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E1.10 Fourier Series and Transforms

Problem Sheet 1 (Lecture 1)

Key: [A]= easy ... [E]=hard

Questions from RBH textbook: 4.2, 4.8.

1. [B] Using the geometric progression formula, evaluate
∑5
r=1 3r.

2. [B] Determine expressions not involving a summation for

(a)
∑10
r=1 3x2r, (b)

∑10
r=0

2
xr , (c)

∑R
r=0 x

ryr−2, (d)
∑R
r=0 (−1)

r
.

3. [B] In the expression
∑5
r=1 3r, make the substitution r = m + 1 and then evaluate the resultant

expression.

4. [C] Determine a simplified expression not involving a summation for
∑N
r=−N ejωr for N ≥ 0.

5. [C] Determine a simplified expression for
∑R−1
r=0 ej2πrR

−1

for R ≥ 1. Ensure your answer is correct
even when R = 1.

6. [C] Determine the value of
∑N
n=0

∑M
m=1 2xm−n.

7. [C] If x(t) = sin t, determine (a) 〈x(t)〉, (b) 〈|x(t)|〉 and (c)
〈
x2(t)

〉
where 〈· · ·〉 denotes the time-

average.

8. [C] The first two normalized Legendre polynomials are P0(t) = 1 and P1(t) =
√

3t.
(a) Show that

〈
P 2
0 (t)

〉
[−1,1]

=
〈
P 2
1 (t)

〉
[−1,1]

= 1 and 〈P0(t)P1(t)〉[−1,1] = 0 where 〈· · ·〉[−1,1] denotes

the average over the interval −1 < t < 1.
(b) If P2(t) = at2 + bt + c, find the coefficients a, b and c such that

〈P0(t)P2(t)〉[−1,1] = 〈P1(t)P2(t)〉[−1,1] = 0 and
〈
P 2
2 (t)

〉
[−1,1]

= 1
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E1.10 Fourier Series and Transforms

Problem Sheet 1 - Solutions

1.
∑5
r=1 3r = 3× 1−35

1−3 = 3× −242−2 = 3× 121 = 363. In the expression 3× 1−35
1−3 , the “5” is the number

of terms in the sum and the “3×” is the first term (when r = 1).

2. (a) Each term is multiplied by a factor of x2, so the standard formula gives 3x2 × 1−x20

1−x2 where

x20 =
(
x2
)10

since there are 10 terms.
(b) Each term is multiplied by a factor x−1 and, treating x0 = 1, the first term equals 2, so the sum

is 2× 1−x−11

1−x−1 .

(c) Each term is multiplied by xy and the first term is y−2 so the sum is y−2 × 1−(xy)R+1

1−xy .

(d) Each term is multiplied by −1 and the first term is −10 = 1 so the sum is

1− (−1)
R+1

1− (−1)
=

1 + (−1)
R

2
=

{
1 R even

0 R odd
.

3. The substitution r = m + 1 ⇔ m = r − 1. So, making the substitution in both the limits and
summand gives

5∑
r=1

3r =

4∑
m=0

3m+1 = 3

4∑
m=0

3m = 3× 1− 35

1− 3
.

So the answer is 363 as in question 1.

4. Each term is multiplied by ejω and the first of the 2N + 1 terms is e−jωN so the sum is

e−jωN
1− ejω(2N+1)

1− ejω
=
e−jωN − ejω(N+1)

1− ejω
.

A very common trick when an expression includes the sum or difference of two exponentials is to take
out a factor whose exponent is the average of the two original exponents; in this case the average

exponent is j0.5ω in the denominator and also in the numerator since −jωN+jω(N+1)
2 = j0.5ω. This

gives

ej0.5ω
(
e−jω(N+0.5) − ejω(N+0.5)

)
ej0.5ω (e−j0.5ω − ej0.5ω)

=
e−jω(N+0.5) − ejω(N+0.5)

e−j0.5ω − ej0.5ω
=
−2j sin ((N + 0.5)ω)

−2j sin 0.5ω
=

sin ((N + 0.5)ω)

sin 0.5ω

5. Each term is multiplied by ej2πR
−1

and the first term is e0 = 1 so the sum formula gives

1− ej2πRR−1

1− ej2πR−1 =
1− ej2π

1− ej2πR−1 =
0

1− ej2πR−1 = 0.

However, when R = 1, the denominator is zero so the formula is invalid; in this case there is only
one term in the summation and it equals ej2π0×1 = 1. So the answer is 0 for all values of R except
R = 1 when the answer is 1. We can write this compactly as

δ[R− 1] =

{
1 R = 1

0 R > 1

where the function δ[n] is the “Kroneker Delta function” and equals 1 if and only if its integer
argument equals zero.

