag,, = by, = Us,, = 0Vn

For further details see RHB 12.3 and 12.7.
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4: Parseval's
Theorem and
> Convolution

Parseval's Theorem
(a.k.a. Plancherel’s
Theorem)

Power Conservation
Magnitude Spectrum
and Power Spectrum

Product of Signals

Convolution
Properties

Convolution Example

=

Convolution and
Polynomial
Multiplication

Summary

Parseval’s Theorem and Convolution
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Parseval’s Theorem (a.k.a. Plancherel’s Theorem)

4: Parseval's
Theorem and
Convolution

Parseval's
Theorem (a.k.a.
Plancherel’s
Theorem)
Power Conservation
Magnitude Spectrum
and Power Spectrum
Product of Signals
Convolution
Properties
Convolution Example
Convolution and
Polynomial
Multiplication

Summary

Suppose we have two signals with the same period, T' = %
u(t) = S5 U,ei2mFt
= ()= Ure w2mnit [u(t) = u*(t) if real]
o(t) = S50 Ve

Now multiply u*(¢) and v(t) together and take the average over [0, T.
[Use different “dummy variables”, n and m, so they don't get mixed up]

(W (t)v(t)) = (i Une 230 o Ve i)
— Z;’LO:_OO U; Zfr?:—oo Vm <6—i27rnFt€i27TmFt>
D DN T DN (R (Y

The quantity (---) equals 1 if m = n and 0 otherwise, so the only non-zero
element in the second sum is when m = n, so the second sum equals V.

(w*v(t)) = 2ne o UnVn

If o(t) = u(t) we get: <yu(t)|2> = U U, =5 (UL

Hence Parseval's theorem:

E1.10 Fourier Series and Transforms (2014-5543)
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[Manipulating sums]

If you have a multiplicative expression involving two or more sums, then you must use different dummy
variables for each of the sums:

2p af(n) 22, bg(m)
(1) You can always move any quantities to the right
2n af(n) 22, bg(m) =32, a2, bf(n)g(m)
=2 n 2um abf(n)g(m)

(2) You can move quantities to the left past a summation provided that they do not involve the dummy

variable of the summation:
Don 2om abf(n)g(m) =%_, af(n)>_,, bg(m)
# 2 naf(n)g(m)_,, b

The last expression doesn’t make sense in any case since m is undefined outside ) | .

(3) You can swap the summation order if the sum converges absolutely

dondombn,m)=>"_ > h(n,m) provided that > > |h(n,m)| < oo

The equality on the left is not necessarily true if the sum does not converge absolutely. Of course,
if the sum has only a finite number of terms, it is bound to converge absolutely.
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Power Conservation

4: Parseval's
Theorem and
Convolution

Parseval’'s Theorem
(a.k.a. Plancherel’s
Theorem)

Power
> Conservation

Magnitude Spectrum
and Power Spectrum

Product of Signals

Convolution
Properties

Convolution Example

Convolution and
Polynomial
Multiplication

Summary

The average power of a periodic signal is given by P, £ <|u(t)|2>

This is the average electrical power that would be dissipated if the
signal represents the voltage across a 12 resistor.

Parseval’'s Theorem: P, = <\u(t)|2> =5y |Un|2

n=—0o0
= |Uo)® +232°°, |U,|? [assume wu(t) real]
_ 1.2, 1\ 2 2 _ an—iby
— ZaO —|— B) Zn:1 (Cl,n —|— bn) [U—f—n — a 22 ]
Parseval’s theorem = the average power in u(t) is equal to the sum of the
average powers in each of its Fourier components.

Example: u(t) =2+ 2cos2nFt + 4sin 2w F't — 2sin 6w F't

<|u(t)\2> =441 (224424 (-2)?) =16

uf0:3]=[2, 1-2j, 0, ]] u[0:3]=[2, 1-2j, 0, ]]
8
?1 60
€7 g gg P =<u?>=16
4 , , N VAV _\V
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
Time (s) Time (s)

Uns =[2,1—2i,0,i] = |Up|” +23 02, |Un|* =16
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Magnitude Spectrum and Power Spectrum

4: Parseval's
Theorem and
Convolution

Parseval's Theorem
(a.k.a. Plancherel’s
Theorem)

Power Conservation
Magnitude
Spectrum and

> Power Spectrum

Product of Signals

Convolution
Properties

Convolution Example

Convolution and
Polynomial
Multiplication

Summary

The spectrum of a periodic signal is the values of {U,,} versus nF'.

The magnitude spectrum is the values of {|U,|} = {%\/afm + b? }

id

The power spectrum is the values of {|Un|2} = {i (afnl + b|2n|> }

Example:
u(t) =2+ 2cos2nFt + 4sin 2w F't — 2sin 6w F't
Fourier Coefficients: ag.3 = [4, 2, 0, 0] bi.3 = 4, 0, —2]
Spectrum: U_3.3 =[—4, 0, 1+ 24, 2, 1 — 24, 0, 4]
Magnitude Spectrum: |U_s.3| = [1, 0, v5, 2, V5, 0, 1}

Power Spectrum: |U244| =1, 0, 5, 4, 5, 0, 1] > = (u*(t))]
2’ I I I 5 2=16
0 -3 -2 1 0 1 2 3 0 -3 -2 1 0 1 2 3

Frequency (Hz) Frequency (Hz)

The magnitude and power spectra of a real periodic signal are symmetrical.

A one-sided power power spectrum shows Uy and then 2 \Un|2 for n > 1.
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Product of Signals

4: Parseval's . . . 1

Theorem and Suppose we have two signals with the same period, T' = =,
onvolution 50 > jo

Parseval's Theorem U t — U 62 ™n

(a.k.a. Plancherel’s ( ) Zn:—oo n

Theorem) . 00 i2rmFt

Power Conservation U(t> _ Zm:—oo V’I’Le

Magnitude Spectrum

and Power Spectrum I'F w(t) p— u(t)/v(t) then WT‘ — Z::LD:—OO Ur—mvm é U?“ * VT

> Product of Signals

Convolution P 'F

Properties roor:

Convolution Example _ _ o0 12t F't o0 12mmF't
Convolution and w(t) o U(t)v(t) T Zn:—oo U’ne Zm:_oo Vme
Polynomial .

Multiplication — ZSLO:_OO Zzz_oo U’I’L Vme’L27T(m+n)Ft

Summary

Now we change the summation variable to use r instead of n:
r=m-4+n=mn=1r—m

This is a one-to-one mapping: every pair (m, n) in the range oo

corresponds to exactly one pair (m, r) in the same range.

w(t) =370 o Yoo Urem Vin €2 =300 W,e?m

where W, =" U,_,Vin £ U, % V,.
W, is the sum of all products U, V,,, for which m +n =r.

The spectrum W,. = U,. * V.. is called the convolution of U, and V..

E1.10 Fourier Series and Transforms (2014-5543) Parseval and Convolution: 4 —5 / 9



Convolution Properties

4: Parseval's
Theorem and
Convolution

Parseval's Theorem
(a.k.a. Plancherel’s
Theorem)
Power Conservation
Magnitude Spectrum
and Power Spectrum
Product of Signals
Convolution
> Properties
Convolution Example
Convolution and

Polynomial
Multiplication

Summary

Convolution behaves algebraically like multiplication:
1) Commutative: U, x V,, =V, x U,
2) Associative: U, x V. x W, = (U, x V,.) x W,. = U,. %
3) Distributive over addition: W,. x (U, + V,.)

rzo,thenIT*UrzUr

(Ve x W)
=W, xU, + W, xV,

1
4) ldentity Element or “1": If I,. = {O
.

Proofs: (all sums are over +£00)

1) Substitute for m: n=r—m<< m=r —n
Zm U Vin = Zn UnVi—n

2) Substitute forn: k=r4+m-—-n< n=r+m-—=k

Z ((Z Un-mV, ) ):Zk((z Ur—Vim )Wk m)
=2 5 2m Ur—kVim Wk m =21 Ur—k Qo VWi —m))

) Z W m( Un + Vin ): ZmWT—mUm+ZmWr—me
4) I,_ Uy, = 0 unless m = r. Hence ) I._,, Uy, =U,.

