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Main fact: Complicated time waveforms can be
expressed as a sum of sine and cosine waves.

Why bother? Sine/cosine are the only bounded
waves that stay the same when differentiated.

Any electronic circuit:
sine wave in ⇒ sine wave out (same frequency).

Joseph Fourier

1768-1830

Hard problem: Complicated waveform → electronic circuit→ output = ?

Easier problem: Complicated waveform → sum of sine waves
→ linear electronic circuit (⇒ obeys superposition)
→ add sine wave outputs → output = ?

Syllabus: Preliminary maths (1 lecture)
Fourier series for periodic waveforms (4 lectures)
Fourier transform for aperiodic waveforms (3 lectures)
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A pair of prisms can split light up into its component frequencies (colours).
This is called Fourier Analysis.
A second pair can re-combine the frequencies.
This is called Fourier Synthesis.

Fourier Analysis Fourier Synthesis

We want to do the same thing with mathematical signals instead of light.



Organization

Syllabus

Optical Fourier
Transform

⊲ Organization

1: Sums and
Averages

E1.10 Fourier Series and Transforms (2014-5509) Sums and Averages: 1 – 4 / 14

• 8 lectures: feel free to ask questions

• Textbook: Riley, Hobson & Bence “Mathematical Methods for Physics
and Engineering”, ISBN:978052167971-8, Chapters [4], 12 & 13

• Lecture slides (including animations) and problem sheets + answers
available via Blackboard or from my website:
http://www.ee.ic.ac.uk/hp/staff/dmb/courses/E1Fourier/E1Fourier.htm

• Email me with any errors in slides or problems and if answers are
wrong or unclear
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A geometric series is a sum of terms that increase or decrease by a constant
factor, x:

S = a+ ax+ ax2 + . . .+ axn

The sequence of terms themselves is called a geometric progression.

We use a trick to get rid of most of the terms:

S = a+ ax+ ax2 + . . .+ axn−1 + axn

xS = ax+ ax2 + ax3 + . . . + axn + axn+1

Now subtract the lines to get: S − xS = (1− x)S = a− axn+1

Divide by 1− x to get: a = first term n+ 1 = number of terms

S = a× 1−xn+1

1−x

Example:
S = 3 + 6 + 12 + 24 [a = 3, x = 2, n+ 1 = 4]

= 3× 1−24

1−2 = 3× −15
−1 = 45
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A finite geometric series: Sn = a+ ax+ ax2 + · · ·+ axn = a 1−xn+1

1−x

What is the limit as n → ∞?

If |x| < 1 then xn+1 −→
n→∞

0 which gives a = first term

S∞ = a+ ax+ ax2 + · · · = a 1
1−x

= a
1−x

x = factor

Example 1:

0.4 + 0.04 + 0.004 + . . .= 0.4
1−0.1 = 0.4̇ [a = 0.4, x = 0.1]

Example 2: (alternating signs)

2− 1.2 + 0.72− 0.432 + . . .= 2
1−(−0.6) = 1.25 [a = 2, x = −0.6]

Example 3:

1 + 2 + 4 + . . . 6= 1
1−2 = 1

−1 = −1 [a = 1, x = 2]

The formula S = a+ ax+ ax2 + . . . = a
1−x

is only valid for |x| < 1
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Using a
∑

sign, we can write the geometric series more compactly:

Sn = a+ ax+ ax2 + . . .+ axn=
∑n

r=0 ax
r

[Note: x0 , 1 in this context even when x = 0]

Here r is a dummy variable: you can replace it with anything else
∑n

r=0 ax
r =

∑n

k=0 ax
k =

∑n

α=0 ax
α

Dummy variables are undefined outside the summation so they sometimes
get re-used elsewhere in an expression:

∑3
r=0 2

r +
∑2

r=1 3
r =

(

1× 1−24

1−2

)

+
(

3× 1−32

1−3

)

= 15 + 12 = 27

The two dummy variables are both called r but they have no connection
with each other at all (or with any other variable called r anywhere else).
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We can derive the formula for the geometric series using
∑

notation:

Sn =
∑n

r=0 ax
r and xSn =

∑n

r=0 ax
r+1

We need to manipulate the second sum to involve xr.

Use the substitution s = r + 1⇔ r = s− 1.
Substitute for r everywhere it occurs (including both limits)

xSn =
∑n+1

s=1 axs =
∑n+1

r=1 ax
r

It is essential to sum over exactly the same set of values when substituting
for dummy variables.

Subtracting gives (1− x)Sn = Sn − xSn =
∑n

r=0 ax
r −

∑n+1
r=1 ax

r

r ∈ [1, n] is common to both sums, so extract the remaining terms:

(1− x)Sn = ax0 − axn+1 +
∑n

r=1 ax
r −

∑n

r=1 ax
r

= ax0 − axn+1 = a
(

1− xn+1
)

Hence: Sn = a 1−xn+1

1−x
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If a signal varies with time, we can plot its waveform, x(t).

The average value of x(t) in the range T1 ≤ t ≤ T2 is

〈x〉[T1,T2]
= 1

T2−T1

∫ T2

t=T1
x(t)dt

T
1
  T

2

x(t)
<x>

[T1,T2]
 

T
1
  T

2

x(t)
<x>

[T1,T2]
 

The area under the curve x(t) is equal to the area of the rectangle
defined by 0 and 〈x〉[T1,T2]

.

Angle brackets alone, 〈x〉, denotes the average value over all time

〈x(t)〉 = limA,B→∞ 〈x(t)〉[−A,+B]
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The properties of averages follow from the properties of integrals:

Addition: 〈x(t) + y(t)〉 = 〈x(t)〉+ 〈y(t)〉

Add a constant: 〈x(t) + c〉 = 〈x(t)〉+ c

Constant multiple: 〈a× x(t)〉 = a× 〈x(t)〉

where the constants a and c do not depend on time.

For example:

〈x(t) + y(t)〉[T1,T2]
= 1

T2−T1

∫ T2

t=T1
(x(t) + y(t)) dt

= 1
T2−T1

∫ T2

t=T1
x(t)dt+ 1

T2−T1

∫ T2

t=T1
y(t)dt

= 〈x(t)〉[T1,T2]
+ 〈y(t)〉[T1,T2]

But beware: 〈x(t)× y(t)〉 6= 〈x(t)〉 × 〈y(t)〉.
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A periodic waveform with period T repeats itself at intervals of T :
x(t+ T ) = x(t) ⇒ x(t± kT ) = x(t) for any integer k.

The smallest T > 0 for which x(t+ T ) = x(t) ∀t is the fundamental
period. The fundamental frequency is F = 1

T
.

T

<x>

For a periodic waveform, 〈x(t)〉 equals the average over one period.
It doesn’t make any difference where in a period you start or how many
whole periods you take the average over.

Example:
x(t) = |sin t|

〈x〉 = 1
π

∫ π

t=0
|sin t| dt= 1

π

∫ π

t=0
sin t dt

= 1
π
[− cos t]

π

0 =
1
π
(1 + 1) = 2

π
≈ 0.637
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Proof that x(t+ T ) = x(t) ∀t ⇒ x(t± kT ) = x(t) ∀t, ∀k ∈ Z

We use induction. Let Hk be the hypothesis that x(t + kT ) = x(t) ∀t. Under the assumption that

x(t+ T ) = x(t) ∀t, we will show that if Hk is true, then so are Hk+1 and Hk−1. Since we know that

H0 is definitely true, this implies that Hk is true for all integers k, i.e. for all k ∈ Z.

� Suppose Hk is true, i.e. x(τ + kT ) = x(τ) ∀τ . Now set τ = t + T . This gives x(t + T + kT ) =

x(t + T ) ∀t. But, we assume that x(t + T ) = x(t), so x (t+ (k + 1)T ) = x(t + T + kT ) =

x(t+ T ) = x(T ) ∀t. Hence Hk+1is true.

� Now suppose Hk is true as before but this time set τ = t− T . Substituting this into u(τ + kT ) =
u(τ) gives u(t−T+kT ) = u(t−T ). Substituting it also into u(τ+T ) = u(τ) gives u(t) = u(t−T ).
Finally, combining these two identities gives u (t+ (k − 1)T ) = u(t) which is Hk−1.
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A sine wave, x(t) = sin 2πFt, has a frequency F and a period T = 1
F

so that, sin
(

2πF
(

t+ 1
F

))

= sin (2πFt+ 2π)= sin 2πFt.

〈sin 2πFt〉 = 1
T

∫ T

t=0
sin (2πFt) dt

= 0 0 0.5 1 1.5 2
-1

0

1 F=1kHz

x(
t)

Time (ms)

Also, 〈cos 2πFt〉 = 0 except for the case F = 0 since cos 2π0t ≡ 1.

Hence: 〈sin 2πFt〉 = 0 and 〈cos 2πFt〉 =

{

0 F 6= 0

1 F = 0

Also:
〈

ei2πFt
〉

= 〈cos 2πFt+ i sin 2πFt〉

= 〈cos 2πFt〉+ i 〈sin 2πFt〉

=

{

0 F 6= 0

1 F = 0
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• Sum of geometric series (see RHB Chapter 4)

◦ Finite series: S = a× 1−xn+1

1−x

◦ Infinite series: S = a
1−x

but only if |x| < 1

• Dummy variables
◦ Commonly re-used elsewhere in expressions
◦ Substitutions must cover exactly the same set of values

• Averages: 〈x〉[T1,T2]
= 1

T2−T1

∫ T2

t=T1
x(t)dt

• Periodic waveforms: x(t± kT ) = x(t) for any integer k
◦ Fundamental period is the smallest T
◦ Fundamental frequency is F = 1

T

◦ For periodic waveforms, 〈x〉 is the average over any integer
number of periods

◦ 〈sin 2πFt〉 = 0

◦ 〈cos 2πFt〉 =
〈

ei2πFt
〉

=

{

0 F 6= 0

1 F = 0
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A function, u(t), is periodic with period T if u(t+ T ) = u(t) ∀t
• Periodic with period T ⇒ Periodic with period kT ∀k ∈ Z

+

The fundamental period is the smallest T > 0 for which u(t+ T ) = u(t)
 T

If you add together functions with different periods the fundamental period
is the lowest common multiple (LCM) of the individual fundamental
periods.

Example:
• u(t) = cos 4πt ⇒ Tu = 2π

4π
= 0.5

• v(t) = cos 5πt ⇒ Tv = 2π

5π
= 0.4

• w(t) = u(t) + 0.1v(t) ⇒ Tw = lcm(0.5, 0.4) = 2.0
 T

u
 = 0.5  T

v
 = 0.4  T

w
 = 2.0
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If u(t) has fundamental period T and fundamental frequency F = 1

T
then,

in most cases, we can express it as a (possibly infinite) sum of sine and
cosine waves with frequencies 0, F , 2F , 3F , · · · .

 T

u(t) =
 T

sin 2πFt [b1 = 1]
 T/2

−0.4 sin 2π2Ft [b2 = −0.4]
 T/3

+0.4 sin 2π3Ft [b3 = 0.4]

 T/4

−0.2 cos 2π4Ft [a4 = −0.2]
The Fourier series for u(t) is

u(t) = a0

2
+
∑

∞

n=1
(an cos 2πnFt+ bn sin 2πnFt)

The Fourier coefficients of u(t) are a0, a1, · · · and b1, b2, · · · .

The nth harmonic of the fundamental is the component at a frequency nF .
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Why are engineers obsessed with sine waves?
Answer: Because ...

1. A sine wave remains a sine wave of the same frequency when you
(a) multiply by a constant,
(b) add onto to another sine wave of the same frequency,
(c) differentiate or integrate or shift in time

2. Almost any function can be expressed as a sum of sine waves
◦ Periodic functions → Fourier Series
◦ Aperiodic functions → Fourier Transform

3. Many physical and electronic systems are
(a) composed entirely of constant-multiply/add/differentiate
(b) linear: u(t) → x(t) and v(t) → y(t)

means that u(t) + v(t) → x(t) + y(t)
⇒ sum of sine waves → sum of sine waves

In these lectures we will use T for the fundamental period and F = 1

T
for

the fundamental frequency.
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Not all u(t) can be expressed as a Fourier Series.