6. The summand in this question is“separable”because it can be expressed as the product of two factors
that depend on m and n respectively. So we can write

N∑
n=0

M∑
m=1

2xm−n = 2

N∑
n=0

x−n
M∑
m=1

xm = 2
1− x−(N+1)

1− x−1
x

1− xM

1− x
=

2x2
(
x−(N+1) − 1

) (
1− xM

)
(1− x)

2 .
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7. (a)The period is 2π, so we calculate the average by integrating over one period and dividing by the

period: 〈x(t)〉 = 1
2π

´ 2π
0

sin t dt = 1
2π [− cos t]

2π
0 = 0.

(b) The period is now π, so we calculate the average as: 〈|x(t)|〉 = 1
π

´ π
0
|sin t| dt = 1

π

´ π
0

sin t dt =
1
π [− cos t]

π
0 = 2

π .
(c) The period is still π:

〈
x2(t)

〉
=

1

π

ˆ π

0

sin2 t dt =
1

π

ˆ π

0

1

2
(1− cos 2t) dt =

1

2π

ˆ π

0

(1− cos 2t) dt =
1

2π

[
t− 1

2
sin 2t

]π
0

=
π

2π
=

1

2
.

An easier way of getting this answer is to write〈
sin2 t

〉
=

1

2
(〈1〉 − 〈cos 2t〉) =

1

2
(1− 0) =

1

2
.

8. (a) 〈
P 2
0 (t)

〉
[−1,1] =

1

2

ˆ 1

−1
12dt =

1

2
[t]

1
−1 = 1

and 〈
P 2
1 (t)

〉
[−1,1] =

1

2

ˆ 1

−1
3t2dt =

1

2

[
t3
]1
−1 = 1.

Finally

〈P0(t)P1(t)〉[−1,1] =

√
3

2

ˆ 1

−1
t dt =

√
3

4

[
t2
]1
−1 = 0.

(b) The analysis is slightly easier if you do it in the right order.

〈P1(t)P2(t)〉[−1,1] =

√
3

2

ˆ 1

−1
at3 + bt2 + ct dt =

√
3

2

[
at4

4
+
bt3

3
+
ct2

2

]1
−1

=
b√
3

= 0

so b = 0. Now

〈P0(t)P2(t)〉[−1,1] =
1

2

ˆ 1

−1
at2 + c dt =

1

2

[
at3

3
+ ct

]
=
a

3
+ c = 0

so a = −3c. Finally

〈
P 2
2 (t)

〉
[−1,1] =

c2

2

ˆ 1

−1
9t4 − 6t2 + 1 dt =

c2

2

[
9t5

5
− 2t3 + t

]1
−1

= c2
(

9

5
− 2 + 1

)
=

4

5
c2 = 1

from which c = ±
√
5
2 . So the polynomial is P2(t) =

√
5
2

(
3t2 − 1

)
.
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E1.10 Fourier Series and Transforms

Problem Sheet 2 (Lectures 2, 3)

Key: [A]= easy ... [E]=hard

Questions from RBH textbook: 12.1, 12.2, 12.3, 12.4, 12.5, 12.8, 12.9, 12.10, 12.11, 12.12, 12.13,
12.14, 12.15, 12.17, 12.20, 12.21, 12.22, 12.26.

1. [B] Give the fundamental period of (a) cos 1000πt, (b) cos 1000πt+ 0.01 cos 1250πt, (c) cos 1000πt+
cos 1000t.

2. [C] A sufficient condition for a periodic function, u(t), to have a Fourier series is that it satisfies the
Dirichlet conditions on page 2-5 of the notes. Determine which of the following functions satisfies
these conditions. The notation x mod n means the remainder when x is divided by n.

(a) sin2 t, (b) 1
sin t , (c)

√
1

|sin t| , (d) 1
1+t2 , (e) t mod 1.

3. [B] Determine the fundamental frequency and the Fourier Series coefficients for u(t) = 1+2 cos(6000πt)+
3 sin (4000πt).

4. [B] The phasor 2 + 4i represents the waveform 2 cosωt − 4 sinωt. Give (a) the Fourier coefficients
and (b) the complex Fourier coefficients for this waveform.

5. [C] Determine the fundamental frequency and the Fourier Series coefficients for u(t) = cos4 (2000πt).

6. [C] (a) Determine the Fourier coefficients, {an, bn} for the waveform, u(t), with period T = 2 defined
by u(t) = 3t for −1 ≤ t < 1.

(b) Determine the complex Fourier coefficients, Un, for the same waveform.

(c) Determine the complex Fourier coefficients for v(t) = u(t− 1).

(d) Determine the complex Fourier coefficients for w(t) = 2v(t) + 4.