[1 <> 1 for any 7]

[1 <> 1]

E1.10 Fourier Series and Transforms (2014-5543)
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Convolution Example

4: Parseval's
Theorem and
Convolution

Parseval's Theorem
(a.k.a. Plancherel’s
Theorem)

Power Conservation
Magnitude Spectrum
and Power Spectrum
Product of Signals

Convolution
Properties

Convolution
Example

Convolution and
Polynomial
Multiplication

Summary

10 4 8 sin 27t

u(t)

v(t) = 4 cos b7t

U—l:l — [47’7 ma _47’] V—3:3 — [27 07 07 Qa 07 07 2]
g 50
gmM/W go g o
f 50
L 1 0 1 2 T2 1 0 1 2 2 1 0 1 2
Time (s) Time (s) Time (s)
10 2 20
S s I >1 I I 2 10 I I
0 1 0 1 3% 2 1 0 1 2 3 "% 3 2 1 0 1 2 3 a4

Frequency (Hz) Frequency (Hz) Frequency (Hz)

w(t) = u(t)v(t) = (10 + 8sin 27t) 4 cos 67t
= 40 cos 67t + 32 sin 27t cos 67t
= 40 cos 67t + 16sin 87t — 16 sin4nt
W_4.4 = (81, 20, =83, 0, 0, 0, 8¢, 20, —81]

To convolve U,, and V,,:
Replace each harmonic in V,, by a scaled copy of the entire {U,,}
(or vice versa) and sum the complex-valued coefficients of any
overlapping harmonics.
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Parseval and Convolution: 4 -7 / 9



Convolution and Polynomial Multiplication

4: Parseval's
Theorem and
Convolution

Parseval's Theorem
(a.k.a. Plancherel’s
Theorem)
Power Conservation
Magnitude Spectrum
and Power Spectrum
Product of Signals
Convolution
Properties
Convolution Example
Convolution and

Polynomial
Multiplication

Summary

Two polynomials: w(z) = Uzz® + Usx? + Uiz + Uy
v(z) = Vox? + Viz + V

Now multiply the two polynomials together:
w(z) = u(z)v(z)
= U3V2£C5 + (U3V1 + UQVQ) SE4 + (UgVo + U2V1 + U1V2) SES
+ UV + Uy Vi + UpgVa) 22 + (U1 Vo + Ug Vi) & +U Vg

The coefficient of 2" consists of all the coefficient pair from U and V where
the subscripts add up to r. For example, for r = 3:

Wy = UsVo + UV + Un Vo= 37 _ Us_ i Vim

If all the missing coefficients are assumed to be zero, we can write
W,r — Zfr?:—oo Ur—mvm é UT * ‘/7“

So, to multiply two polynomials, you convolve their coefficient sequences.

Actually, the complex Fourier Series is iust a polynomial:
u(t) — ZZO:_OO UneizwnFt _ ZZO:_OO Un (6’i27TFt)n
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Summary

4: Parseval's
Theorem and
Convolution

Parseval's Theorem
(a.k.a. Plancherel’s
Theorem)

Power Conservation
Magnitude Spectrum
and Power Spectrum
Product of Signals
Convolution
Properties
Convolution Example
Convolution and
Polynomial
Multiplication

> Summary

Parseval's Theorem: (u*(¢)v(t)) =>07 UV,

n=

)= U

o Power Conservation: <\u
o or in terms of a,, and b,,:

(@) = fad+ 5 02, (a2 +12)

Linearity: w(t) = au(t) + bv(t) & W, = al,, + bV,

Product of signals < Convolution of complex Fourier coefficients:
w(t) =ut)v(t) & Wy =Unx Vo 2300 Un-mVin

Convolution acts like multiplication:
o Commutative: U xV =V xU
o Associative: U x V x W is unambiguous
o Distributes over addition: U x (V4+W)=UxV +U «W
o Has an identity: I,. =1 if r = 0 and = 0 otherwise

Polynomial multiplication < convolution of coefficients

For further details see RHB Chapter 12.8.
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5: Gibbs

> Phenomenon

Discontinuities
Discontinuous
Waveform

Gibbs Phenomenon
Integration

Rate at which
coefficients decrease
with m
Differentiation
Periodic Extension
t2 Periodic
Extension: Method
(a)

t2 Periodic
Extension: Method
(b)

Summary

5: Gibbs Phenomenon
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Discontinuities

5: Gibbs Phenomenon A fynction, v(t), has a discontinuity of amplitude b at ¢t = a if

> Discontinuities
Discontinuous

\(/;\ilz‘l:’::;lc;rl:nomenon lim€—>0 (U(CL —|_ 6) T U(CL o 6)) — b # O
Integration

S Conversely, v(t), is continuous at t = a if the limit, b, equals zero.

coefficients decrease
with m

Differentiation

Periodic Extension Exa m p | es:
t2 Periodic ]

Extension: Method b bt
(a) f

2 0t
t< Periodic 0 . | | 0

Extension: Method

u(t)
v(t)

(b) ae Timae @ are ae Tim?a ® are
Summary . . .
Continuous Discontinuous

We will see that if a periodic function, v(%), is discontinuous, then its
Fourier series behaves in a strange way.
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Discontinuous Waveform

5: Gibbs Phenomenon

Discontinuities
Discontinuous
Waveform

Gibbs Phenomenon
Integration

Rate at which
coefficients decrease
with m
Differentiation
Periodic Extension
t2 Periodic
Extension: Method
(a)

t2 Periodic
Extension: Method
(b)

Summary

Pulse: T = % = 20, WidthI%T, height A =1

U 1 0.57T Ae—imeFtdt
m =

T Jo
_ i [e—izmet]OﬁT
2mrmFE'T 0
_ 1 —iTm _ (=1)™-1)i
- 2m™m (6 1) o 2Tm
(
0 m # 0, even

=05 m=0
=t modd

\ ™7
+ % (sin 2 Ft + %Sinﬁﬂ'Ft
—I—%Sin 10w F't + .. )

So, u(t) =

1
2

Define: uN(t) — ZT]X:_N Ume’i27rmFt
un(0) = 0.5 VN
max; uy (t) — g+ [q Sptdt~1.0895
—00

t

{1 T

0 5 10 15 20
1 _ —_—
max(u,)=0.500
0.5
og— " : .
0 5 10 15 20

max(ul):l.137

7

——

0 5 10 15

20
max(ua):l.loo /

5 10 15 20

1 max(u,)=1.094
05
o=t WP . :

0 5 10 15 2

0

1 max(u,;)=1.089
05
o N=41

[Enlarged View: w41 ()]

E1.10 Fourier Series and Transforms (2014-5559)

Gibbs Phenomenon: 5 -3 / 11



[Powers of —1 and 1]

m

Expressions involving (—1)™ or, less commonly, i™ arise quite frequently and it is worth becoming

familiar with them. They can arise in several guises:
iy . o
e M = ™M = (') = cos (mm) = (—1)™
1 .1 m

e—i%wm — (e—iéw)m — (_Z)m

el

V]

As m increases these expressions repeat with periods of 2 or 4. Simple expressions involving these

quantities make useful sequences.

m 4| 3| -2|-1]0]| 1 2 3 | 4
(—1)™ = cosm™m = ™™ 1 | -1} 1 | —-1]|1]-1]1]-1]1
im = e!0-5™m 1 1 —1 —1 1 1 —1 —1 | 1

(—i)™ = e=?0-5mm 1 | —i | —=1] 4 | 1] —i | —=1] 3 |1
s(1+(=1)™) 1 0 1 0O |1]| 0O 0 |1
T(1-(-1)™) 0 1 0 1 |0 1 0 1 |0

2 (@™ 4 (—i)™) = cos0.5mm | 1 o |-1]| 0 |1 0 |—-1] o0 |1
A4+ (DM (=)™ | 1 0 0 0 [1] 0 0 0 |1
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Gibbs Phenomenon

5: Gibbs Phenomenon

Discontinuities
Discontinuous
Waveform

> Gibbs Phenomenon
Integration

Rate at which
coefficients decrease
with m
Differentiation
Periodic Extension
t2 Periodic
Extension: Method
(a)

t2 Periodic
Extension: Method
(b)

Summary

Truncated Fourier Series: un(t) =)

If u(t) has a discontinuity of height b at ¢ = a then:
u(a—e)+u(a+te)

N

m=—

N Ume

(1) un(a) e lime_ 5

12mmE't

(2) un(t) has an overshoot of about 9% of b at the discontinuity. For
large N the overshoot moves closer to the discontinuity but does
not get smaller (Gibbs phenomenon). In the limit the overshoot

equals (—% + = [ 22Ldt) b~ 0.0895b.

t

(3) For large m, the coefficients, U,, decrease no faster than |m/| ™.

max; uy(t) el 1.0895. ..

(

0 m # 0, even
0.9 m=20
w;—jr m odd
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[Origin of Gibbs Phenomenon]

This topic is included for interest but is not examinable.