Peter Dirichlet derived a set of sufficient conditions.

The function u(t) must satisfy:

• periodic and single-valued

•
∫ T

0
|u(t)| dt < ∞

• finite number of maxima/minima per period
• finite number of finite discontinuities per

period

Peter Dirichlet

1805-1859

Good:
� � �

sin(t) t2 quantized

Bad:
� � �

tan (t) sin
(

1

t

)

∞ halving steps
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Suppose that u(t) satisfies the Dirichlet conditions so that

u(t) = a0

2
+
∑

∞

n=1
(an cos 2πnFt+ bn sin 2πnFt)

Question: How do we find an and bn?

Answer: We use a clever trick that relies on taking averages.

〈x(t)〉 equals the average of x(t) over any integer number of periods:

〈x(t)〉 = 1

T

∫ T

t=0
x(t)dt

Remember, for any integer n, 〈sin 2πnFt〉 = 0

〈cos 2πnFt〉 =

{

0 n 6= 0

1 n = 0

Finding an and bn is called Fourier analysis.
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sin(x± y) = sinx cos y ± cosx sin y
⇒ sin x cos y = 1

2
sin(x+ y) + 1

2
sin(x− y)

cos(x± y) = cosx cos y ∓ sinx sin y
⇒ cosx cos y = 1

2
cos(x+ y) + 1

2
cos(x− y)

sinx sin y = 1

2
cos(x− y)− 1

2
cos(x+ y)

Set x = 2πmFt, y = 2πnFt (with m+ n 6= 0) and take time-averages:

• 〈sin (2πmFt) cos (2πnFt)〉
=

〈

1

2
sin(2π (m+ n)Ft)

〉

+
〈

1

2
sin(2π (m− n)Ft)

〉

= 0

• 〈cos (2πmFt) cos (2πnFt)〉

=
〈

1

2
cos(2π (m+ n)Ft)

〉

+
〈

1

2
cos(2π (m− n)Ft)

〉

=

{

0 m 6= n

1

2
m = n

• 〈sin (2πmFt) sin (2πnFt)〉

=
〈

1

2
cos(2π (m− n)Ft)

〉

−
〈

1

2
cos(2π (m+ n)Ft)

〉

=

{

0 m 6= n

1

2
m = n

Summary: 〈sin cos〉 = 0 [provided that m+ n 6= 0]
〈sin sin〉 = 〈cos cos〉 = 1

2
if m = n or otherwise = 0.
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Proof that cosx cos y = 1

2
cos(x+ y) + 1

2
cos(x− y)

We know that
cos(x+ y) = cosx cos y − sinx sin y

cos(x− y) = cosx cos y + sinx sin y

Adding these two gives
cos(x+ y) + cos(x− y) = 2 cosx cos y

From which: cosx cos y = 1

2
cos(x+ y) + 1

2
cos(x− y)

Subtracting instead of adding gives: sinx sin y = 1

2
cos(x− y)− 1

2
cos(x+ y)

Proof that
〈

1

2
cos(2π (m+ n)Ft)

〉

+
〈

1

2
cos(2π (m− n)Ft)

〉

=

{

0 m 6= n
1

2
m = n

We are assuming that m and n are integers with m + n 6= 0 and we use the result that 〈cos 2πft〉 is
zero unless f = 0 in which case 〈cos 2π0t〉 = 1 . The frequency of the first term, cos(2π (m+ n)Ft),
is (m+ n)F which is definitely non-zero (because of our assumption that m + n 6= 0) and so the
average of this cosine wave is zero. The frequency of the second term is (m− n)F and this is zero
only if m = n. So it follows that the entire expression is zero unless m = n in which case the second
term gives a value of 1

2
. Since m and n are integers, we can take the averages over a time interval T

and be sure that this includes an integer number of periods for both terms.
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Find an and bn in u(t) = a0

2
+
∑

∞

n=1
(an cos 2πnFt+ bn sin 2πnFt)

Answer: an = 2 〈u(t) cos (2πnFt)〉, 2

T

∫ T

0
u(t) cos (2πnFt) dt

bn = 2 〈u(t) sin (2πnFt)〉, 2

T

∫ T

0
u(t) sin (2πnFt) dt

Proof [a0]: 2 〈u(t) cos (2π0Ft)〉= 2 〈u(t)〉= 2× a0

2
= a0

Proof [an, n > 0]:
2 〈u(t) cos (2πnFt)〉
= 2

〈

a0

2
cos (2πnFt)

〉

+
∑

∞

r=1
2 〈ar cos (2πrFt) cos (2πnFt)〉

+
∑

∞

r=1
2 〈br sin (2πrFt) cos (2πnFt)〉

Term 1: 2
〈

a0

2
cos (2πnFt)

〉

= 0

Term 2: 2 〈ar cos (2πrFt) cos (2πnFt)〉 =

{

an r = n

0 r 6= n

⇒
∑

∞

r=1
2 〈ar cos (2πrFt) cos (2πnFt)〉 = an

Term 3: 2 〈br sin 2πrFt cos (2πnFt)〉 = 0

Proof [bn, n > 0]: same method as for an
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Truncated Series:

uN (t) = a0

2
+
∑N

n=1
(an cos 2πnFt+ bn sin 2πnFt)

Pulse: T = 20, width W = T

4
, height A = 8

an = 2

T

∫ T

0
u(t) cos 2πnt

T
dt

= 2

T

∫W

0
A cos 2πnt

T
dt

= 2AT

2πnT

[

sin 2πnt

T

]W

0

= A

nπ
sin 2πnW

T
= A

nπ
sin nπ

2

bn = 2

T

∫ T

0
u(t) sin 2πnt

T
dt

= 2AT

2πnT

[

− cos 2πnt

T

]W

0

= A

nπ

(

1− cos nπ

2

)

n 0 1 2 3 4 5 6

an 4 8

π
0 −8

3π
0 8

5π
0

bn
8

π

16

2π

8

3π
0 8

5π

16

6π

0 5 10 15 20 25

0

5

10

0 5 10 15 20 25

0

5

10
N=0

0 5 10 15 20 25

0

5

10
N=1

0 5 10 15 20 25

0

5

10
N=2
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0

5

10
N=5
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0

5

10
N=10
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0
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In the previous example, we can obtain a0 by noting that a0

2
= 〈u(t)〉, the average value of the

waveform which must be AW

T
= 2. From this, a0 = 4. We can, however, also derive this value from

the general expression.
The expression for am is am = A

nπ
sin nπ

2
. For the case, n = 0, this is difficult to evaluate because both

the numerator and denominator are zero. The general way of dealing with this situation is L’Hôpital’s
rule (see section 4.7 of RHB) but here we can use a simpler and very useful technique that is often
referred to as the “small angle approximation”. For small values of θ we can approximate the standard
trigonometrical functions as: sin θ ≈ θ, cos θ ≈ 1 − 0.5θ2 and tan θ ≈ θ. These approximations are
obtained by taking the first three terms of the Taylor series; they are accurate to O(θ3) and are exactly
correct when θ = 0. When m = 0 we can therefore make an exact approximation to an by writing
an = A

nπ
sin nπ

2
≈ A

nπ
× nπ

2
= A

2
= 4. What we have implicitly done here is to assume that n is a

real number (instead of an integer) and then taken the limit of an as n → 0.
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Fourier analysis maps a function of time onto a set of Fourier coefficients:
u(t) → {an, bn}

This mapping is linear which means:
(1) For any γ, if u(t) → {an, bn} then γu(t) → {γan, γbn}
(2) If u(t) → {an, bn} and u′(t) → {a′n, b

′

n} then
(u(t) + u′(t)) → {an + a′n, bn + b′n}

Proof for an: (proof for bn is similar)

(1) If 2

T

∫ T

0
u(t) cos (2πnFt) dt = an, then

2

T

∫ T

0
(γu(t)) cos (2πnFt) dt

= γ 2

T

∫ T

0
u(t) cos (2πnFt) dt= γan

(2) If 2

T

∫ T

0
u(t) cos (2πnFt) dt = an and

2

T

∫ T

0
u′(t) cos (2πnFt) dt = a′n then

2

T

∫ T

0
(u(t) + u′(t)) cos (2πnFt) dt

= 2

T

∫ T

0
u(t) cos (2πnFt) dt+ 2

T

∫ T

0
u′(t) cos (2πnFt) dt

= an + a′n
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• Fourier Series:
u(t) = a0

2
+
∑

∞

n=1
(an cos 2πnFt+ bn sin 2πnFt)

• Dirichlet Conditions: sufficient conditions for FS to exist
◦ Periodic, Single-valued, Bounded absolute integral
◦ Finite number of (a) max/min and (b) finite discontinuities

• Fourier Analysis = “finding an and bn”

◦ an = 2 〈u(t) cos (2πnFt)〉

, 2

T

∫ T

0
u(t) cos (2πnFt) dt

◦ bn = 2 〈u(t) sin (2πnFt)〉

, 2

T

∫ T

0
u(t) sin (2πnFt) dt

• The mapping u(t) → {an, bn} is linear

For further details see RHB 12.1 and 12.2.
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Euler’s Equation: eiθ = cos θ + i sin θ [see RHB 3.3]

Hence: cos θ = eiθ+e−iθ

2 = 1
2e

iθ + 1
2e

−iθ

sin θ = eiθ−e−iθ

2i = − 1
2 ie

iθ + 1
2 ie

−iθ

Most maths becomes simpler if you use eiθ instead of cos θ and sin θ

The Complex Fourier Series is the Fourier Series but written using eiθ

Examples where using eiθ makes things simpler:

Using eiθ Using cos θ and sin θ

ei(θ+φ) = eiθeiφ cos (θ + φ) = cos θ cosφ− sin θ sinφ

eiθeiφ = ei(θ+φ) cos θ cosφ = 1
2 cos (θ + φ) + 1

2 cos (θ − φ)

d
dθ
eiθ = ieiθ d

dθ
cos θ = − sin θ
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Fourier Series: u(t) = a0

2 +
∑∞

n=1 (an cos 2πnFt+ bn sin 2πnFt)

Substitute: cos θ = 1
2e

iθ + 1
2e

−iθ and sin θ = − 1
2 ie

iθ + 1
2 ie

−iθ

u(t) = a0

2 +
∑∞

n=1

(

an
(

1
2e

iθ + 1
2e

−iθ
)

+ bn
(

− 1
2 ie

iθ + 1
2 ie

−iθ
))

= a0

2 +
∑∞

n=1

((

1
2an − 1

2 ibn
)

ei2πnFt
)

[θ = 2πnFt]

+
∑∞

n=1

((

1
2an + 1

2 ibn
)

e−i2πnFt
)

=
∑∞

n=−∞ Une
i2πnFt

where [b0 , 0]

Un =











1
2an − 1

2 ibn n ≥ 1
1
2a0 n = 0
1
2a|n| +

1
2 ib|n| n ≤ −1

⇔ U±n = 1
2

(

a|n| ∓ ib|n|
)

The Un are normally complex except for U0 and satisfy Un = U∗
−n

Complex Fourier Series: u(t) =
∑∞

n=−∞ Une
i2πnFt [simpler ,]
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If x(t) has period T
n

for some integer n (i.e. frequency n
T
= nF ):

〈x(t)〉 , 1
T

∫ T

t=0
x(t)dt

This is the average over an integer number of cycles.

For a complex exponential:
〈

ei2πnFt
〉

= 〈cos (2πnFt) + i sin (2πnFt)〉

= 〈cos (2πnFt)〉+ i 〈sin (2πnFt)〉

=

{

1 + 0i n = 0

0 + 0i n 6= 0

Hence:

〈

ei2πnFt
〉

=

{

1 n = 0

0 n 6= 0
[,]
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Complex Fourier Series: u(t) =
∑∞

n=−∞ Une
i2πnFt

To find the coefficient, Un, we multiply by something that makes all the
terms involving the other coefficients average to zero.
〈

u(t)e−i2πnFt
〉

=
〈
∑∞

r=−∞ Ure
i2πrFte−i2πnFt

〉

=
〈
∑∞

r=−∞ Ure
i2π(r−n)Ft

〉

=
∑∞

r=−∞ Ur

〈

ei2π(r−n)Ft
〉

All terms in the sum are zero, except for the one when n = r which equals
Un:

Un =
〈

u(t)e−i2πnFt
〉

[,]

This shows that the Fourier series coefficients are unique: you cannot have
two different sets of coefficients that result in the same function u(t).