7. [B] If u(t) has period T = 1
F and Fourier coefficients a0:2 = [5, 2, 3] and b1 = 1 with all other

coefficients zero. (a) Give an expression for u(t), (b) Determine the complex Fourier coefficients,
Un.

8. [B] Each of the following waveforms has period T = 2 and equals the expression given for −1 ≤ t < 1.
In each case say whether the complex Fourier coefficients will be (i) real-valued, (ii) purely imaginary
or (iii) neither.

(a) t2 (b) t3 (c) 2t+t2 (d) t2+1 (e) t3+1 (f) t sin t (g) t cos 2t (h) t2 sin t.

9. [C] Each of the following waveforms has period T = 2 and equals the expression given for −1 ≤ t < 1.
In each case say whether or not all the even-numbered Fourier coefficients will equal zero.

(a) sinπt (b)

{
t+ 1 t < 0

−t t ≥ 0
(c)

{
t+ 1 t < 0

1− t t ≥ 0
(d) t (1− |t|) (e) t3 − t.

10. [C] u(t) has period T = 4 and is defined by u(t) =

{
1 0 ≤ t < 1

0 1 ≤ t < 4
.

(a) Find the complex Fourier coefficients, Un expressing them in polar form: r× eiθ. Identify which
of the coefficients are equal to zero.

(b) Find the complex Fourier coefficients of v(t) = u(t + 0.5) and explain why they are necessarily
real-valued. Explain the relation between the magnitudes |Vn|and |Un|.
(c) Find the complex Fourier coefficients of w(t) = v(t) + v(t− 2). Identify which of the coefficients
are non-zero and explain how your answer relates to the symmetries of w(t).
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E1.10 Fourier Series and Transforms

Problem Sheet 2 - Solutions

1. (a) The fundamental frequency is 1000π
2π = 500 Hz and the period is 2π

1000π = 2 ms.

(b) For a mixture of cosine waves, the fundamental period is the lowest common multiple (LCM) of
the periods of the constituent waves. In this case the frequencies of the two waves are 500 Hz and
625 Hz with periods 2 ms and 1.6 ms respectively. The LCM of 2 and 1.6 is 8 ms corresponding to a
frequency of 125 Hz. Alternatively, you can obtain the same answer by finding the highest common
factor (HCF) of the two frequencies. Notice that the addition of even a tiny amplitude at 625 Hz has
quadrupled the fundamental period.

(c) The periods of the two constituent waves are here 2ms and 2π
1000 = 6.28 . . . ms. Since the

second of these is irrational, there is no LCM and the resultant waveform is not periodic at all (or
equivalently its period is ∞).

2. (a) Yes. (b) No.

We have T = 2π, so
´ T
0

∣∣ 1
sin t

∣∣ dt = 2
´ π
0

1
sin tdt = 2 [ln (tan (0.5t))]

π
0 = 2 ln

(
tan 0.5π
tan 0

)
= 2 ln ∞0 =∞.

(c) Yes for a similar reason to the previous part since
´ T
0

√
1
τ dτ = [

√
τ ]
T
0 =
√
T <∞.

(d) No since it is not periodic. (e) Yes; this function is a triangle wave with period 1.

3. The fundamental frequency is the highest common factor of the constituent frequencies, i.e. 2000π rad/s =
1 kHz. So, setting F = 1000, we have u(t) = 1 + 2 cos (2π3Ft) + 3 sin (2π2Ft). So the Fourier coeffi-
cients are a0 = 2, b2 = 3, a3 = 2 with all other coefficients zero.

4. (a) The non-zero Fourier coefficients are a1 = 2 and b1 = −4.

(b) The non-zero complex Fourier coefficients are U−1 = 1 − 2i and U1 = 1 + 2i. We see that U1is
exactly half the value of the phasor and that U−1is the complex conjugate of U1.

5. We need to express cos4 θ in terms of components of the form cosnθ. We can do this by writing

cos4 θ =
1

16

(
eiθ + e−iθ

)4
=

1

16

(
ei4θ + 4ei2θ + 6 + 4e−i2θ + e−i4θ

)
=

1

16
(2 cos 4θ + 8 cos 2θ + 6)

From this we find that the fundamental frequency is actually 4000π rad/s = 2 kHz and the non-zero
Fourier coefficients are therefore a0 = 3

4 , a1 = 1
2 and a2 = 1

8 .