Our first goal is to express the partial Fourier series, un(t), in terms of the original signal, u(t). We

begin by substituting the integral expression for U, in the partial Fourier series
UN(t) — Z;ti\]_N Unez27rnFt: Z;ti\]_N (% fO u(T)e ’LQ?T’I’LF’TdT) ei2mn 't
Now we swap the order of the integration and the finite summation (OK if the integral converges Vn)
T ; _
un(t) = & [ u(r) (SN e =) ar

Now apply the formula for the sum of a geometric progression with z = 27 (t—7).

Z+N o ,~N_,N+1 —(N+0.5)_,N+0.5
n=—N - 1—z - ~—0.5_,0.5

1 T 12 (N40.5)F(r—t) __—i27(N+0.5)F(7—1t)
upn (t) = T fo u(T) < ei27r0.5F(T—t)_Z—i27r0.5F(T—t) T

T sinmw(2N+1)F(T—t
= % fO U’(T) sgnwF(Z—i) )dT

sin((N+0.5)x)
sin 0.5z

So if we define the Dirichlet Kernel to be Dy (z) =

un(t) = & [ u(t)Dy (20F (1 — t)) dr

So what we have shown is that ux(t) can be obtained by multiplying w(7) by a time-shifted Dirichlet
Kernel and then integrating over one period. Next we will look at the properties of the Dirichlet Kernel.

, and set x = 2w F' (T — t), we obtain
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[Dirichlet Kernel]

This topic is included for interest but is not examinable.

Dirichlet Kernel definition: Dy (xz) = Z N etn® — 1 4 22 _, cosnz = sin((N40.5)x)

sin 0.5z

Dy (z) is plotted below for N = {2, 5, 10, 21}. The vertical red lines at &7 mark one period.

4 D, () 10 D) 2 D, 0 D,,()
2 5 § 10 \5’ 20
0 AN AN 0 AN A A AN o N AN A A Al g [SEENVIAT atllng il

\/ \/ \/ \/ VA4 VY VY VY VY GV Vv"v AV VTV Ou“vvv‘v vvvv T
-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6
X X X X

e Periodic: with period 27
e Average value: (Dy(2)) = f+7T Dy (z)dx =1
e First Zeros: Dny(z) =0atx ==+

D2(x)
D5(x)

T
N+0 = define the main lobe as ~NT03 <z < N—|—O g

e Peak value: 2N + 1 at x = 0. The main lobe gets narrower but higher as N increases.

e Main Lobe semi-integral:

ﬁ . N+0 5 ((N+0.5)x) 1
fa::O DN(CU)dJ? - fa::O = sin 0.5z —dx = — N+0.5 yW:O ﬁdy[y - (N + 0. 5):6]
where we substituted y = (N +0.5)x. Now, for large N, we can approximate sin 2N+1 ~ 2N+1.
NT05 o1 i ~ ~
Joco ” Dn(z)dr = o5 yﬂzo 2811\?+y1 dy =2 f S”ylydyN 3.7038741 ~ 27 x 0.58949

We see that, for large enough NN, the main lobe semi-integral is independent of V.
[In MATLAB Dy (x) = (2N + 1) x diric(z, 2N + 1)]
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|Gibbs Phenomenon Overshoot]

This topic is included for interest but is not examinable.

The partial Fourier Series, un(t), can be obtained by multiplying u(¢)

by a shifted Dirichlet Kernel and integrating over one period:
un(t) = & [ u(t)Dy (20F (1 — t)) dr

For the special case when u(t) is a pulse of height 1 and width 0.57":
un(t) = = [V° Dy (2nF (T —t)) dr

Substitute z = 27TF(T —t)
un(t) = 5o [T L2 Dy (@) de = 5= [7.27" Dy (2) da

—2wF't —2wF't

e For ¢t =0 (the blue integral and the blue C|rc|e on the upper graph):
un(0) = 5= [o DN (z)dz=0.5

e Fort=

T
2N+1

(the red integral and the red circle on the upper graph):

u_ ()
R

-1 -0.5 0 0.5 1 15 2

[ t=0.24 '

-1 -0.5 0 0.5 1 15 2

-1 -0.5 0 0.5 1 15 2

0 T NT05
un (ger) = 2 ST 00 D () de= o [° o Dy (@)dat g Jo V0 Dy (x) d

N+0.5 TYTNT0.5

For large N, we replace the first term by a constant (since it is the semi-integral of the main lobe)

and replace the upper limit of the second term by 7:
~ 0.58949 + 5 [7 D (z) de = 1.08949

o For0kKt<0.5T, un(t) =1 (the green integral and the green circle on the upper graph).
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Integration

5: Gibbs Phenomenon

Discontinuities
Discontinuous
Waveform

Gibbs Phenomenon
> Integration
Rate at which
coefficients decrease
with m
Differentiation
Periodic Extension
t2 Periodic
Extension: Method
(a)

t2 Periodic
Extension: Method
(b)

Summary

Suppose u(t) =Y.~ Upe?m™mit
Define v(t) to be the integral of u(t)
v(t) = ft u(T)dr = ft S Uy e™mETdr
D A L [assume OK to swap [ and > ]
=+ 0 Uy gk ei2nmF

_ o0 12mmFE't : : :
= cC+ Zm:—oo Vme where C IS an mtegratlon constant

[boundedness requires Uy = 0]

Hence V,,, = 5—%U,, except for Vj = c (arbitrary constant)
Example:
Square wave: U, = =2 for odd m (0 for even m)
- . _ =i —2i _ 1
Triangle wave: V,,, = 5—'% X —*t = ——5— for odd m (0 for even m)
e N wo A~ 5 v.()
0 0
'l 7 L L N7 n 7 '5 L " L L L
0 5 10 15 20 0 5 10 15 20

Convergence: v(t) always converges if u(t) does since V,,, o< Uy,
v (t) is a good approximation even for small NV
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Rate at which coefficients decrease with m

5: Gibbs Phenomenon

Discontinuities
Discontinuous
Waveform

Gibbs Phenomenon
Integration
Rate at which
coefficients
decrease with m
Differentiation
Periodic Extension
t2 Periodic
Extension: Method
(a)
t2 Periodic
Extension: Method
(b)

Summary

—2tm~1 for odd m (0 for even m)

—+=m 2 for odd m (0 for even m)

Square wave: U, =
Triangle wave: V,,, =

w2 F
v N o ~ ° v,(0
0 0
lphA N T . 7 -5 . N N N L -
0 5 10 15 20 0 5 10 15 20 Integratl ng

u(t) multiplies the U, by 5=% x m~!= they decrease faster.

The rate at which the coefficients, U,,,, decrease with m depends on the
lowest derivative that has a discontinuity:

e Discontinuity in u(t) itself (e.g. square wave)
. Uy, decreases as |m| ™"

For large |m

e Discontinuity in /() (e.g. triangle wave)
For large |m|, U, decreases as |m| "

e Discontinuity in u(™)(¢)
(n+1)

For large |m|, U,, decreases as |m|

e No discontinuous derivatives
For large |m|, U,, decreases faster than any power (e.g. e~I™)

E1.10 Fourier Series and Transforms (2014-5559)

Gibbs Phenomenon: 5 -6 / 11



Differentiation

5: Gibbs Phenomenon

Discontinuities
Discontinuous
Waveform

Gibbs Phenomenon
Integration

Rate at which
coefficients decrease
with m

> Differentiation
Periodic Extension
t2 Periodic
Extension: Method
(a)

t2 Periodic
Extension: Method
(b)

Summary

Integration multiplies Uy, by 5—=.

Q”mF = 1 2mrmF

Hence differentiation multiplies U,,, by

If u(t) is a continuous differentiable function and w(t) = dzgf) then,
provided that w(t) satisfies the Dirichlet conditions, its Fourier coefficients
are:

0 m =0

i2rmFU, m#0

Since we are multiplying U,,, by m the coefficients W,,, decrease more
slowly with m and so the Fourier series for w(t) may not converge (i.e.
w(t) may not satisfy the Dirichlet conditions).

Uy, o< |m| ™2 Uy o |m| ™" Uy o |m| ™"

Differentiation makes waveforms spikier and less smooth.
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Periodic Extension

5: Gibbs Phenomenon

Discontinuities
Discontinuous
Waveform

Gibbs Phenomenon
Integration

Rate at which
coefficients decrease
with m
Differentiation

> Periodic Extension
t2 Periodic
Extension: Method
(a)

t2 Periodic
Extension: Method
(b)

Summary

Suppose y(t) is only defined over a finite interval (a, b).