Note the sign of the exponent: “+” in the Fourier Series but “−” for
Fourier Analysis (in order to cancel out the “+”).
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u(t) = a0

2 +
∑∞

n=1 (an cos 2πnFt+ bn sin 2πnFt)

=
∑∞

n=−∞ Une
i2πnFt

We can easily convert between the two forms.

Fourier Coefficients → Complex Fourier Coefficients:

U±n = 1
2

(

a|n| ∓ ib|n|
)

[Un = U∗
−n]

Complex Fourier Coefficients → Fourier Coefficients:

an = Un + U−n = 2ℜ (Un) [ℜ = “real part”]

bn = i (Un − U−n) = −2ℑ (Un) [ℑ = “imaginary part”]

The formula for an works even for n = 0.
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In these lectures, we are assuming that u(t) is a periodic real-valued function of time. In this case we

can represent u(t) using either the Fourier Series or the Complex Fourier Series:

u(t) = a0

2
+

∑
∞

n=1
(an cos 2πnFt+ bn sin 2πnFt) =

∑
∞

n=−∞
Une

i2πnFt

We have seen that the Un coefficients are complex-valued and that Un and U−n are complex conjugates

so that we can write U−n = U∗

n.

In fact, the complex Fourier series can also be used when u(t) is a complex-valued function of time
(this is sometimes useful in the fields of communications and signal processing). In this case, it is still
true that u(t) =

∑
∞

n=−∞
Une

i2πnFt, but now Un and U−n are completely independent and normally
U−n 6= U∗

n.
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T = 20, width W = T
4 , height A = 8

Method 1:

U±n = 1
2an ∓ i 12bn

Method 2:

Un =
〈

u(t)e−i2πnFt
〉

= 1
T

∫ T

0
u(t)e−i2πnFtdt

= 1
T

∫W

0
Ae−i2πnFtdt

= A
−i2πnFT

[

e−i2πnFt
]W

0

= A
i2πn

(

1− e−i2πnFW
)

= Ae−iπnFW

i2πn

(

eiπnFW − e−iπnFW
)

= Ae−iπnFW

nπ
sin (nπFW )

= 8
nπ

sin
(

nπ
4

)

e−inπ

4

0 5 10 15 20 25

0

5

10
W

 A

n an bn Un

−6 i 8
6π

−5 4
5π + i 4

5π

−4 0

−3 −4
3π + i 4

3π

−2 i 8
2π

−1 4
π
+ i 4

π

0 4 2

1 8
π

8
π

4
π
+ i−4

π

2 0 16
2π i−8

2π

3 −8
3π

8
3π

−4
3π + i−4

3π

4 0 0 0

5 8
5π

8
5π

4
5π + i−4

5π

6 0 16
6π i−8

6π
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Complex Fourier Series: u(t) =
∑∞

n=−∞ Une
i2πnFt

If v(t) is the same as u(t) but delayed by a time τ : v(t) = u(t− τ )

v(t) =
∑∞

n=−∞ Une
i2πnF (t−τ) =

∑∞
n=−∞

(

Une
−i2πnFτ

)

ei2πnFt

=
∑∞

n=−∞ Vne
i2πnFt

where Vn = Une
−i2πnFτ

Example:
u(t) = 6 cos (2πFt)

Fourier: a1 = 6, b1 = 0

Complex: U±1 = 1
2a1 ∓

1
2 ib1 = 3

v(t) = 6 sin (2πFt)= u(t− τ )

Time delay: τ = T
4 ⇒ Fτ = 1

4

Complex: V1 = U1e
−iπ

2 = −3i

V−1 = U−1e
iπ

2 = +3i

0 0.5 1 1.5 2
-5

0

5
u(t)

0 0.5 1 1.5 2
-5

0

5
v(t)

Note: If u(t) is a sine wave, U1 equals half the corresponding phasor.
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(1) u(t) real-valued ⇔ Un conjugate symmetric [Un = U∗
−n]

(2) u(t) even [u(t) = u(−t)] ⇔ Un even [Un = U−n]
(3) u(t) odd [u(t) = −u(−t)] ⇔ Un odd [Un = −U−n]

(1)+(2) u(t) real & even ⇔ Un real & even [Un = U∗
−n = U−n]

(1)+(3) u(t) real & odd ⇔ Un imaginary & odd [Un = U∗
−n = −U−n]

Proof of (2): u(t) even ⇒ Un even

U−n = 1
T

∫ T

0
u(t)e−i2π(−n)Ftdt

= 1
T

∫ −T

x=0
u(−x)e−i2πnFx(−dx) [substitute x = −t]

= 1
T

∫ 0

x=−T
u(−x)e−i2πnFxdx [reverse the limits]

= 1
T

∫ 0

x=−T
u(x)e−i2πnFxdx= Un [even: u(−x) = u(x)]

Proof of (3): u(t) odd ⇒ Un odd
Same as before, except for the last line:

= 1
T

∫ 0

x=−T
−u(x)e−i2πnFxdx= −Un [odd: u(−x) = −u(x)]
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A waveform, u(t), is anti-periodic if u(t+ 1
2T ) = −u(t).

If u(t) is anti-periodic then Un = 0 for n even.

Proof:

Define v(t) = u(t+ T
2 ), then

(1) v(t) = −u(t)⇒ Vn = −Un

(2) v(t) equals u(t) but delayed by −T
2

⇒ Vn = Une
i2πnF T

2 = Une
inπ =

{

Un n even

−Un n odd

Hence for n even: Vn = −Un = Un ⇒ Un = 0

Example:

U0:5 = [0, 3 + 2i, 0, i, 0, 1]
Odd harmonics only ⇔
Second half of each period is the
negative of the first half.

-1 -0.5 0 0.5 1

-5

0

5

U[0:5]=[0, 3+2j, 0, j, 0, 1]
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All these examples assume that u(t) is real-valued ⇔ U−n = U∗
+n.

(1) Even u(t) ⇔ real Un

U0:2 = [0, 2, −1]

-1 -0.5 0 0.5 1
-6
-4
-2
0
2

U[0:2]=[0, 2, -1]

(2) Odd u(t) ⇔ imaginary Un

U0:3 = [0, −2i, i, i]

-1 -0.5 0 0.5 1

-5

0

5

U[0:3]=[0, -2j, j, j]

(3) Anti-periodic u(t)
⇔ odd harmonics only

U0:1 = [0, −i]
-1 -0.5 0 0.5 1

-2

0

2
U[0:1]=[0, -j]

(4) Even harmonics only
⇔ period is really 1

2T

U0:4 = [2, 0, 2, 0, 1]
-1 -0.5 0 0.5 1

0
2
4
6
8

U[0:4]=[2, 0, 2, 0, 1]
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• Fourier Series:
u(t) = a0

2 +
∑∞

n=1 (an cos 2πnFt+ bn sin 2πnFt)

• Complex Fourier Series: u(t) =
∑∞

n=−∞ Une
i2πnFt

◦ Un =
〈

u(t)e−i2πnFt
〉

, 1
T

∫ T

0
u(t)e−i2πnFtdt

◦ Since u(t) is real-valued, Un = U∗
−n

◦ FS→CFS: U±n = 1
2a|n| ∓ i 12b|n|

◦ CFS→FS: an = Un + U−n

bn = i (Un − U−n)

• u(t) real and even ⇔ u(−t) = u(t)
⇔ Un is real-valued and even ⇔ bn = 0 ∀n

• u(t) real and odd ⇔ u(−t) = −u(t)
⇔ Un is purely imaginary and odd ⇔ an = 0 ∀n

• u(t) anti-periodic ⇔ u(t+ T
2 ) = −u(t)

⇔ odd harmonics only ⇔ a2n = b2n = U2n = 0 ∀n

For further details see RHB 12.3 and 12.7.
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Suppose we have two signals with the same period, T = 1
F

,

u(t) =
∑∞

n=−∞ Une
i2πnFt

⇒ u∗(t) =
∑∞

n=−∞ U∗
n
e−i2πnFt [u(t) = u∗(t) if real]

v(t) =
∑∞

n=−∞ Vne
i2πnFt

Now multiply u∗(t) and v(t) together and take the average over [0, T ].
[Use different “dummy variables”, n and m, so they don’t get mixed up]

〈u∗(t)v(t)〉 =
〈
∑∞

n=−∞ U∗
n
e−i2πnFt

∑∞
m=−∞ Vmei2πmFt

〉

=
∑∞

n=−∞ U∗
n

∑∞
m=−∞ Vm

〈

e−i2πnFtei2πmFt
〉

=
∑∞

n=−∞ U∗
n

∑∞
m=−∞ Vm

〈

ei2π(m−n)Ft
〉

The quantity 〈· · · 〉 equals 1 if m = n and 0 otherwise, so the only non-zero
element in the second sum is when m = n, so the second sum equals Vn.

Hence Parseval’s theorem: 〈u∗(t)v(t)〉 = ∑∞
n=−∞ U∗

n
Vn

If v(t) = u(t) we get:
〈

|u(t)|2
〉

=
∑∞

n=−∞ U∗
n
Un =

∑∞
n=−∞ |Un|2



[Manipulating sums]
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If you have a multiplicative expression involving two or more sums, then you must use different dummy
variables for each of the sums:

∑
n
af(n)

∑
m

bg(m)

(1) You can always move any quantities to the right
∑

n
af(n)

∑
m

bg(m) =
∑

n
a
∑

m
bf(n)g(m)

=
∑

n

∑
m

abf(n)g(m)

(2) You can move quantities to the left past a summation provided that they do not involve the dummy

variable of the summation:
∑

n

∑
m

abf(n)g(m) =
∑

n
af(n)

∑
m

bg(m)

6=
∑

n
af(n)g(m)

∑
m

b

The last expression doesn’t make sense in any case since m is undefined outside
∑

m

(3) You can swap the summation order if the sum converges absolutely
∑

n

∑
m

h(n,m) =
∑

m

∑
n
h(n,m) provided that

∑
n

∑
m

|h(n,m)| < ∞

The equality on the left is not necessarily true if the sum does not converge absolutely. Of course,
if the sum has only a finite number of terms, it is bound to converge absolutely.
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The average power of a periodic signal is given by Pu ,

〈

|u(t)|2
〉

.

This is the average electrical power that would be dissipated if the
signal represents the voltage across a 1Ω resistor.

Parseval’s Theorem: Pu =
〈

|u(t)|2
〉

=
∑∞

n=−∞ |Un|2

= |U0|2 + 2
∑∞

n=1 |Un|2 [assume u(t) real]

= 1
4a

2
0 +

1
2

∑∞
n=1

(

a2
n
+ b2

n

)

[U+n = an−ibn

2 ]

Parseval’s theorem ⇒ the average power in u(t) is equal to the sum of the
average powers in each of its Fourier components.

Example: u(t) = 2 + 2 cos 2πFt+ 4 sin 2πFt− 2 sin 6πFt
〈

|u(t)|2
〉

= 4 + 1
2

(

22 + 42 + (−2)2
)

= 16

-1 -0.5 0 0.5 1
-4
-2
0
2
4
6
8

u(
t)

U[0:3]=[2, 1-2j, 0, j]

Time (s)
-1 -0.5 0 0.5 1

0
20
40
60

u2 (t
)

P
u
=<u2>=16

U[0:3]=[2, 1-2j, 0, j]

Time (s)

U0:3 = [2, 1− 2i, 0, i] ⇒ |U0|2 + 2
∑∞

n=1 |Un|2 = 16
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The spectrum of a periodic signal is the values of {Un} versus nF .

The magnitude spectrum is the values of {|Un|} =
{

1
2

√

a2|n| + b2|n|

}

.

The power spectrum is the values of
{

|Un|2
}

=
{

1
4

(

a2|n| + b2|n|

)}

.

Example:
u(t) = 2 + 2 cos 2πFt+ 4 sin 2πFt− 2 sin 6πFt

Fourier Coefficients: a0:3 = [4, 2, 0, 0] b1:3 = [4, 0, −2]

Spectrum: U−3:3 = [−i, 0, 1 + 2i, 2, 1− 2i, 0, i]

Magnitude Spectrum: |U−3:3| =
[

1, 0,
√
5, 2,

√
5, 0, 1

]

Power Spectrum:
∣

∣U2
−3:3

∣

∣ = [1, 0, 5, 4, 5, 0, 1] [
∑

=
〈

u2(t)
〉

]

-3 -2 -1 0 1 2 3
0

1

2

Frequency (Hz)

|U
n|

-3 -2 -1 0 1 2 3
0

5

Frequency (Hz)
|U

n2 |

Σ=16

The magnitude and power spectra of a real periodic signal are symmetrical.

A one-sided power power spectrum shows U0 and then 2 |Un|2 for n ≥ 1.
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Suppose we have two signals with the same period, T = 1
F

,

u(t) =
∑∞

n=−∞ Une
i2πnFt

v(t) =
∑∞

m=−∞ Vne
i2πmFt

If w(t) = u(t)v(t) then Wr =
∑∞

m=−∞ Ur−mVm , Ur ∗ Vr

Proof:
w(t) = u(t)v(t)=

∑∞
n=−∞ Une

i2πnFt
∑∞

m=−∞ Vmei2πmFt

=
∑∞

n=−∞

∑∞
m=−∞ UnVmei2π(m+n)Ft

Now we change the summation variable to use r instead of n:
r = m+ n ⇒ n = r −m

This is a one-to-one mapping: every pair (m, n) in the range ±∞
corresponds to exactly one pair (m, r) in the same range.

w(t) =
∑∞

r=−∞

∑∞
m=−∞ Ur−mVmei2πrFt=

∑∞
r=−∞Wre

i2πrFt

where Wr =
∑∞

m=−∞ Ur−mVm , Ur ∗ Vr.

Wr is the sum of all products UnVm for which m+ n = r.

The spectrum Wr = Ur ∗ Vr is called the convolution of Ur and Vr.
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Convolution behaves algebraically like multiplication:

1) Commutative: Ur ∗ Vr = Vr ∗ Ur

2) Associative: Ur ∗ Vr ∗Wr = (Ur ∗ Vr) ∗Wr = Ur ∗ (Vr ∗Wr)
3) Distributive over addition: Wr ∗ (Ur + Vr) = Wr ∗ Ur +Wr ∗ Vr

4) Identity Element or “1”: If Ir =

{

1 r = 0

0 r 6= 0
, then Ir ∗ Ur = Ur

Proofs: (all sums are over ±∞)

1) Substitute for m: n = r −m⇔ m = r − n [1 ↔ 1 for any r]
∑

m
Ur−mVm=

∑

n
UnVr−n

2) Substitute for n: k = r +m− n⇔ n = r +m− k [1 ↔ 1]
∑

n
((
∑

m
Un−mVm)Wr−n)=

∑

k
((
∑

m
Ur−kVm)Wk−m)

=
∑

k

∑

m
Ur−kVmWk−m=

∑

k
(Ur−k (

∑

m
VmWk−m))

3)
∑

m
Wr−m (Um + Vm)=

∑

m
Wr−mUm +

∑

m
Wr−mVm

4) Ir−mUm = 0 unless m = r. Hence
∑

m
Ir−mUm = Ur.
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u(t) = 10 + 8 sin 2πt v(t) = 4 cos 6πt
U−1:1 = [4i, 10, −4i] V−3:3 = [2, 0, 0, 0, 0, 0, 2] [0 = V0]

-2 -1 0 1 2
0

10

u(
t)

Time (s)
-2 -1 0 1 2

-4
-2
0
2
4

v(
t)

Time (s)
-2 -1 0 1 2

-50

0

50

w
(t

)

Time (s)

-1 0 1
0

5

10

Frequency (Hz)

|U
n|

-3 -2 -1 0 1 2 3
0

1

2

Frequency (Hz)

|V
n|

-4 -3 -2 -1 0 1 2 3 4
0

10

20

Frequency (Hz)

|W
n|

w(t) = u(t)v(t)= (10 + 8 sin 2πt) 4 cos 6πt

= 40 cos 6πt+ 32 sin 2πt cos 6πt

= 40 cos 6πt+ 16 sin 8πt− 16 sin 4πt

W−4:4 = [8i, 20, −8i, 0, 0, 0, 8i, 20, −8i]

To convolve Un and Vn:
Replace each harmonic in Vn by a scaled copy of the entire {Un}
(or vice versa) and sum the complex-valued coefficients of any
overlapping harmonics.
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Two polynomials: u(x) = U3x
3 + U2x

2 + U1x+ U0

v(x) = V2x
2 + V1x+ V0

Now multiply the two polynomials together:
w(x) = u(x)v(x)

= U3V2x
5 +(U3V1 + U2V2)x

4 +(U3V0 + U2V1 + U1V2)x
3

+(U2V0 + U1V1 + U0V2)x
2 +(U1V0 + U0V1)x+U0V0

The coefficient of xr consists of all the coefficient pair from U and V where
the subscripts add up to r. For example, for r = 3:

W3 = U3V0 + U2V1 + U1V2 =
∑2

m=0 U3−mVm

If all the missing coefficients are assumed to be zero, we can write

Wr =
∑∞

m=−∞ Ur−mVm , Ur ∗ Vr

So, to multiply two polynomials, you convolve their coefficient sequences.

Actually, the complex Fourier Series is iust a polynomial:

u(t) =
∑∞

n=−∞ Une
i2πnFt =

∑∞
n=−∞ Un

(

ei2πFt
)n
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• Parseval’s Theorem: 〈u∗(t)v(t)〉 = ∑∞
n=−∞ U∗

n
Vn

◦ Power Conservation:
〈

|u(t)|2
〉

=
∑∞

n=−∞ |Un|2

◦ or in terms of an and bn:
〈

|u(t)|2
〉

= 1
4a

2
0 +

1
2

∑∞
n=1

(

a2
n
+ b2

n

)

• Linearity: w(t) = au(t) + bv(t) ⇔ Wn = aUn + bVn

• Product of signals ⇔ Convolution of complex Fourier coefficients:
w(t) = u(t)v(t) ⇔ Wn = Un ∗ Vn ,

∑∞
m=−∞ Un−mVm

• Convolution acts like multiplication:
◦ Commutative: U ∗ V = V ∗ U
◦ Associative: U ∗ V ∗W is unambiguous
◦ Distributes over addition: U ∗ (V +W ) = U ∗ V + U ∗W
◦ Has an identity: Ir = 1 if r = 0 and = 0 otherwise

• Polynomial multiplication ⇔ convolution of coefficients

For further details see RHB Chapter 12.8.
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A function, v(t), has a discontinuity of amplitude b at t = a if

lime→0 (v(a+ e)− v(a− e)) = b 6= 0

Conversely, v(t), is continuous at t = a if the limit, b, equals zero.

Examples:

a – e a a + e

0

b

Time (t)

u(
t)

a – e a a + e

0

b

Time (t)

v(
t)

Continuous Discontinuous

We will see that if a periodic function, v(t), is discontinuous, then its
Fourier series behaves in a strange way.
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Pulse: T = 1
F

= 20, width=1
2T , height A = 1

Um = 1
T

∫ 0.5T

0
Ae−i2πmFtdt

= i

2πmFT

[

e−i2πmFt
]0.5T

0

= i

2πm

(

e−iπm − 1
)

= ((−1)m−1)i
2πm

=











0 m 6= 0, even

0.5 m = 0
−i

mπ
m odd

So, u(t) = 1
2 + 2

π

(

sin 2πFt+ 1
3 sin 6πFt

+ 1
5 sin 10πFt+ . . .

)

Define: uN (t) =
∑N

m=−N
Umei2πmFt

uN (0) = 0.5 ∀N

maxt uN (t) −→
N→∞

1
2 + 1

π

∫ π

0
sin t

t
dt≈ 1.0895

0 5 10 15 20

0

0.5

1

0 5 10 15 20

0

0.5

1 max(u
0
)=0.500

N=0

0 5 10 15 20

0

0.5

1 max(u
1
)=1.137

N=1

0 5 10 15 20

0

0.5

1 max(u
3
)=1.100

N=3

0 5 10 15 20

0

0.5

1 max(u
5
)=1.094

N=5

0 5 10 15 20

0

0.5

1 max(u
41

)=1.089

N=41

-1 -0.5 0 0.5 1

0

0.5

1 max(u
41

)=1.089

[Enlarged View: u41(t)]
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Expressions involving (−1)m or, less commonly, im arise quite frequently and it is worth becoming

familiar with them. They can arise in several guises:

e−iπm = eiπm =
(

eiπ
)m

= cos (πm) = (−1)m

ei
1
2
πm =

(

ei
1
2
π
)m

= im

e−i 1
2
πm =

(

e−i 1
2
π
)m

= (−i)m

As m increases these expressions repeat with periods of 2 or 4. Simple expressions involving these

quantities make useful sequences.

m −4 −3 −2 −1 0 1 2 3 4

(−1)m = cosπm = eiπm 1 −1 1 −1 1 −1 1 −1 1

im = ei0.5πm 1 i −1 −i 1 i −1 −i 1

(−i)m = e−i0.5πm 1 −i −1 i 1 −i −1 i 1
1
2
(1 + (−1)m) 1 0 1 0 1 0 1 0 1

1
2
(1− (−1)m) 0 1 0 1 0 1 0 1 0

1
2
(im + (−i)m) = cos 0.5πm 1 0 −1 0 1 0 −1 0 1

1
4
(1 + (−1)m + im + (−i)m) 1 0 0 0 1 0 0 0 1
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Truncated Fourier Series: uN (t) =
∑N

m=−N
Umei2πmFt

If u(t) has a discontinuity of height b at t = a then:

(1) uN (a) −→
N→∞

lime→0
u(a−e)+u(a+e)

2

(2) uN (t) has an overshoot of about 9% of b at the discontinuity. For
large N the overshoot moves closer to the discontinuity but does
not get smaller (Gibbs phenomenon). In the limit the overshoot
equals

(

− 1
2 + 1

π

∫ π

0
sin t

t
dt
)

b ≈ 0.0895b.

(3) For large m, the coefficients, Um decrease no faster than |m|
−1

.

Example:

uN (0) −→
N→∞

0.5

maxt uN (t) −→
N→∞

1.0895 . . .

Um =











0 m 6= 0, even

0.5 m = 0
−i

mπ
m odd

0 5 10 15 20

0

0.5

1

0 5 10 15 20

0

0.5

1 max(u
41

)=1.089

N=41

-1 -0.5 0 0.5 1

0

0.5

1 max(u
41

)=1.089
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This topic is included for interest but is not examinable.

Our first goal is to express the partial Fourier series, uN (t), in terms of the original signal, u(t). We

begin by substituting the integral expression for Un in the partial Fourier series

uN (t) =
∑+N

n=−N
Une

i2πnFt=
∑+N

n=−N

(

1
T

∫ T

0 u(τ)e−i2πnFτdτ
)

ei2πnFt

Now we swap the order of the integration and the finite summation (OK if the integral converges ∀n)

uN (t) = 1
T

∫ T

0 u(τ)
(

∑+N
n=−N

ei2πnF (t−τ)
)

dτ

Now apply the formula for the sum of a geometric progression with z = ei2πF (t−τ):
∑+N

n=−N
zn = z−N

−zN+1

1−z
= z−(N+0.5)

−zN+0.5

z−0.5
−z0.5

uN (t) = 1
T

∫ T

0 u(τ) e
i2π(N+0.5)F(τ−t)

−e−i2π(N+0.5)F(τ−t)

ei2π0.5F(τ−t)
−e−i2π0.5F(τ−t) dτ

= 1
T

∫ T

0 u(τ)
sinπ(2N+1)F (τ−t)

sinπF (τ−t)
dτ

So if we define the Dirichlet Kernel to be DN (x) =
sin((N+0.5)x)

sin 0.5x
, and set x = 2πF (τ − t), we obtain

uN (t) = 1
T

∫ T

0 u(τ)DN (2πF (τ − t)) dτ

So what we have shown is that uN (t) can be obtained by multiplying u(τ) by a time-shifted Dirichlet
Kernel and then integrating over one period. Next we will look at the properties of the Dirichlet Kernel.