You have two reasonable choices to make a periodic version:

(a) T=b—a, u(t)=y(t)fora<t<b

y(t) a<t<b

(b) T =2(b—a), u(t) = y(2b—t) b<t<2b—a

Example:
y(t) =t for 0 <t <2

WM

y(t) (a) T=2 =

Option (b) has twice the period, no discontinuities, no Gibbs phenomenon
overshoots and if y(¢) is continuous the coefficients decrease at least as fast

—2
as |m| °.
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t* Periodic Extension: Method (a)

5: Gibbs Phenomenon

Discontinuities
Discontinuous
Waveform

Gibbs Phenomenon
Integration

Rate at which
coefficients decrease
with m

Differentiation
Periodic Extension
t2 Periodic
Extension: Method
> (a)
t2 Periodic
Extension: Method
(b)

Summary

y(t) =t for 0 <t <2

Method (a): T = + = 2

Um — % fOT t2€—i27rmFtdt

2t€—i27rmFt

T
Uoz%fo tht:%

1
T

{2 i2mmFt
—12mmEF

(—i2mrmF')?

Substitute ¢=#27TmE0 — gmi2mm I

1 T2 B 2T
T | —i2rmF  (—i27mF)?
. 2i 2

T omm + m2m?2

9e—12TMEt } T

- 3
(—i2rmF)” |

[for integer m]

4 K=1 4 K=3 4 K=6

2 2 2

o ! . . . o ! . . . of ! . . .
2 0 2 2 2 0 2 2 2 0 2 2

Uo:s = [1.333, 0.203 + 0.637i, 0.051 + 0.3184, 0.023 + 0.2124]
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t* Periodic Extension: Method (b)

5: Gibbs Phenomenon

Discontinuities
Discontinuous
Waveform

Gibbs Phenomenon
Integration

Rate at which

coefficients decrease
with m
Differentiation
Periodic Extension
t2 Periodic
Extension: Method
(a)
t2 Periodic
Extension: Method

> (b)

Summary

y(t) =t for 0 <t <2
Method (b): T'= & =4

F
_ 1 05T Lo _i2xmFt _ 1 05T 94, _ 4
Un =7 )_gsrte dt Uo =7 J_gsrt’dt =3

2te—i27'rmFt 0.57T

 (—i2wmF)?

1 [2o—i2mmFt
T —12mmF

9e—i2mmEt }

Substitute e ET = gFirm — (_1)™

(—1)””‘[ —2T }
T (—i2mmF)?

(-ny™mT? _ (=1)™8
2m2m2 T w2m?

Up.s = [1.333, —0.811, 0.203, —0.090]

Convergence is noticeably faster than for method (a)

[for integer m]

[all even powers of t cancel out]

[u(t) real+even = U, real]
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Summary

5: Gibbs Phenomenon

Discontinuities
Discontinuous
Waveform

Gibbs Phenomenon
Integration

Rate at which
coefficients decrease
with m
Differentiation
Periodic Extension
t2 Periodic
Extension: Method
(a)

t2 Periodic
Extension: Method
(b)

> Summary

Discontinuity at t = a
o Gibbs phenomenon: uy(t) overshoots by 9% of iump
o wun(a) — mid point of iump

Integration: If v(t) = ft u(t)dr, then V,,, = 5—=Up,

and Vi = ¢, an arbitrary constant. Uy must be zero.

Differentiation: If w(t) = dqil—sf), then W,,, = i2emFU,, provided
w(t) satisfies Dirichlet conditions (it might not)

Rate of decay:

dfu(t) -

—(k+1
(k+1) ult) s

o For large n, U, decreases at a rate |n| where

the first discontinuous derivative
o Error power: <(u(t) _ uN(t))2> =S o Unl’
Periodic Extension of finite domain signal of length L
o (a) Repeat indefinitely with period T'= L
o (b) Reflect alternate repetitions for period T'= 2L
no discontinuities or Gibbs phenomenon

For further details see RHB Chapter 12.4, 12.5, 12.6
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6: Fourier
> Transform

Fourier Series as
T — oo

Fourier Transform
Fourier Transform
Examples

Dirac Delta Function

Dirac Delta Function:

Scaling and
Translation

Dirac Delta Function:

Products and
Integrals

Periodic Signals
Duality

Time Shifting and
Scaling

Gaussian Pulse

Summary

6: Fourier Transform
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Fourier Series as T — o0

6: Fourier Tra_nsform Fourler Serles U t — OO__ UneiQﬂ'nFt
Fourier Series as Nn=——oo
T — oo
Fourier Transform The harmonic frequencies are nF' Vn and are spaced F' = % apart.
Fourier Transform T
Examples
Dirac Delta Function As T' gets larger, the harmonic spacing becomes smaller.
irac Delta Function:
Scsing ond eg. T=1s= F =1Hz
ranslation
Dira::lc Delta cIl=um:tion: T =1 day — F = 1157 ,LLHZ
Products an
Integrals . .
Saredhe Srmrlh If T" — oo then the harmonic spacing becomes zero, the sum becomes an
Duality . . .
Time Shiing an integral and we get the Fourier Transform:
caling +00 )
Gaussian Pulse ’U,(t) p— f — oo U(f)612ﬂ-ftdf
Summary o

Here, U(f), is the spectral density of u(t).

(
U(f) is a continuous function of f .
U(f) is complex-valued.
u(t) real = U(f) is conjugate symmetric < U(—f) = U(f)*.
Units: if u(t) is in volts, then U(f)df must also be in volts
= U(f) is in volts/Hz (hence “spectral density").
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Fourier Transform

6: Fourier Transform

Fourier Series as

T — oo

> Fourier Transform
Fourier Transform
Examples

Dirac Delta Function

Dirac Delta Function:

Scaling and
Translation

Dirac Delta Function:

Products and
Integrals

Periodic Signals
Duality

Time Shifting and
Scaling

Gaussian Pulse

Summary

Fourier Series: u(t) =5 U, ei2mnFt

n=—00
The summation is over a set of equally spaced frequencies
fn = nF where the spacing between them is Af = F = +.

Un — <U(t 227TTLFt> Af 0. 51;),5’]” u(t)e—ianFtdt

Spectral Density: If u(t) has finite energy, U,, — 0 as Af — 0. So we

define a spectral density, U(f,) = gf, on the set of frequencies {f,}:

0.5T o
U(fn) = A— = [, pu(t)e 2Tt dy
we can write [Substitute U,, = U(f,)Af]

u(t) = 302 oo Ulfn)e?™ It Af
Fourier Transform: Now if we take the limit as Af — 0, we get
= [T _U(f)e?™Itdf [Fourier Synthesis]
= [=___u(t)e 2mItdy [Fourier Analysis]

For non-periodic signals U,, - 0 as Af — 0 and U(f,) = A—?} remains

finite. However, if u(t) contains an exactly periodic component, then the
corresponding U( f,,) will become infinite as Af — 0. We will deal with it.
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Fourier Transform Examples

6: Fourier Transform

Fourier Series as
T — oo

Fourier Transform

Fourier Transform
Examples

Dirac Delta Function

Dirac Delta Function:

Scaling and
Translation

Dirac Delta Function:

Products and
Integrals

Periodic Signals
Duality

Time Shifting and
Scaling

Gaussian Pulse

Summary

Example 1:
e 4 t>0
0 t <0
U(f) = [2%, ult)e 2wt
— f()oo 6—at6—i27rftdt

— fooo 6(—a—i27'rf)tdt

u(t) =

—1 [6(—a—z’27rf)t]oo = 57

— ati2nf 0
Example 2:
’U(t) — €—a|t|

VI(f) = ffooo U(t)e_i%ftdt

_ fi)oo 6at6—i27rftdt_|_fooo p—at o= 12 ft 4
_ 1 [e(a—iQWf)t]O i
— 0

a—127f

1 1

1

-1
a+127 f

— a—127m f + a+127m f — a2+4m2 f2

{6(—a—i27rf)t] ©0

1 " [L

< 0.5
0
-5 0 5
Time (s)
o
€03
2 0.2
=01 .
-5 0 5

Frequency (Hz)

2 05
T
E o ﬂ
S 05 :
v -5 0 5
Frequence (Hz)
a=2
£ 05
-5 0 5
Time (s)

1
€
> 05 _JL

0 N

-5 0 5

Frequency (Hz)

0
[v(t) real4+symmetric

= V(f) real+symmetric]
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Dirac Delta Function

6: Fourier Transform We define a unit area pulse of width w as ) 5,0
T — oo
Fourier Transform l —O5w S €T S O5w 2 iy os® s
Fourier Transform dw (,’L‘) = w . . . 5509
Examples 0 otherwise 3 2 1 0 1 2 3
Dirac Delta g
Function
Dirac Delta Function: This pulse has the property that its integral equals ' »
caling an 0.5 X
Translation 1 for all values of w:
Dirac Delta Function: o 0
Products and _ 3 2 4 o0 1 2 3
Intoegr:|: a fx:—OO dw (Sl?)d:l? — 1 :
Periodic Signals . . .
Duality If we make w smaller, the pulse height increases to preserve unit area.
Time Shifting and . . . .
Scaling We define the Dirac delta function as §(z) = lim,, .o d,, ()
Gaussian Pulse
Summary e J(x) equals zero everywhere except at x = 0 where it is infinite.

o However its area still equals 1 = [~ _§(z)dz =1
e We plot the height of §(x) as its area rather than its true height of oo.

d(x) is not quite a proper function: it is called a generalized function.
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Dirac Delta Function: Scaling and Translation

6: Fourier Transform

Fourier Series as

T — oo

Fourier Transform

Fourier Transform

Examples

Dirac Delta Function
Dirac Delta
Function: Scaling
and Translation

Dirac Delta Function:

Products and
Integrals

Periodic Signals
Duality

Time Shifting and
Scaling

Gaussian Pulse

Summary

Translation: §(x — a) 1 I,
d(x) isa pulse at x =0 -
d(x —a) is a pulse at z = a !-o.sa<lx+z) o
Amplitude Scaling: bd(x) R
6(xz) hasanareaof 1 & [ §(z)dz =1 '
>, 15(4) = 0.255(x)
bé(x) has an area of b since ‘-35(-4.»8):,.0_755(“2) o
[ (b8(x)dz="0b["_&(x)dz=10 R

b can be a complex number (on a graph, we then plot only its magnitude)

Time Scaling: §(cx)

c>0: [Z  d(cx)dr = fyoi_oo 5(y)dTy [sub y = cx]
=t f Wy = ¢ = 1

c<0: [Z _ dcx)dr = fy;ojoo 5(y)%y [sub y = cx]
== [T (y)dy= =1L

In general, d(cx) = ﬁ(S(:{;) for ¢ # 0
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Dirac Delta Function: Products and Integrals

6: Fourier Transform

Fourier Series as
T — oo

Fourier Transform
Fourier Transform
Examples

Dirac Delta Function

Dirac Delta Function:

Scaling and
Translation
Dirac Delta
Function:
Products and
Integrals
Periodic Signals
Duality
Time Shifting and
Scaling
Gaussian Pulse

Summary

If we multiply 6(x — a) by a function of z:
y =x% X §(x — 2)
The product is 0 everywhere except at x = 2.

So d(x — 2) is multiplied by the value taken by
r? at x = 2:

22 X §(x —2) = [12}3:2 X 0(x — 2)
=4 x §(x — 2)

In general for any function, f(x), that is
continuous at = = a,

f()d(z —a) = f(a)d(z —a)

Integrals:

Example: [ (322 — 2z) §(z — 2)dz = [32? — 2z]

— fa) [, 3z — a)da
(a)

[if f(x) continuous at af

6
y=x’
4
>
2
0 ,
-1 0 1 2
X
6 y=3(x-2)
4
>
2
0 |
-1 0 1 2
X
6 2
y=2%x3(x-2) = 43(x-2)
4
>
2
O "
-1 0 1 2

=&

r=2
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Periodic Signals

6: Fourier Transform

Fourier Series as

T — oo

Fourier Transform
Fourier Transform
Examples

Dirac Delta Function

Dirac Delta Function:

Scaling and
Translation

Dirac Delta Function:

Products and
Integrals

D> Periodic Signals
Duality

Time Shifting and
Scaling

Gaussian Pulse

Summary

6i271'ft df

J2 US)

Fourier Transform: wu(t) =

[Fourier Synthesis]

= [~ u(t)e ?mItqy [Fourier Analysis]
Example: U(f)=156(f +2)+1.50(f —2) e
— fOO U ’i27‘(‘ftdf S o5
— f 1 55 f + 2) lzﬂ_ftdf A 2 ;:]-requer?cy(Hz)
+ [0 156(f — 2)etm S | e
_ 127 127 g,
= 1.5 ¢f ft]f:_'2 +1.5 e, °
= 1.5 ("™ 4 e~ "7) = 3 cos 4t o1z 3

If u(t) is periodic then U(f) is a sum of Dirac delta functions:
u(t)=> 7" Upe®™t = U(f)=>""__ U, (f —nF)
— [ U(feitdf
= [T 5 UnS(f —nF)e?mltdf
=>> U, ffooo §(f —nF)e?mridf

_ o0 12mnF't
_ Zn:—oo Une

Proof: w(t)
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Duality

6: Pourier Transform Fourier Transform: u(t) = ffooo U(f)e™Itdf [Fourier Synthesis]

Fourier Series as

i U(f)=[,=__ u(t)e2mItdt [Fourier Analysis]

Fourier Transform
Examples

Dirac Delta Function

Dirac Delta Function: Dual tra nSform
Scaling and L
Translation SUppOSE U(t) — U(t), then

Dirac Delta Function:

Products and V(f) — ftozo_oo ,U(t)e—’iQﬂ'fth

Integrals

Periodic Signals Vig) = ftoj_oo U(t)e 279t dt [substitute f = g, v(t) = U(?)]

> Duality

Time Shifting and — ffoi_oo U(f>6—2271'gfdf [SUbSt|tute t = f]

Scaling

Gaussian Pulse

Summary — U(_g)

So: w(t)=U(t) = V(f)=u(-))

u(t) = e~ It = U(f) = ﬁ [from earlier]
v(t) = —2n =  V(f)=e " fI=¢l/l
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Time Shifting and Scaling

6: Pourier Transform Fourier Transform: w(t) = [~ U(f)e*™/tdf [Fourier Synthesis]

Fourier Series as

i U(f)=[,=__ u(t)e2mItdt [Fourier Analysis]

Fourier Transform
Examples

Dirac Delta Function

Diree Dalte Function: Time Shifting and Scaling:
Scaling and

Translation Suppose v(t) = u(at + b), then
e ™ V(f) = [,Z_ o ulat + b)e=?m/tdt [now sub 7 = at + 0]
Eiai’f“ Sianale 00 —i2mf(T52) 1
Tin}:e Shifting and — sgn(a> f’T:—OO U(T)e ¢ EdT
> Sca-ling 1 0 > O
So— Pulee note that oo limits swap if a < 0 hence sgn(a) =
’ —1 a<0
= ﬁeizﬂbe f:i_oo U(T)G_ZQW%TCZT
= e (2)
Soi o(t) —ulat+b) = V()= e U (£)
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Gaussian Pulse

6: Fourier Transform

Fourier Series as
T — oo

Fourier Transform
Fourier Transform
Examples

Dirac Delta Function

Dirac Delta Function:

Scaling and
Translation

Dirac Delta Function:

Products and
Integrals

Periodic Signals
Duality

Time Shifting and
Scaling

> Gaussian Pulse

Summary

Gaussian Pulse: u(t) =

U(f)

0.4}

0.2}

u(t)

0

/N
—

1)

. 27702 f

vV 27702 f
(z27r0 f)

622

622

(22770 f)

[(i) uses a result from complex analysis theory that:

—i27‘(‘ftdt —

. 27702 f

vV 27T0' f

N

o=1

\.¥. oks

D S

2
e 202

2 o2

This is a Normal (or Gaussian) probability distribution, so ffooo
2

ffooo u(t)e

\/27‘(’0’ f
iz (1 +idrwo ft)dt

(t +idmo ft+(127r0 f) (i27r02f)2>dt

—5(2770]”)2

——(t+z27ra f) dt —

(t—|—z27ra f) dt

u(t)dt = 1.
’LQﬂ'ftdt
ﬁ ffooo e dt = 1]

\ 1/(210)=0.159

1 1 n

-4

-2

0
Time (s)

2

4 -0.6

-0.4

-0.2 0 0.2 0.4 0.6

Frequency (Hz)

Uniquely, the Fourier Transform of a Gaussian pulse is a Gaussian pulse.
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Summary

6: Fourier Transform

Fourier Series as

T — oo

Fourier Transform
Fourier Transform
Examples

Dirac Delta Function
Dirac Delta Function:
Scaling and
Translation

Dirac Delta Function:
Products and
Integrals

Periodic Signals
Duality

Time Shifting and
Scaling

Gaussian Pulse

> Summary

Fourier Transform:
o Inverse transform (synthesis): u(t f U(f 227Tftdf

o Forward transform (analysis): = [~ e~ 2Tty
> U(f) is the spectral denS|ty functlon (e.g. VoIts/Hz)

Dirac Delta Function:
o 6(t) is a zero-width infinite-height pulse with [~ _§(¢)dt = 1

o Integral: ffooo f)6(t —a) = f(a)
o Scaling: §(ct) = E |5( )
Periodic Signals: u(t) = > - U, ei2mnEt

= U(f) =202 Und (f — nF)
Fourier Transform Properties:

o v(t)=U(t) = V(f) = u(— 2)b
o v(t) =u(at + b) = V(f)= ﬁe iy (5)
o w(t) = —L_e3(3) o V(f) = e s@r0f)

2mo?