[Dirichlet Kernel]
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This topic is included for interest but is not examinable.

Dirichlet Kernel definition: DN (x) =
∑+N

n=−N
einx = 1 + 2

∑N
n=1 cosnx =

sin((N+0.5)x)
sin 0.5x

DN (x) is plotted below for N = {2, 5, 10, 21}. The vertical red lines at ±π mark one period.

-6 -4 -2 0 2 4 6

0

2

4 D
2
(x)

x

D
2(

x)

-6 -4 -2 0 2 4 6

0

5

10 D
5
(x)

x

D
5(

x)

-6 -4 -2 0 2 4 6

0

10

20 D
10

(x)

x

D
10

(x
)

-6 -4 -2 0 2 4 6

0

20

40 D
21

(x)

x

D
21

(x
)

• Periodic: with period 2π

• Average value: 〈DN (x)〉 = 1
2π

∫+π

−π
DN (x)dx = 1

• First Zeros: DN (x) = 0 at x = ± π
N+0.5

define the main lobe as − π
N+0.5

< x < π
N+0.5

• Peak value: 2N + 1 at x = 0. The main lobe gets narrower but higher as N increases.

• Main Lobe semi-integral:
∫

π
N+0.5
x=0 DN (x)dx =

∫

π
N+0.5
x=0

sin((N+0.5)x)
sin 0.5x

dx = 1
N+0.5

∫ π

y=0
sin y

sin y
2N+1

dy[y = (N + 0.5)x]

where we substituted y = (N +0.5)x. Now, for large N , we can approximate sin y

2N+1
≈ y

2N+1
:

∫

π
N+0.5
x=0 DN (x)dx ≈ 1

N+0.5

∫ π

y=0
sin y

y
2N+1

dy= 2
∫ π

y=0
sin y

y
dy≈ 3.7038741≈ 2π × 0.58949

We see that, for large enough N , the main lobe semi-integral is independent of N .

[In MATLAB DN (x) = (2N + 1)× diric(x, 2N + 1)]
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This topic is included for interest but is not examinable.

The partial Fourier Series, uN (t), can be obtained by multiplying u(t)

by a shifted Dirichlet Kernel and integrating over one period:

uN (t) = 1
T

∫ T

0 u(τ)DN (2πF (τ − t)) dτ

For the special case when u(t) is a pulse of height 1 and width 0.5T :

uN (t) = 1
T

∫ 0.5T
0 DN (2πF (τ − t)) dτ

Substitute x = 2πF (τ − t)

uN (t) = 1
2πFT

∫ πFT−2πFt

−2πFt
DN (x) dx= 1

2π

∫ π−2πFt

−2πFt
DN (x) dx

• For t = 0 (the blue integral and the blue circle on the upper graph):
uN (0) = 1

2π

∫ π

0 DN (x) dx= 0.5
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0.5

1  u
41

(t)

 T=20
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-20
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80   t=0
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-20

0
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40
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80   t=0.24
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-20
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20
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• For t = T
2N+1

(the red integral and the red circle on the upper graph):

uN

(

T
2N+1

)

= 1
2π

∫ π−

π
N+0.5

−

π
N+0.5

DN (x) dx= 1
2π

∫ 0
−

π
N+0.5

DN (x) dx+ 1
2π

∫ π−

π
N+0.5

0 DN (x) dx

For large N , we replace the first term by a constant (since it is the semi-integral of the main lobe)
and replace the upper limit of the second term by π:

≈ 0.58949 + 1
2π

∫ π

0 DN (x) dx= 1.08949
• For 0 ≪ t ≪ 0.5T , uN (t) ≈ 1 (the green integral and the green circle on the upper graph).
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Suppose u(t) =
∑∞

m=−∞ Umei2πmFt

Define v(t) to be the integral of u(t) [boundedness requires U0 = 0]

v(t) =
∫ t

u(τ )dτ =
∫ t ∑∞

m=−∞ Umei2πmFτdτ

=
∑∞

m=−∞ Um

∫ t
ei2πmFτdτ [assume OK to swap

∫

and
∑

]

= c+
∑∞

m=−∞ Um
1

i2πmF
ei2πmFt

= c+
∑∞

m=−∞ Vmei2πmFt where c is an integration constant

Hence Vm = −i

2πmF
Um except for V0 = c (arbitrary constant)

Example:
Square wave: Um = −2i

mπ
for odd m (0 for even m)

Triangle wave: Vm = −i

2πmF
× −2i

mπ
= −1

π2m2F
for odd m (0 for even m)

0 5 10 15 20
-1

0

1 u
7
(t)

0 5 10 15 20
-5

0

5 v
7
(t)

Convergence: v(t) always converges if u(t) does since Vm ∝ 1
m
Um

vN (t) is a good approximation even for small N
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Square wave: Um = −2i
π

m−1 for odd m (0 for even m)
Triangle wave: Vm = −1

π2F
m−2 for odd m (0 for even m)

0 5 10 15 20
-1

0

1 u
7
(t)

0 5 10 15 20
-5

0

5 v
7
(t)

Integrating

u(t) multiplies the Um by −i

2πF ×m−1⇒ they decrease faster.

The rate at which the coefficients, Um, decrease with m depends on the
lowest derivative that has a discontinuity:

• Discontinuity in u(t) itself (e.g. square wave)

For large |m|, Um decreases as |m|
−1

• Discontinuity in u′(t) (e.g. triangle wave)

For large |m|, Um decreases as |m|−2

• Discontinuity in u(n)(t)

For large |m|, Um decreases as |m|
−(n+1)

• No discontinuous derivatives
For large |m|, Um decreases faster than any power (e.g. e−|m|)
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Integration multiplies Um by −i

2πmF
.

Hence differentiation multiplies Um by 2πmF

−i
= i2πmF

If u(t) is a continuous differentiable function and w(t) = du(t)
dt

then,
provided that w(t) satisfies the Dirichlet conditions, its Fourier coefficients
are:

Wm =

{

0 m = 0

i2πmFUm m 6= 0
.

Since we are multiplying Um by m the coefficients Wm decrease more
slowly with m and so the Fourier series for w(t) may not converge (i.e.
w(t) may not satisfy the Dirichlet conditions).

d
dt−→

d
dt−→

Um ∝ |m|
−2

Um ∝ |m|
−1

Um ∝ |m|
−0

Differentiation makes waveforms spikier and less smooth.
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Suppose y(t) is only defined over a finite interval (a, b).

You have two reasonable choices to make a periodic version:

(a) T = b− a, u(t) = y(t) for a ≤ t < b

(b) T = 2(b− a), u(t) =

{

y(t) a ≤ t ≤ b

y(2b− t) b ≤ t ≤ 2b− a

Example:

y(t) = t2 for 0 ≤ t < 2

-2 0 2 4

0

2

4

-2 0 2 4

0

2

4

-2 0 2 4

0

2

4

y(t) (a) T = 2 (b) T = 4

Option (b) has twice the period, no discontinuities, no Gibbs phenomenon
overshoots and if y(t) is continuous the coefficients decrease at least as fast

as |m|
−2

.
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y(t) = t2 for 0 ≤ t < 2

Method (a): T = 1
F

= 2

Um = 1
T

∫ T

0
t2e−i2πmFtdt U0 = 1

T

∫ T

0
t2dt = 4

3

= 1
T

[

t
2
e
−i2πmFt

−i2πmF
− 2te−i2πmFt

(−i2πmF )2
+ 2e−i2πmFt

(−i2πmF )3

]T

0

Substitute e−i2πmF0 = e−i2πmFT = 1 [for integer m]

= 1
T

[

T
2

−i2πmF
− 2T

(−i2πmF )2

]

= 2i
πm

+ 2
π2m2

-2 0 2 4

0

2

4 K=1

-2 0 2 4

0

2

4 K=3

-2 0 2 4

0

2

4 K=6

U0:3 = [1.333, 0.203 + 0.637i, 0.051 + 0.318i, 0.023 + 0.212i]
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⊲

t2 Periodic
Extension: Method
(b)

Summary

E1.10 Fourier Series and Transforms (2014-5559) Gibbs Phenomenon: 5 – 10 / 11

y(t) = t2 for 0 ≤ t < 2

Method (b): T = 1
F

= 4

Um = 1
T

∫ 0.5T

−0.5T
t2e−i2πmFtdt U0 = 1

T

∫ 0.5T

−0.5T
t2dt = 4

3

= 1
T

[

t
2
e
−i2πmFt

−i2πmF
− 2te−i2πmFt

(−i2πmF )2
+ 2e−i2πmFt

(−i2πmF )3

]0.5T

−0.5T

Substitute e±iπmFT = e±iπm = (−1)
m

[for integer m]

= (−1)m

T

[

−2T
(−i2πmF )2

]

[all even powers of t cancel out]

= (−1)mT
2

2π2m2 = (−1)m8
π2m2

-2 0 2 4

0

2

4 K=1

-2 0 2 4

0

2

4 K=3

-2 0 2 4

0

2

4 K=6

U0:3 = [1.333, −0.811, 0.203, −0.090] [u(t) real+even ⇒ Um real]

Convergence is noticeably faster than for method (a)
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• Discontinuity at t = a

◦ Gibbs phenomenon: uN (t) overshoots by 9% of iump
◦ uN (a) → mid point of iump

• Integration: If v(t) =
∫ t

u(τ )dτ , then Vm = −i

2πmF
Um

and V0 = c, an arbitrary constant. U0 must be zero.

• Differentiation: If w(t) = du(t)
dt

, then Wm = i2πmFUm provided
w(t) satisfies Dirichlet conditions (it might not)

• Rate of decay:

◦ For large n, Un decreases at a rate |n|
−(k+1)

where d
k
u(t)
dtk

is
the first discontinuous derivative

◦ Error power:
〈

(u(t)− uN (t))2
〉

=
∑

|n|>N
|Un|

2

• Periodic Extension of finite domain signal of length L

◦ (a) Repeat indefinitely with period T = L

◦ (b) Reflect alternate repetitions for period T = 2L
no discontinuities or Gibbs phenomenon

For further details see RHB Chapter 12.4, 12.5, 12.6
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Fourier Series: u(t) =
∑∞

n=−∞ Une
i2πnFt

The harmonic frequencies are nF ∀n and are spaced F = 1
T

apart.

As T gets larger, the harmonic spacing becomes smaller.
e.g. T = 1 s ⇒ F = 1Hz

T = 1day ⇒ F = 11.57µHz

If T → ∞ then the harmonic spacing becomes zero, the sum becomes an
integral and we get the Fourier Transform:

u(t) =
∫ +∞
f=−∞ U(f)ei2πftdf

Here, U(f), is the spectral density of u(t).

• U(f) is a continuous function of f .
• U(f) is complex-valued.
• u(t) real ⇒ U(f) is conjugate symmetric ⇔ U(−f) = U(f)∗.
• Units: if u(t) is in volts, then U(f)df must also be in volts

⇒ U(f) is in volts/Hz (hence “spectral density”).
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Fourier Series: u(t) =
∑∞

n=−∞ Une
i2πnFt

The summation is over a set of equally spaced frequencies
fn = nF where the spacing between them is ∆f = F = 1

T
.