For further details see RHB Chapter 13.1 (uses w instead of f)
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7: Fourier
Transforms:
Convolution and
Parseval’s

> Theorem

Multiplication of
Signals

Multiplication
Example

Convolution Theorem
Convolution Example

Convolution
Properties

Parseval's Theorem
Energy Conservation
Energy Spectrum

Summary

Fourier Transforms: Convolution and
Parseval’'s Theorem
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Multiplication of Signals

7: Fourier
Transforms:
Convolution and
Parseval’'s Theorem

Multiplication of
> Signals

Multiplication
Example

Convolution Theorem
Convolution Example

Convolution
Properties

Parseval's Theorem
Energy Conservation
Energy Spectrum

Summary

Question: What is the Fourier transform of w(t) = u(t)v(t) ?
Let u(t) = [,"°__U(h)e>™dh and o(t) = [T _V(g)ei?mdg
[Note use of different dummy variables]
w(t) = u(t)v(t)
= ;;Oioo U(h)e?™"tdh f;:ojoo V(g)e?™9tdg
= [, JUh) [ V(g)e2"+9)tdg dh
Now we make a change of variable in the second integral: g = f — h

= 2 U [Z2 JV(f = h)e™Itdf dh

= [ fh_ LU(R DV — s i
o W(permItdf

[merge ()]

[swap []

f=—0o0
where W(f) = [\ UMWV (f —h)dh [, _UR)V(f—h)dh =2

U(f)*V(f)

This is the convolution of the two spectra

w(t) = u(t)v(t) &

U(f) and V(f).
W(f)=U(f)*V(f)
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Multiplication Example

7: Fourier
Transforms:
Convolution and
Parseval’'s Theorem

Multiplication of
Signals

Multiplication
> Example
Convolution Theorem
Convolution Example

Convolution
Properties

Parseval's Theorem
Energy Conservation
Energy Spectrum

Summary

e 4 t>0
0 t <0

U(f) = a7

v(t) = cos 2mF't

u(t

o

o »
i
N

(U
ocoooo
PN

[from before]

Frequency (Hz)

I

0 5

<U(f) (rad/pi
o

V() = 05(6(f +F)+3(f = F)) S e

w(t) = u(t)v(t)

v(t)
=)

-5 0 5

Time (s)
W(f) = U(f) V() e
_ 0.5 X 0.5 ok - .
a+i2n(f+F) a+i2n(f—F) Frequency (Hz)
s o.% a=2, F=2 h\/\/\h
If V(f) consists entirely of Dirac impulses 0 g :

then U(f) = V(f) iust replaces each impulse o
with a complete copy of U(f) scaled by the 5(’;%

area of the impulse and shifted so that 0 Hz | Frequency (H2)

lies on the impulse. Then add the
overlapping complex spectra.

0.5
Om
-0.5 L
-5 0 5
Frequence (Hz)

<W(f) (rad/pi

E1.10 Fourier Series and Transforms (2014-5559)
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Convolution Theorem

7: Fourier

T Convolution Theorem:
Peraceal's Theerem w(t) =u)v(t) < W) =U(f)*V(f)

Multiplication of w(t) =u(t)xv(t) < W(f)=UHV(S)

Signals
Multiplication

Example Convolution in the time domain is equivalent to multiplication in the

Convolution

> Theorem frequency domain and vice versa.

Convolution Example

Convolution Proof of second line:

Properties

Parseval’'s Theorem Given ’U,(t), U(t) and w(t) Sat|5fy|ng

Energy Conservation

Energy Spectrum w(t) =u(t)v(t) <& W(f)=U(f)*V(f)

Summary

define dual waveforms x(t), y(t) and z(t) as follows:

z(t)=U(t) < X(f)=u(—f) [duality]
y(t) =V() < Y(f)=uv(-f)
2(t)=W(t) <« Z(f)=w(=f)
Now the convolution property becomes:
w(=f) =u(=flv(=f) < W({I)=U(t)*V(i) [sub ¢ <> £f]
Z(f)=XNY(f) & =2(@1)==x()=*y() [duality]
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Convolution Example

7: Fourier
Transforms:
Convolution and
Parseval’'s Theorem

Multiplication of
Signals
Multiplication
Example

Convolution Theorem

Convolution
> Example

Convolution
Properties

Parseval's Theorem
Energy Conservation
Energy Spectrum

Summary

(1t 0<t<1

u(t) = <
(t) \O otherwise
(et t>0
v(t) = < © -
0 t <0

\

mln(t 1)

= [(2

(

\

Note how v(t — 7) is time-reversed (because of the —7) and time-shifted to

)(t

1 —7)e

)
u(T)v(t — 7)dr
(

T=tdr

_ 7_) eT—t]:-n;%(t71)
0 t <0
2—t—2et 0<t<l1
(e—2)e t>1

put the time origin at 7 = t.

-2 0 2 4 6
Time t (s)
-2 0 2 4 6
Timet(s)
-2 0 2 4 6
Timet(s)
_I =0.307 o N v0.7-9) t=0.7
-2 0 2 4 6
Time 1 (s)
_I =016 o V(L5 t=1.5
-2 0 2 4 6
Time 1 (s)

-2

0

2
Time T (S)

4

»
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Convolution Properties

Tranaforms: Convloution: w(t) = u(t) * v(t) = [°__u(r)v(t — 7)dr
Convolution and
Parseval’'s Theorem

Multiplication of Convolution behaves algebraically like multiplication:

Signals .

Mulplication 1) Commutative: u(t) x v(t) = v(t) * u(t)

Example

Convelution Theorem 2) Associative:

;';“:.,3;.‘;2;05““” w(t) * v(t) x wt) = (w(t) *v(t)) * w(t) = u(t) * (v(t) * w(t))
Properties

Parsev:rs Theorern 3) Distributive over addition:

ey Soectrum | w(t) * (u(t) +v(t)) = w(t) * u(t) +w(t) * v(t)

Summary

v *
4) ldentity Element or “1": w(t) x d(t) = d(t) * u(t) = u(t)
5) Bilinear: (au(t)) x (bv(t)) = ab (u(t) * v(t))

Proof: In the frequency domain, convolution is multiplication.

Also, if u(t) xv(t) = w(t), then
6) Time Shifting: u(t + a) *v(t +b) = w(t + a + b)

7) Time Scaling: u(at) x v(at) = ﬁw(at)

How to recognise a convolution integral:
the arguments of u(---) and v(---) sum to a constant.
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Parseval’'s Theorem

7: Fourier
Transforms:
Convolution and
Parseval’'s Theorem

Multiplication of
Signals

Multiplication
Example

Convolution Theorem
Convolution Example

Convolution
Properties

Parseval’s
Theorem

Energy Conservation
Energy Spectrum

Summary

Lemma:

X(f)=0(f—-9g9) =

: 00
Parseval's Theorem: [,~

Proof:
Let u(t) =

Now multiply u*(t) =

.

= J;:_oo L U (e rndtap [T

O U(f)ermrtf and

f=—0o0

— fa(f _ g)efiZWftdf: €i27rgt
— X(f) — f6i27rgt6—i27rftdt :f €i27r(g—f)tdt: 5(9 o f)

__ur(tu(t)dt = [,

e UV

o(t) = [ V(g)e?™tdg
[Note use of different dummy variables]

u(t) and v(t) together and integrate over time:
v(t)dt

V(g)e?™tdgdt
LU [ V) [ e Dtdtdgdf
LU [0 V(g)e(g — f)dgdf

LU NOV(df

[lemma]
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Energy Conservation

7: Fourier
Transforms:
Convolution and
Parseval’'s Theorem

Multiplication of
Signals

Multiplication
Example

Convolution Theorem
Convolution Example

Convolution
Properties

Parseval’'s Theorem
Energy
Conservation

Energy Spectrum

Summary

y o0
Parseval's Theorem: [,”

_outotydt = [0 U (HV(Sf)df

For the special case v(t) = u(t), Parseval's theorem becomes:

ffj_ w* (H)u(t)dt = f+°° U(f)df
= [i= L lu@)dt= [ U df
Energy Conservation: The energy in u(t) equals the energy in U(f).