Un =
〈

u(t)e−i2πnFt
〉

= ∆f
∫ 0.5T

t=−0.5T
u(t)e−i2πnFtdt

Spectral Density: If u(t) has finite energy, Un → 0 as ∆f → 0. So we
define a spectral density, U(fn) =

Un

∆f
, on the set of frequencies {fn}:

U(fn) =
Un

∆f
=

∫ 0.5T

t=−0.5T
u(t)e−i2πfntdt

we can write [Substitute Un = U(fn)∆f ]
u(t) =

∑∞
n=−∞ U(fn)e

i2πfnt∆f

Fourier Transform: Now if we take the limit as ∆f → 0, we get

u(t) =
∫∞
−∞ U(f)ei2πftdf [Fourier Synthesis]

U(f) =
∫∞
t=−∞ u(t)e−i2πftdt [Fourier Analysis]

For non-periodic signals Un → 0 as ∆f → 0 and U(fn) =
Un

∆f
remains

finite. However, if u(t) contains an exactly periodic component, then the
corresponding U(fn) will become infinite as ∆f → 0. We will deal with it.
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Example 1:

u(t) =

{

e−at t ≥ 0

0 t < 0

U(f) =
∫∞
−∞ u(t)e−i2πftdt

=
∫∞
0

e−ate−i2πftdt

=
∫∞
0

e(−a−i2πf)tdt

-5 0 5
0

0.5

1

Time (s)

u(
t)

 a=2

-5 0 5
0.1
0.2
0.3
0.4
0.5

Frequency (Hz)

|U
(f

)|

-5 0 5
-0.5

0

0.5

Frequence (Hz)

<
U

(f
) 

(r
ad

/p
i)

= −1
a+i2πf

[

e(−a−i2πf)t
]∞
0

= 1
a+i2πf

Example 2:
v(t) = e−a|t|

V (f) =
∫∞
−∞ v(t)e−i2πftdt

-5 0 5
0

0.5

1

Time (s)

v(
t)

 a=2

-5 0 5
0

0.5

1

Frequency (Hz)

|V
(f

)|

=
∫ 0

−∞ eate−i2πftdt+
∫∞
0

e−ate−i2πftdt

= 1
a−i2πf

[

e(a−i2πf)t
]0

−∞ + −1
a+i2πf

[

e(−a−i2πf)t
]∞
0

= 1
a−i2πf + 1

a+i2πf = 2a
a2+4π2f2 [v(t) real+symmetric

⇒ V (f) real+symmetric]
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We define a unit area pulse of width w as

dw(x) =

{

1
w

−0.5w ≤ x ≤ 0.5w

0 otherwise

This pulse has the property that its integral equals
1 for all values of w:

∫∞
x=−∞ dw(x)dx = 1

-3 -2 -1 0 1 2 3
0

2

4

δ
3
(x)

δ
0.5

(x)

δ
0.2

(x)

x

-3 -2 -1 0 1 2 3

0

0.5

1

δ(x)

x

If we make w smaller, the pulse height increases to preserve unit area.

We define the Dirac delta function as δ(x) = limw→0 dw(x)

• δ(x) equals zero everywhere except at x = 0 where it is infinite.

• However its area still equals 1 ⇒
∫∞
−∞ δ(x)dx = 1

• We plot the height of δ(x) as its area rather than its true height of ∞.

δ(x) is not quite a proper function: it is called a generalized function.
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Translation: δ(x− a)

δ(x) is a pulse at x = 0
δ(x− a) is a pulse at x = a

Amplitude Scaling: bδ(x)

δ(x) has an area of 1 ⇔
∫∞
−∞ δ(x)dx = 1

bδ(x) has an area of b since
∫∞
−∞ (bδ(x)) dx= b

∫∞
−∞ δ(x)dx= b

-3 -2 -1 0 1 2 3
-1

0

1 δ(x) δ(x-2)

-0.5δ(x+2)

x

-3 -2 -1 0 1 2 3
-1

0

1

δ(4x) = 0.25δ(x)

-3δ(-4x-8) = -0.75δ(x+2)

x

b can be a complex number (on a graph, we then plot only its magnitude)

Time Scaling: δ(cx)

c > 0:
∫∞
x=−∞ δ(cx)dx=

∫∞
y=−∞ δ(y)dy

c
[sub y = cx]

= 1
c

∫∞
y=−∞ δ(y)dy= 1

c
= 1

|c|

c < 0:
∫∞
x=−∞ δ(cx)dx=

∫ −∞
y=+∞ δ(y)dy

c
[sub y = cx]

= −1
c

∫ +∞
y=−∞ δ(y)dy= −1

c
= 1

|c|

In general, δ(cx) = 1
|c|δ(x) for c 6= 0
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If we multiply δ(x− a) by a function of x:
y = x2 × δ(x− 2)

The product is 0 everywhere except at x = 2.

So δ(x− 2) is multiplied by the value taken by
x2 at x = 2:

x2 × δ(x− 2) =
[

x2
]

x=2
× δ(x− 2)

= 4× δ(x− 2)

In general for any function, f(x), that is
continuous at x = a,

f(x)δ(x− a) = f(a)δ(x− a)

Integrals:

-1 0 1 2
0

2

4

6
y=x2

x

-1 0 1 2
0

2

4

6
y=δ(x-2)

x

-1 0 1 2
0

2

4

6
y=22×δ(x-2) = 4δ(x-2)

x

∫∞
−∞ f(x)δ(x− a)dx=

∫∞
−∞ f(a)δ(x− a)dx

= f(a)
∫∞
−∞ δ(x− a)dx

= f(a) [if f(x) continuous at a]

Example:
∫∞
−∞

(

3x2 − 2x
)

δ(x− 2)dx =
[

3x2 − 2x
]

x=2
= 8
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Fourier Transform: u(t) =
∫∞
−∞ U(f)ei2πftdf [Fourier Synthesis]

U(f) =
∫∞
t=−∞ u(t)e−i2πftdt [Fourier Analysis]

Example: U(f) = 1.5δ(f + 2) + 1.5δ(f − 2)

u(t) =
∫∞
−∞ U(f)ei2πftdf

=
∫∞
−∞ 1.5δ(f + 2)ei2πftdf

+
∫∞
−∞ 1.5δ(f − 2)ei2πftdf

= 1.5
[

ei2πft
]

f=−2
+ 1.5

[

ei2πft
]

f=+2

= 1.5
(

ei4πt + e−i4πt
)

= 3 cos 4πt

-3 -2 -1 0 1 2 3
0

0.5

1

1.5
 1.5δ(f+2) 1.5δ(f-2) 

Frequency (Hz)

0 1 2 3 4 5

-2

0

2

4 3cos(4πt)

Time (s)

If u(t) is periodic then U(f) is a sum of Dirac delta functions:

u(t) =
∑∞

n=−∞ Une
i2πnFt ⇒ U(f) =

∑∞
n=−∞ Unδ (f − nF )

Proof: u(t) =
∫∞
−∞ U(f)ei2πftdf

=
∫∞
−∞

∑∞
n=−∞ Unδ (f − nF ) ei2πftdf

=
∑∞

n=−∞ Un

∫∞
−∞ δ (f − nF ) ei2πftdf

=
∑∞

n=−∞ Une
i2πnFt
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Fourier Transform: u(t) =
∫∞
−∞ U(f)ei2πftdf [Fourier Synthesis]

U(f) =
∫∞
t=−∞ u(t)e−i2πftdt [Fourier Analysis]

Dual transform:
Suppose v(t) = U(t), then

V (f) =
∫∞
t=−∞ v(t)e−i2πftdτ

V (g) =
∫∞
t=−∞ U(t)e−i2πgtdt [substitute f = g, v(t) = U(t)]

=
∫∞
f=−∞ U(f)e−i2πgfdf [substitute t = f ]

= u(−g)

So: v(t) = U(t) ⇒ V (f) = u(−f)

Example:
u(t) = e−|t| ⇒ U(f) = 2

1+4π2f2 [from earlier]

v(t) = 2
1+4π2t2

⇒ V (f) = e−|−f | = e−|f |
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Fourier Transform: u(t) =
∫∞
−∞ U(f)ei2πftdf [Fourier Synthesis]

U(f) =
∫∞
t=−∞ u(t)e−i2πftdt [Fourier Analysis]

Time Shifting and Scaling:

Suppose v(t) = u(at+ b), then

V (f) =
∫∞
t=−∞ u(at+ b)e−i2πftdt [now sub τ = at+ b]

= sgn(a)
∫∞
τ=−∞ u(τ )e−i2πf( τ−b

a ) 1
a
dτ

note that ±∞ limits swap if a < 0 hence sgn(a) =

{

1 a > 0

−1 a < 0

= 1
|a|e

i
2πfb

a

∫∞
τ=−∞ u(τ )e−i2π f

a
τdτ

= 1
|a|e

i
2πfb

a U
(

f
a

)

So: v(t) = u(at+ b) ⇒ V (f) = 1
|a|e

i
2πfb

a U
(

f
a

)
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Gaussian Pulse: u(t) = 1√
2πσ2

e−
t2

2σ2

This is a Normal (or Gaussian) probability distribution, so
∫∞
−∞ u(t)dt = 1.

U(f) =
∫∞
−∞ u(t)e−i2πftdt= 1√

2πσ2

∫∞
−∞ e−

t2

2σ2 e−i2πftdt

= 1√
2πσ2

∫∞
−∞ e−

1

2σ2 (t2+i4πσ2ft)dt

= 1√
2πσ2

∫∞
−∞ e

− 1

2σ2

(

t2+i4πσ2ft+(i2πσ2f)2−(i2πσ2f)2
)

dt

= e
1

2σ2 (i2πσ2f)2 1√
2πσ2

∫∞
−∞ e−

1

2σ2 (t+i2πσ2f)2dt

(i)
= e

1

2σ2 (i2πσ2f)2 = e−
1

2
(2πσf)2

[(i) uses a result from complex analysis theory that:
1√

2πσ2

∫∞
−∞ e−

1

2σ2 (t+i2πσ2f)2dt = 1√
2πσ2

∫∞
−∞ e−

1

2σ2
t2dt = 1]

-4 -2 0 2 4
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0.2

0.4  σ=1

Time (s)

u(
t)

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
0
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1  1/(2πσ)=0.159
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|U
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)|

Uniquely, the Fourier Transform of a Gaussian pulse is a Gaussian pulse.
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• Fourier Transform:
◦ Inverse transform (synthesis): u(t) =

∫∞
−∞ U(f)ei2πftdf

◦ Forward transform (analysis): U(f) =
∫∞
t=−∞ u(t)e−i2πftdt

⊲ U(f) is the spectral density function (e.g. Volts/Hz)

• Dirac Delta Function:
◦ δ(t) is a zero-width infinite-height pulse with

∫∞
−∞ δ(t)dt = 1

◦ Integral:
∫∞
−∞ f(t)δ(t− a) = f(a)

◦ Scaling: δ(ct) = 1
|c|δ(t)

• Periodic Signals: u(t) =
∑∞

n=−∞ Une
i2πnFt

⇒ U(f) =
∑∞

n=−∞ Unδ (f − nF )
• Fourier Transform Properties:

◦ v(t) = U(t) ⇒ V (f) = u(−f)

◦ v(t) = u(at+ b) ⇒ V (f) = 1
|a|e

i
2πfb

a U
(

f
a

)

◦ v(t) = 1√
2πσ2

e−
1

2
( t

σ )
2

⇒ V (f) = e−
1

2
(2πσf)2

For further details see RHB Chapter 13.1 (uses ω instead of f)
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Question: What is the Fourier transform of w(t) = u(t)v(t) ?

Let u(t) =
∫ +∞

h=−∞
U(h)ei2πhtdh and v(t) =

∫ +∞

g=−∞
V (g)ei2πgtdg

[Note use of different dummy variables]

w(t) = u(t)v(t)

=
∫ +∞

h=−∞
U(h)ei2πhtdh

∫ +∞

g=−∞
V (g)ei2πgtdg

=
∫ +∞

h=−∞
U(h)

∫ +∞

g=−∞
V (g)ei2π(h+g)tdg dh [merge e(··· )]

Now we make a change of variable in the second integral: g = f − h

=
∫ +∞

h=−∞
U(h)

∫ +∞

f=−∞
V (f − h)ei2πftdf dh

=
∫∞

f=−∞

∫ +∞

h=−∞
U(h)V (f − h)ei2πftdh df [swap

∫

]

=
∫ +∞

f=−∞
W (f)ei2πftdf

where W (f) =
∫ +∞

h=−∞
U(h)V (f − h)dh

∫ +∞

h=−∞
U(h)V (f − h)dh ,

U(f) ∗ V (f)

This is the convolution of the two spectra U(f) and V (f).

w(t) = u(t)v(t) ⇔ W (f) = U(f) ∗ V (f)
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u(t) =

{

e−at t ≥ 0

0 t < 0

U(f) = 1
a+i2πf [from before]

v(t) = cos 2πFt

V (f) = 0.5 (δ(f + F ) + δ(f − F ))

w(t) = u(t)v(t)

W (f) = U(f) ∗ V (f)
= 0.5

a+i2π(f+F ) +
0.5

a+i2π(f−F )

If V (f) consists entirely of Dirac impulses
then U(f) ∗ V (f) iust replaces each impulse
with a complete copy of U(f) scaled by the
area of the impulse and shifted so that 0Hz
lies on the impulse. Then add the
overlapping complex spectra.
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Convolution Theorem:
w(t) = u(t)v(t) ⇔ W (f) = U(f) ∗ V (f)

w(t) = u(t) ∗ v(t) ⇔ W (f) = U(f)V (f)

Convolution in the time domain is equivalent to multiplication in the
frequency domain and vice versa.

Proof of second line:
Given u(t), v(t) and w(t) satisfying

w(t) = u(t)v(t) ⇔ W (f) = U(f) ∗ V (f)

define dual waveforms x(t), y(t) and z(t) as follows:

x(t) = U(t) ⇔ X(f) = u(−f) [duality]
y(t) = V (t) ⇔ Y (f) = v(−f)
z(t) = W (t) ⇔ Z(f) = w(−f)

Now the convolution property becomes:
w(−f) = u(−f)v(−f) ⇔ W (t) = U(t) ∗ V (t) [sub t ↔ ±f ]

Z(f) = X(f)Y (f) ⇔ z(t) = x(t) ∗ y(t) [duality]
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u(t) =

{

1− t 0 ≤ t < 1

0 otherwise

v(t) =

{

e−t t ≥ 0

0 t < 0

w(t) = u(t) ∗ v(t)

=
∫∞

−∞
u(τ )v(t− τ )dτ

=
∫min(t,1)

0
(1− τ )eτ−tdτ

= [(2− τ ) eτ−t]
min(t,1)
τ=0

=











0 t < 0

2− t− 2e−t 0 ≤ t < 1

(e− 2) e−t t ≥ 1
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Time t (s)
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1 t=0.7 
 v(0.7-τ)u(τ)  ∫ = 0.307
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-2 0 2 4 6
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1 t=1.5 
 v(1.5-τ)u(τ)  ∫ = 0.16

Time τ (s)

-2 0 2 4 6
0

0.5

1 t=2.5 
 v(2.5-τ)u(τ)  ∫ = 0.059

Time τ (s)

Note how v(t− τ ) is time-reversed (because of the −τ ) and time-shifted to
put the time origin at τ = t.
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Convloution: w(t) = u(t) ∗ v(t),
∫∞

−∞
u(τ )v(t− τ )dτ

Convolution behaves algebraically like multiplication:

1) Commutative: u(t) ∗ v(t) = v(t) ∗ u(t)

2) Associative:
u(t) ∗ v(t) ∗ w(t) = (u(t) ∗ v(t)) ∗ w(t) = u(t) ∗ (v(t) ∗ w(t))

3) Distributive over addition:
w(t) ∗ (u(t) + v(t)) = w(t) ∗ u(t) + w(t) ∗ v(t)

4) Identity Element or “1”: u(t) ∗ δ(t) = δ(t) ∗ u(t) = u(t)

5) Bilinear: (au(t)) ∗ (bv(t)) = ab (u(t) ∗ v(t))

Proof: In the frequency domain, convolution is multiplication.

Also, if u(t) ∗ v(t) = w(t), then

6) Time Shifting: u(t+ a) ∗ v(t+ b) = w(t+ a+ b)

7) Time Scaling: u(at) ∗ v(at) = 1
|a|w(at)

How to recognise a convolution integral:
the arguments of u(· · · ) and v(· · · ) sum to a constant.
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Lemma:

X(f) = δ(f − g) ⇒ x(t) =
∫

δ(f − g)ei2πftdf = ei2πgt

⇒ X(f) =
∫

ei2πgte−i2πftdt=
∫

ei2π(g−f)tdt= δ(g − f)

Parseval’s Theorem:
∫∞

t=−∞
u∗(t)v(t)dt =

∫ +∞

f=−∞
U∗(f)V (f)df

Proof:
Let u(t) =

∫ +∞

f=−∞
U(f)ei2πftdf and v(t) =

∫ +∞

g=−∞
V (g)ei2πgtdg

[Note use of different dummy variables]

Now multiply u∗(t) = u(t) and v(t) together and integrate over time:
∫∞

t=−∞
u∗(t)v(t)dt

=
∫∞

t=−∞

∫ +∞

f=−∞
U∗(f)e−i2πftdf

∫ +∞

g=−∞
V (g)ei2πgtdgdt

=
∫ +∞

f=−∞
U∗(f)

∫ +∞

g=−∞
V (g)

∫∞

t=−∞
ei2π(g−f)tdtdgdf

=
∫ +∞

f=−∞
U∗(f)

∫ +∞

g=−∞
V (g)δ(g − f)dgdf [lemma]

=
∫ +∞

f=−∞
U∗(f)V (f)df
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Parseval’s Theorem:
∫∞

t=−∞
u∗(t)v(t)dt =

∫ +∞

f=−∞
U∗(f)V (f)df

For the special case v(t) = u(t), Parseval’s theorem becomes:
∫∞

t=−∞
u∗(t)u(t)dt =

∫ +∞

f=−∞
U∗(f)U(f)df

⇒ Eu =
∫∞

t=−∞
|u(t)|2 dt =

∫ +∞

f=−∞
|U(f)|2 df

Energy Conservation: The energy in u(t) equals the energy in U(f).

Example:

u(t) =

{

e−at t ≥ 0

0 t < 0
⇒ Eu =

∫

|u(t)|
2
dt =

[

−e−2at

2a

]∞

0
= 1

2a

U(f) = 1
a+i2πf [from before]

⇒
∫

|U(f)|2 df =
∫

df
a2+4π2f2

=

[

tan−1( 2πf
a )

2πa

]∞

−∞

= π
2πa = 1

2a
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Example from before:

w(t) =

{

e−at cos 2πFt t ≥ 0

0 t < 0

W (f) = 0.5
a+i2π(f+F ) +

0.5
a+i2π(f−F )

= a+i2πf
a2+i4πaf−4π2(f2−F 2)

|W (f)|2 = a2+4π2f2

(a2−4π2(f2−F 2))2+16π2a2f2
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Energy Spectrum

• The units of |W (f)|
2

are “energy per Hz” so that its integral,

Ew =
∫∞

−∞
|W (f)|2 df , has units of energy.

• The quantity |W (f)|
2

is called the energy spectral density of w(t) at
frequency f and its graph is the energy spectrum of w(t). It shows
how the energy of w(t) is distributed over frequencies.

• If you divide |W (f)|
2

by the total energy, Ew, the result is non-negative
and integrates to unity like a probability distribution.



Summary

7: Fourier
Transforms:
Convolution and
Parseval’s Theorem
Multiplication of
Signals

Multiplication
Example

Convolution Theorem

Convolution Example

Convolution
Properties

Parseval’s Theorem

Energy Conservation

Energy Spectrum

⊲ Summary

E1.10 Fourier Series and Transforms (2014-5559) Fourier Transform - Parseval and Convolution: 7 – 10 / 10

• Convolution:
◦ u(t) ∗ v(t),

∫∞

−∞
u(τ )v(t− τ )dτ

⊲ Arguments of u(· · · ) and v(· · · ) sum to t

◦ Acts like multiplication + time scaling/shifting formulae

• Convolution Theorem: multiplication ↔ convolution
◦ w(t) = u(t)v(t) ⇔ W (f) = U(f) ∗ V (f)
◦ w(t) = u(t) ∗ v(t) ⇔ W (f) = U(f)V (f)

• Parseval’s Theorem:
∫∞

t=−∞
u∗(t)v(t)dt =

∫ +∞

f=−∞
U∗(f)V (f)df

• Energy Spectrum:
◦ Energy spectral density: |U(f)|2 (energy/Hz)

◦ Parseval: Eu =
∫

|u(t)|
2
dt =

∫

|U(f)|
2
df

For further details see RHB Chapter 13.1
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The cross-correlation between two signals u(t) and v(t) is

w(t) = u(t)⊗ v(t) ,
∫∞
−∞ u∗(τ )v(τ + t)dτ

=
∫∞
−∞ u∗(τ − t)v(τ )dτ [sub: τ → τ − t]

The complex conjugate, u∗(τ ) makes no difference if u(t) is real-valued
but makes the definition work even if u(t) is complex-valued.

Correlation versus Convolution:

u(t)⊗ v(t) =
∫∞
−∞ u∗(τ )v(τ + t)dτ [correlation]

u(t) ∗ v(t) =
∫∞
−∞ u(τ )v(t− τ )dτ [convolution]

Unlike convolution, the integration variable, τ , has the same sign in the
arguments of u(· · · ) and v(· · · ) so the arguments have a constant
difference instead of a constant sum (i.e. v(t) is not time-flipped).

Notes: (a) The argument of w(t) is called the “lag” (= delay of u versus v).
(b) Some people write u(t) ⋆ v(t) instead of u(t)⊗ v(t).
(c) Some swap u and v and/or negate t in the integral.

It is all rather inconsistent /.



Signal Matching

8: Correlation

Cross-Correlation

⊲ Signal Matching

Cross-corr as
Convolution

Normalized Cross-corr

Autocorrelation
Autocorrelation
example

Fourier Transform
Variants

Scale Factors

Summary

Spectrogram

E1.10 Fourier Series and Transforms (2015-5585) Fourier Transform - Correlation: 8 – 3 / 11

Cross correlation is used to find where two
signals match: u(t) is the test waveform.

Example 1:
v(t) contains u(t) with an unknown delay

and added noise.
w(t) = u(t)⊗ v(t)

=
∫
u∗(τ − t)v(τ )dt gives a peak

at the time lag where u(τ − t) best
matches v(τ ); in this case at t = 450

Example 2:
y(t) is the same as v(t) with more noise
z(t) = u(t)⊗ y(t) can still detect the

correct time delay (hard for humans)

Example 3:
p(t) contains −u(t) so that
q(t) = u(t)⊗ p(t) has a negative peak
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Correlation: w(t) = u(t)⊗ v(t) =
∫∞
−∞ u∗(τ − t)v(τ )dτ

If we define x(t) = u∗(−t) then

x(t) ∗ v(t) ,
∫∞
−∞ x(t− τ )v(τ )dτ =

∫∞
−∞ u∗(τ − t)v(τ )dτ

= u(t)⊗ v(t)

Fourier Transform of x(t):

X(f) =
∫∞
−∞ x(t)e−i2πftdt=

∫∞
−∞ u∗(−t)e−i2πftdt

=
∫∞
−∞ u∗(t)ei2πftdt=

(∫∞
−∞ u(t)e−i2πftdt

)∗

= U∗(f)

So w(t) = x(t) ∗ v(t) ⇒ W (f) = X(f)V (f)= U∗(f)V (f)

Hence the Cross-correlation theorem:
w(t) = u(t)⊗ v(t) ⇔ W (f) = U∗(f)V (f)

= u∗(−t) ∗ v(t)
Note that, unlike convolution, correlation is not associative or commutative:

v(t)⊗ u(t) = v∗(−t) ∗ u(t)= u(t) ∗ v∗(−t)= w∗(−t)
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Correlation: w(t) = u(t)⊗ v(t) =
∫∞
−∞ u∗(τ − t)v(τ )dτ

If we define y(t) = u(t− t0) for some fixed t0, then Ey = Eu:

Ey =
∫∞
−∞ |y(t)|2 dt=

∫∞
−∞ |u(t− t0)|2 dt
=

∫∞
−∞ |u(τ )|2 dτ = Eu [t → τ + t0]

Cauchy-Schwarz inequality:
∣∣∣
∫∞
−∞ y∗(τ )v(τ )dτ

∣∣∣
2

≤ EyEv

⇒ |w(t0)|2 =
∣∣∣
∫∞
−∞ u∗(τ − t0)v(τ )dτ

∣∣∣
2

≤ EyEv = EuEv

but t0 was arbitrary, so we must have |w(t)| ≤
√
EuEv for all t

We can define the normalized cross-correlation

z(t) = u(t)⊗v(t)√
EuEv

with properties: (1) |z(t)| ≤ 1 for all t

(2) |z(t0)| = 1 ⇔ v(τ ) = αu(τ − t0) with α constant
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You do not need to memorize this proof

We want to prove the Cauchy-Schwarz Inequality:
∣

∣

∣

∫∞
−∞ u∗(t)v(t)dt

∣

∣

∣

2
≤ EuEv

where Eu ,
∫∞
−∞ |u(t)|2 dt.