Example:
e—at
u(t) =
0 {O

t>0
t <0

U(f) = aﬂ.l%f [from before] B k
0
= f|U( df f a2—|—47r2f2 o > Timg(S) °
=04
ant(20)]° s
— 2ma — % — % N Frequer(l)cy(Hz) °
— 00
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Energy Spectrum

7: Fourier
Transforms:
Convolution and
Parseval’'s Theorem

Example from before:

Multiplication of
Signals

Multiplication
Example

Convolution Theorem
Convolution Example

Convolution
Properties

Parseval's Theorem
Energy Conservation
> Energy Spectrum

Summary

1 a=2, F=2
-
e~ %cos2nFt t>0 5 0. ¢
'lU(t) = _ 023
0 t <0 gool:?M
= 0.05 :
W( f) _ 0.5 i 0.5 B ° Frequency (H2) ’
 a+i2n(f+F) a+i27(f—F) =l °'5M
£ o0
_ a+i2m f % 0% 5 :
T CL2+7:47TCLf—47T2 (f2 —F2) Frequence (Hz)
~ 006
= 0.04
2 a2_|_471-2f2 EODZU& JL
|W(f)‘ T (a2—4772(f2—F2))2—|—16772a2f2 % 0 5

Frequency (Hz)

Energy Spectrum

e The units of |M/(f)\2 are “energy per HZ' so that its integral,

E,=[""_ W (f)|” df, has units of energy.

The quantity |W (f)|* is called the energy spectral density of w(t) at
frequency f and its graph is the energy spectrum of w(t). It shows
how the energy of w(t) is distributed over frequencies.

If you divide [WW(f)|® by the total energy, E,,, the result is non-negative
and integrates to unity like a probability distribution.
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Summary

7: Fourier

e Convolution:

Transforms:

orseetl+ Theorem o u(t)xv(t) = [7 u(r)u(t —T)dr

e > Arguments of u(---) and v(---) sum to ¢

Multplication o Acts like multiplication + time scaling/shifting formulae
xample

Convoution ;‘:::1:;: e Convolution Theorem: multiplication <+ convolution

S o w(t) =u(t)o(t) & W(f)=U(f)*V(f)

Parseval’'s Theorem O w(t) — 'U/(t) * U(t) <~ W(f) — U(f)V(f)

Energy Conservation

Sy o e Parseval's Theorem: [~ w*(t)v(t)dt = fioioo U*(/)V(f)df

e Energy Spectrum:
o Energy spectral density: |U(f)|” (energy/Hz)

o Parseval: B, = [|u(@®)|?dt = [|U(f)]* df
For further details see RHB Chapter 13.1
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> 8: Correlation

Cross-Correlation
Signal Matching

Cross-corr as
Convolution

Normalized Cross-corr

Autocorrelation
Autocorrelation
example

Fourier Transform
Variants

Scale Factors

Summary 8: Correlation

Spectrogram
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Cross-Correlation

8: Correlation

> Cross-Correlation

Signal Matching

Cross-corr as
Convolution

Normalized Cross-corr

Autocorrelation
Autocorrelation
example

Fourier Transform
Variants

Scale Factors
Summary

Spectrogram

The cross-correlation between two signals u(t) and v(t) is
w(t) =u(t) ® v(t) foooo u*(T)v(T + t)dr
= [T w*(r — t)v(r)dr [sub: 7 — 7 —{]

The complex conjugate, u*(7) makes no difference if u(t) is real-valued
but makes the definition work even if u(t) is complex-valued.

Correlation versus Convolution:

u(t) @o(t) = [T u*(T)o(r + t)dr [correlation]
u(t) xv(t) = [C_u(r)v(t — 7)dr [convolution]

Unlike convolution, the integration variable, 7, has the same sign in the
arguments of u(---) and v(---) so the arguments have a constant
difference instead of a constant sum (i.e. v(t) is not time-flipped).

Notes: (a) The argument of w(t) is called the “lag” (= delay of u versus v).
(b) Some people write u(t) x v(t) instead of u(t) ® v(t).
(c) Some swap u and v and/or negate t in the integral.

It is all rather inconsistent @.
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Signal Matching

8: Correlation

Cross-Correlation
> Signal Matching

Cross-corr as
Convolution

Normalized Cross-corr

Autocorrelation
Autocorrelation
example

Fourier Transform
Variants

Scale Factors
Summary

Spectrogram

Cross correlation is used to find where two
signals match: u(t) is the test waveform.

Example 1:
v(t) contains u(t) with an unknown delay
and added noise.
w(t) = u(t) ® v(t)
= [w*(7 — t)v(7)dt gives a peak
at the time lag where u(7 — t) best
matches v(7); in this case at t = 450

Example 2:
y(t) is the same as v(t) with more noise
z(t) = u(t) ® y(t) can still detect the
correct time delay (hard for humans)

Example 3:
p(t) contains —u(t) so that
q(t) = u(t) ® p(t) has a negative peak

o
o P

u()

o

v(t)

:

0 200 400 600

o

200 400 600 8

o

0

%

o

200 400 600 8

o

0

%

o

200 400 600 8

o

0

%

o

200 400 600 8

o

0

%

o

200 400 600 8

o

0

%

o

200 400 600 800
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Cross-correlation as Convolution

Cross-Correlation

5: Correlation Correlation: w(t) = u(t) @ v(t) = [ u*(1 — t)v(7)dr
N If we define x(t) = u*(—t) then

Convolution

Normalized Cross-corr x é f t _ ,7_ (T)dT — ffooo u* (7_ . t)’U(T)dT

Autocorrelation

eAxl;t:‘:T:rdation (t) ® /U(t)

Fourier Transform .

yariants Fourier Transform of x(¢):

X(f) = ffio x(t)e—mftdt — [ wr(—t)e 2ty
= [ )ei2m St = (ffooo u(t)e—i%rftdt)

— U*(f)
Sow(t) =z(t) xv(t) = W(f)=X(HV(f)=U"(HV(f)

Hence the Cross-correlation theorem:

w(t) = u(t) @ v(t) & W(f)=U"(H)V(f)
= u*(—t) * v(t)

Note that, unlike convolution, correlation is not associative or commutative:
v(t) @ u(t) = v*(—t) xu(t) = u(t) *x v*(—t) = w*(—t)
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Normalized Cross-correlation

8: Correlation

Cross-Correlation

Signal Matching
Cross-corr as
Convolution
Normalized
Cross-corr
Autocorrelation
Autocorrelation
example
Fourier Transform
Variants
Scale Factors
Summary

Spectrogram

=ut)@v(t) = [T u*(r —t)v(T)dr

If we define y(t) = u(t —to) for some fixed ¢y, then E, = E,,:
By = |7 ly®)" dt= [ \u(t - 750)\2 dt

= f 2dr = E,

Correlation: w(t)

[t%T—FtQ]

2
Cauchy-Schwarz inequality: |ffooo Y (T)U(T)dT‘ < E,E,

2
= Jw(ty)] (f “(r — to)u(r )dT‘ < E,E,= E,E,

but ty was arbitrary, so we must have |w(t)| < /E, FE, for all ¢

We can define the normalized cross-correlation

A(t) = HO20

with properties: (1) |2(¢)| < 1 for all ¢
(2) |2(to)] =1 < v(7) = au(r — ty) with a constant
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|Cauchy-Schwarz Inequality Proof]

You do not need to memorize this proof

2
We want to prove the Cauchy-Schwarz Inequality: ’ffooo u*(t)v(t)dt| < EyFEy
where B, £ [*° |u(t)|? dt.

Suppose we define w £ [°7_w*(t)v(¢)dt. Then,

0 < [|Eyu(t) — w*v(t)|* dt [|---|? always > 0]
= [ (Evu™(t) — wv* () (Bvu(t) — w*v(t)) dt [|2]* = 2*2]
= E2 [w*(t)u(t)dt + |w|? [v*(t)v(t)dt — w* Ey [u*(t)v(t)dt — wEy [u(t)v*(t)dt
= E2 [ |u(®)|?dt + |w|? [ |v(t)|]* dt — Eyw*w — Eyww* [definition of w]
= B2E, + |w]® B, - 2|wf® By = By (BuBy — |w]?) [12? = 2*2]

Unless E, = 0 (in which case, v(t) = 0 and the C-S inequality is true), we must have |w|* < E,E,
which proves the C-S inequality.

Also, E, FE, = |w|2 only if we have equality in the first line,
that is, [ |Eyu(t) — w*v(t)|? dt = 0 which implies that the integrand is zero for all ¢.

This implies that u(t) = %—*v(t).

So we have shown that F, E, = |w|? if and only if u(t) and v(t) are proportional to each other.

E1.10 Fourier Series and Transforms (2015-5585) Fourier Transform - Correlation: 8 — note 1 of slide 5



Autocorrelation

8: Correlation

Cross-Correlation
Signal Matching

Cross-corr as
Convolution

Normalized Cross-corr
> Autocorrelation

Autocorrelation
example

Fourier Transform
Variants

Scale Factors
Summary

Spectrogram

The correlation of a signal with itself is its autocorrelation:
w(t) =u(t) @ut)= [T u*(t —t)u(r)dr

The autocorrelation at zero lag:
w(0) = foooo u (7‘ — 0)u(T)dr
= f (T)dt
= f | dr = F,

The autocorrelat|on at zero lag, w(0), is the energy of the signal.

u(t)Qu(t)
By

satisfies 2(0) = 1 and |2(¢)| < 1 for any t.

The normalized autocorrelation: 2(t) =

Wiener-Khinchin Theorem:  [Cross-correlation theorem when v(t) = ()]

w(t) =ult)@u(t) < W) =UHUS)=UI

The Fourier transform of the autocorrelation is the energy spectrum.
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Autocorrelation example

8: Correlation

Cross-Correlation
Signal Matching

Cross-corr as
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Autocorrelation

Autocorrelation
> example

Fourier Transform
Variants

Scale Factors
Summary

Spectrogram

Cross-correlation is used to find when two different signals are similar.
Autocorrelation is used to find when a signal is similar to itself delayed.

First graph shows s(t) a segment of the microphone signal from the initial
vowel of “early” spoken by me. The waveform is “quasi-periodic” =
“almost periodic but not quite”.

Second graph shows normalized autocorrelation, z(t) = %f(t).
2(0) =1 for t = 0 since a signal always matches itself exactly.
2(t) = 0.82 for t = 6.2 ms = one period lag (not an exact match).

z(t) = 0.53 for t = 12.4ms = two periods lag (even worse match).

Lag = 6.2 ms (161 Hz)

= 05 N
7 5
]
g <
" -0.5 £
o
pd
10 20 30 40 50 0 5 10 15 20
Time (ms) Lag: t (ms)
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Fourier Transform Variants

3 Corelation _ There are three different versions of the Fourier Transform in current use.
iif;:i::;t::i"g (1) Frequency version (we have used this in lectures)
T e .
Autocerrelation e Used in the communications/broadcasting industry and textbooks.

Fourier Transform e The formulae do not need scale factors of 27 anywhere. @O
:Z::f;tm (2) Angular frequency version
Spectrosram U (w) = ffooo u(t)e™"idt u(t f )e™tdw

Continuous spectra are unchanged U( ) = ( ) U(sx)

However d-function spectral components are multiplied by 27 so that
U(f)=0(f—fo) = Ulw)=2rx0d(w—2rf)

e Used in most signal processing and control theory textbooks.

(3) Angular frequency + symmetrical scale factor

U(w) = \/%Affooo U t)e_i“tdt u(t) = \/% [T U(w)e™tdw
In all cases U(w) = U (w)

V2w
e Used in many Maths textbooks (mathematicians like symmetry)
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Scale Factors
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Cross-Correlation
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Fourier Transform
Variants

> Scale Factors
Summary

Spectrogram

Fourier Transform using Angular Frequency:
Uw) = [ u(t)e ™tdt  u(t) = & [ Ulw)etdw

Any formula involving [ df will change to 5= [ dw [since dw = 2w df]

Parseval’'s Theorem:
fu* (t)v(t) fU* w)dw

= [|u(t)|?dt = Wf|U(w)| dw
Waveform Multiplication: (convolution implicitly involves integration)
w(t) =u()v(t) = Ww)=£U(w)* V(W)

Spectrum Multiplication: (multiplication % integration)
w(t) = u(t) xv(t) = Ww)=Uw)V(w)

To obtain formulae for version (3) of the Fourier Transform, U (w),
substitute into the above formulae: U(w) = V27U (w).
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Summary

8: Correlation

Cross-Correlation

Signal Matching

Cross-corr as
Convolution

Normalized Cross-corr

Autocorrelation
Autocorrelation
example

Fourier Transform
Variants

Scale Factors
> Summary
Spectrogram

o Cross-Correlation: w(t) = u(t) @ v(t)= [~ u*(r — t)v(r)dr
o Used to find similarities between v(t) and a delayed w(t)
o Cross-correlation theorem: W (f) = U*(f)V(f)
o Cauchy-Schwarz Inequality: |u(t) ® v(t)| < VE.E,

> Normalized cross-correlation: %\/%(j) <1
e Autocorrelation: z(t) = u(t) ® u(t)= [ u*(r — t)u(r)dr < E,

U(f)’

o  Wiener-Khinchin: X (f) = energy spectral density,
o Used to find periodicity in u(t)
e Fourier Transform using w:

o Continuous spectra unchanged; spectral impulses multiplied by 27

o In formulae: [df — 5= [ dw; w-convolution involves an integral
7T

For further details see RHB Chapter 13.1
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Spectrogram

8: Correlation

Cross-Correlation

Signal Matching

Cross-corr as
Convolution —

Spectrogram of “Merry Christmas” spoken by Mike Brookes

Normalized Cross-corr w_
Autocorrelation .
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Summary — m
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|[Complex Fourier Series|

All waveforms have period T' = 1. d.onditionis 1 Whenever “condition” is true and otherwise 0.

Waveform z(t) for |t| < 0.5 Xn
Square wave 20|¢|<0.25 — 1 W X Op£0
. i d
=
Sawtooth wave 2t —— X 53750
Triangle wave 1 —41t| 2(1;5221) )
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[Fourier Transform Properties A|

You need not memorize these properties. All integrals are ffooo

Property x(t) Xf)
Forward z(t) [ z(t)e= 2™ It qt
Inverse [ X(f)et2m/tdf X(f)
Spectral Zero [ x(t)dt = X (0)
Temporal Zero z(0) = [ X(f)df
Duality X(t) x(—f)
Reversal x(—t) X(—=f)
conjugate x*(t) X*(=f)
Temporal Derivative %x(t) (27 /Y X (f)
Spectral Derivative (—i27t)"x(t) %—nnX(f)
Integral It x(r)dr == X(f) + $X(0)5(f)
Scaling z(at + B) ﬁe%X(g)
Time Shift x(t —T) X (f)e 2mIT
Frequency Shift x(t)et2T X(f—-F)
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[Fourier Transform Properties B

You need not memorize these properties. All integrals are ffooo

Property x(t) Xf)
Linearity ax(t) + By(t) aX(f)+ BY(f)
Multiplication z(t)y(t) X(f)«Y(f)
Convolution x(t) * y(t) X(HY(f)
Correlation x(t) ® y(t) X*(HY(f)
Autocorrelation x(t) ® x(t) X ()2
Parseval or [ x*(t)y(t)dt = [ X*(HY(f)df
Plancherel Ey = [ |x(t))* dt = [1X(f)? df
Repetition >, x(t—nT) }%}ZkX(%)(S(f— %)
Sampling Yo, x(nT)é(t —nT) }%}ZkX (f— %)
Modulation x(t) cos(2wF't) %X(f — F)+ %X(f + F)

Convolution: z(t) * y(t) = [z(7)y(t — 7)dT

Cross-correlation: z(t) @ y(t) = [ «*(7)y(T + t)dr = [2* (7 — t)y(r)dr
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[Fourier Transform Pairs]

You need not memorize these pairs.

z(t) X(f) z(t) X(f)
(1) 1 1 5(/)
rect(t) % Slr;i mrect(mf)
tri(t) Sir;;(]z;f) Smt# mwtri(wf)
cos(2mat) %5(f+a)—|—%5(f—a) sin(2mat) %5(f—|—oz)— %5(f—oz)
e~ *u(t) m te~2tu(t) m
e~ clt] —oz2—{—24(:er2 et e f*
sgn(t) z';f u(t) %5(]8) T ﬁ
S0 o8t —nT) | [R50 (f - %)
Elementary Functions:
wr = {y e wmo={ T S
-1, t<O0 0, x <0
sgn(t) =4¢0, ¢t=0 u(t) = % (1+sgn(t))=4¢05, =0
1, t>0 1, x>0
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