Suppose we define w ,
∫∞
−∞ u∗(t)v(t)dt. Then,

0 ≤
∫

|Evu(t)− w∗v(t)|2 dt [|· · · |2 always ≥ 0]

=
∫

(Evu
∗(t)− wv∗(t)) (Evu(t)− w∗v(t)) dt [|z|2 = z∗z]

= E2
v

∫

u∗(t)u(t)dt+ |w|2
∫

v∗(t)v(t)dt− w∗Ev

∫

u∗(t)v(t)dt− wEv

∫

u(t)v∗(t)dt

= E2
v

∫

|u(t)|2 dt+ |w|2
∫

|v(t)|2 dt− Evw
∗w − Evww∗ [definition of w]

= E2
vEu + |w|2 Ev − 2 |w|2 Ev = Ev

(

EuEv − |w|2
)

[|z|2 = z∗z]

Unless Ev = 0 (in which case, v(t) ≡ 0 and the C-S inequality is true), we must have |w|2 ≤ EuEv

which proves the C-S inequality.

Also, EuEv = |w|2 only if we have equality in the first line,

that is,
∫

|Evu(t)− w∗v(t)|2 dt = 0 which implies that the integrand is zero for all t.

This implies that u(t) = w∗

Ev
v(t).

So we have shown that EuEv = |w|2 if and only if u(t) and v(t) are proportional to each other.



Autocorrelation

8: Correlation

Cross-Correlation

Signal Matching

Cross-corr as
Convolution

Normalized Cross-corr

⊲ Autocorrelation
Autocorrelation
example

Fourier Transform
Variants

Scale Factors

Summary

Spectrogram

E1.10 Fourier Series and Transforms (2015-5585) Fourier Transform - Correlation: 8 – 6 / 11

The correlation of a signal with itself is its autocorrelation:

w(t) = u(t)⊗ u(t)=
∫∞
−∞ u∗(τ − t)u(τ )dτ

The autocorrelation at zero lag:

w(0) =
∫∞
−∞ u∗(τ − 0)u(τ )dτ

=
∫∞
−∞ u∗(τ )u(τ )dτ

=
∫∞
−∞ |u(τ )|2 dτ = Eu

The autocorrelation at zero lag, w(0), is the energy of the signal.

The normalized autocorrelation: z(t) = u(t)⊗u(t)
Eu

satisfies z(0) = 1 and |z(t)| ≤ 1 for any t.

Wiener-Khinchin Theorem: [Cross-correlation theorem when v(t) = u(t)]

w(t) = u(t)⊗ u(t) ⇔ W (f) = U∗(f)U(f)= |U(f)|2

The Fourier transform of the autocorrelation is the energy spectrum.
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Cross-correlation is used to find when two different signals are similar.
Autocorrelation is used to find when a signal is similar to itself delayed.

First graph shows s(t) a segment of the microphone signal from the initial
vowel of “early” spoken by me. The waveform is “quasi-periodic” =
“almost periodic but not quite”.

Second graph shows normalized autocorrelation, z(t) = s(t)⊗s(t)
Es

.

z(0) = 1 for t = 0 since a signal always matches itself exactly.

z(t) = 0.82 for t = 6.2ms = one period lag (not an exact match).

z(t) = 0.53 for t = 12.4ms = two periods lag (even worse match).
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There are three different versions of the Fourier Transform in current use.

(1) Frequency version (we have used this in lectures)

U(f) =
∫∞
−∞ u(t)e−i2πftdt u(t) =

∫∞
−∞ U(f)ei2πftdf

• Used in the communications/broadcasting industry and textbooks.
• The formulae do not need scale factors of 2π anywhere. ,,,

(2) Angular frequency version

Ũ(ω) =
∫∞
−∞ u(t)e−iωtdt u(t) = 1

2π

∫∞
−∞ Ũ(ω)eiωtdω

Continuous spectra are unchanged: Ũ(ω) = U(f) = U( ω
2π )

However δ-function spectral components are multiplied by 2π so that
U(f) = δ(f − f0) ⇒ Ũ(ω) = 2π × δ(ω − 2πf0)

• Used in most signal processing and control theory textbooks.

(3) Angular frequency + symmetrical scale factor

Û(ω) = 1√
2π

∫∞
−∞ u(t)e−iωtdt u(t) = 1√

2π

∫∞
−∞ Û(ω)eiωtdω

In all cases Û(ω) = 1√
2π

Ũ(ω)

• Used in many Maths textbooks (mathematicians like symmetry)
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Fourier Transform using Angular Frequency:

Ũ(ω) =
∫∞
−∞ u(t)e−iωtdt u(t) = 1

2π

∫∞
−∞ Ũ(ω)eiωtdω

Any formula involving
∫
df will change to 1

2π

∫
dω [since dω = 2πdf ]

Parseval’s Theorem:∫
u∗(t)v(t)dt = 1

2π

∫
Ũ∗(ω)Ṽ (ω)dω

Eu =
∫
|u(t)|2 dt = 1

2π

∫ ∣∣∣Ũ(ω)
∣∣∣
2

dω

Waveform Multiplication: (convolution implicitly involves integration)

w(t) = u(t)v(t) ⇒ W̃ (ω) = 1
2π Ũ(ω) ∗ Ṽ (ω)

Spectrum Multiplication: (multiplication ; integration)

w(t) = u(t) ∗ v(t) ⇒ W̃ (ω) = Ũ(ω)Ṽ (ω)

To obtain formulae for version (3) of the Fourier Transform, Û(ω),

substitute into the above formulae: Ũ(ω) =
√
2πÛ(ω).
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• Cross-Correlation: w(t) = u(t)⊗ v(t)=
∫∞
−∞ u∗(τ − t)v(τ )dτ

◦ Used to find similarities between v(t) and a delayed u(t)

◦ Cross-correlation theorem: W (f) = U∗(f)V (f)

◦ Cauchy-Schwarz Inequality: |u(t)⊗ v(t)| ≤
√
EuEv

⊲ Normalized cross-correlation:
∣∣∣u(t)⊗v(t)√

EuEv

∣∣∣ ≤ 1

• Autocorrelation: x(t) = u(t)⊗ u(t)=
∫∞
−∞ u∗(τ − t)u(τ )dτ ≤ Eu

◦ Wiener-Khinchin: X(f) = energy spectral density, |U(f)|2

◦ Used to find periodicity in u(t)

• Fourier Transform using ω:

◦ Continuous spectra unchanged; spectral impulses multiplied by 2π

◦ In formulae:
∫
df → 1

2π

∫
dω; ω-convolution involves an integral

For further details see RHB Chapter 13.1
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Spectrogram of “Merry Christmas” spoken by Mike Brookes



[Complex Fourier Series]

E1.10 Fourier Series and Transforms (2015-5585) Fourier Transform - Correlation: 8 – note 1 of slide 11

All waveforms have period T = 1. δconditionis 1 whenever “condition” is true and otherwise 0.

Waveform x(t) for |t| < 0.5 Xn

Square wave 2δ|t|<0.25 − 1 2 sin 0.5πn
πn

× δn 6=0

Pulse of width d δ|t|<0.5d
sinπdn

πn

Sawtooth wave 2t
i(−1)n

πn
× δn 6=0

Triangle wave 1− 4 |t|
2(1−(−1)n)

π2n2
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You need not memorize these properties. All integrals are
∫∞
−∞

Property x(t) Xf)

Forward x(t)
∫

x(t)e−i2πftdt

Inverse
∫

X(f)ei2πftdf X(f)

Spectral Zero
∫

x(t)dt = X(0)

Temporal Zero x(0) =
∫

X(f)df

Duality X(t) x(−f)

Reversal x(−t) X(−f)

conjugate x∗(t) X∗(−f)

Temporal Derivative dn

dtn
x(t) (i2πf)nX(f)

Spectral Derivative (−i2πt)nx(t) dn

dfn X(f)

Integral
∫ t

−∞ x(τ)dτ 1
i2πf

X(f) + 1
2
X(0)δ(f)

Scaling x(αt+ β) 1
|α|

e
2iπfβ

α X( f

α
)

Time Shift x(t− T ) X(f)e−i2πfT

Frequency Shift x(t)ei2πFt X(f − F )
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You need not memorize these properties. All integrals are
∫∞
−∞

Property x(t) Xf)

Linearity αx(t) + βy(t) αX(f) + βY (f)

Multiplication x(t)y(t) X(f) ∗ Y (f)

Convolution x(t) ∗ y(t) X(f)Y (f)

Correlation x(t)⊗ y(t) X∗(f)Y (f)

Autocorrelation x(t)⊗ x(t) |X(f)|2

Parseval or
∫

x∗(t)y(t)dt =
∫

X∗(f)Y (f)df

Plancherel Ex =
∫

|x(t)|2 dt =
∫

|X(f)|2 df

Repetition
∑

n x(t− nT )
∣

∣

1
T

∣

∣

∑

k X
(

k
T

)

δ
(

f − k
T

)

Sampling
∑

n x(nT )δ(t− nT )
∣

∣

1
T

∣

∣

∑

k X
(

f − k
T

)

Modulation x(t) cos(2πFt) 1
2
X(f − F ) + 1

2
X(f + F )

Convolution: x(t) ∗ y(t) =
∫

x(τ)y(t− τ)dτ

Cross-correlation: x(t)⊗ y(t) =
∫

x∗(τ)y(τ + t)dτ =
∫

x∗(τ − t)y(τ)dτ
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You need not memorize these pairs.

x(t) X(f) x(t) X(f)

δ(t) 1 1 δ(f)

rect(t)
sin(πf)

πf

sin(t)
t

πrect(πf)

tri(t)
sin2(πf)

π2f2

sin2(t)

t2
πtri(πf)

cos(2παt) 1
2
δ (f + α) + 1

2
δ (f − α) sin(2παt) i

2
δ (f + α)− i

2
δ (f − α)

e−αtu(t) 1
α+2πif

te−αtu(t) 1
(α+2πif)2

e−α|t| 2α
α2+4π2f2

e−πt2 e−πf2

sgn(t) 1
iπf

u(t) 1
2
δ(f) + 1

2πif
∑∞

n=−∞ δ(t− nT )
∣

∣

1
T

∣

∣

∑∞
k=−∞ δ

(

f − k
T

)

Elementary Functions:

rect(t) =

{

1, |t| < 0.5

0, elsewhere
tri(t) =

{

1− |t|, |t| < 1

0, elsewhere

sgn(t) =











−1, t < 0

0, t = 0

1, t > 0

u(t) = 1
2
(1 + sgn(t)) =











0, x < 0

0.5, x = 0

1, x > 0
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