6. (a) From the formulae on slide 2-11 of the notes (and observing that F = 1
T = 1

2 ),

an =
2

T

ˆ 1

−1
u(t) cos (2πnFt) dt

=

ˆ 1

−1
3t cos (πnt) dt

=
3

π2n2
[πnt sin (πnt) + cos (πnt)]

1
t=−1

= 0

bn =

ˆ 1

−1
3t sin (πnt) dt

=
3

π2n2
[−πnt cos (πnt) + sin (πnt)]

1
t=−1

=
−6

πn
cos (πn) =

−6 (−1)
n

πn

Note that the bn expression applies only for n ≥ 1. Notice also that the an are all zero because u(t)
is a real-valued odd function and that the coefficient magnitudes are ∝ n−1 which is a characteristic
of waveforms that include a discontinuity.
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(b) We have U0 = 1
2a0 = 0 and, for n ≥ 1,

U±n =
1

2

(
a|n| ∓ ib|n|

)
=
±i3 (−1)

n

π |n|

from which Un = i3(−1)n
πn . Again, we note that Un is purely imaginary because u(t) is a real-valued

odd function.

(c) We can calculate the Vn directly by integrating over an interval that does not include a discon-
tinuity.

V0 =
1

2

ˆ 2

0

v(t)dt =
1

2

ˆ 2

0

(t− 1)dt = 0

forn 6= 0 : Vn =
1

2

ˆ 2

0

v(t)e−iπntdt

=
3

2

ˆ 2

0

(t− 1) e−iπntdt

=
3

2π2n2
[
(1 + iπn (t− 1)) e−iπnt

]2
t=0

=
3iπn

π2n2
=

3i

πn

An alternative way to calculate Vn is to use the time-shifting formula:

v(t) = u(t− 1)⇒ Vn = Une
−i2πnF

= Une
−inπ

= (−1)
n
Un.

Notice that time-shifting a waveform changes the phases of the Vnbut not the magnitudes.

(d) The complex Fourier transform of x(t) = 4 is iust X0 = 4 with all other coefficients zero. So,
since the Fourier transform is linear, if w(t) = 2v(t) + x(t) we must have Wn = 2Vn + Xn which
means that W0 = 4 and, for n 6= 0, Wn = 6i

πn .

7. (a) u(t) = 2.5 + 2 cos (2πFt) + sin (2πFt) + 3 cos (4πFt).

(b) U±n = 1
2

(
a|n| ∓ ib|n|

)
from which U−2:2 = [1.5, 1 + 0.5i, 2.5, 1− 0.5i, 1.5]. Notice that, since

u(t) is real, U−n is the complex conjugate of U+n.

8. The Fourier transform of a real-valued signal is purely real or purely imaginary if it is even or odd
respectively. So we have the following: (a) real (b) imaginary (c) neither (d) real (e) neither (f) real
(g) imaginary (g) imaginary.

9. All the even-numbered Fourier coefficients of a waveform are zero if it is anti-periodic which, in this
case with T = 2, means that u(t) = −u(t − 1) for 0 ≤ t < 1; note that you only need to prove this
relationship for half a period since the periodicity relationship, u(t) = u(t + T ), then means that it
applies for the other half. So we have the following (“Yes” means it is anti-periodic):

(a) Yes: sinπt = − sin (πt− π) and of course the Fourier transform has only a single component
with b1 = 1 or, equivalently, X±1 = ∓i.
(b) Yes: for 0 ≤ t < 1, u(t) = −t and u(t− 1) = (t− 1) + 1 = t = −u(t)

(c) No: for 0 ≤ t < 1, u(t) = 1− t but u(t− 1) = (t− 1) + 1 = t 6= −u(t). Note however that v(t) =
u(t)− 0.5 is anti-periodic since, for 0 ≤ t < 1, v(t) = u(t)− 0.5 = t+ 0.5 = − ((1− (t− 1))− 0.5) =
− (u(t− 1)− 0.5) = −v(t− 1). Thus the only non-zero even harmonic of u(t) is U0 = 0.5.

(d) Yes: for 0 ≤ t < 1, u(t) = t (1− t) and u(t− 1) = (t− 1) (1 + (t− 1)) = (t− 1) t = −u(t)

(e) No: for 0 ≤ t < 1, u(t) = t
(
t2 − 1

)
but u(t− 1) = (t− 1)

3 − (t− 1) = t
(
t2 − 3t+ 2t

)
6= −u(t).
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10. (a) We note that the fundamental frequency is F = 1
4 .

Un =
1

4

ˆ 1

0

e−i0.5πntdt =
i

4× 0.5πn

(
e−i0.5πn − 1

)
=

ie−i0.25πn

2πn

(
e−i0.25πn − ei0.25πn

)
=

ie−i0.25πn

2πn
×−2i sin 0.25πn

=
sin 0.25πn

πn
× e−i0.25πn

We know that sin θ = 0 whenever θ is a multiple of π, so Un = 0 whenever n is a non-zero multiple
of 4.

(b) By the time-shift formula Vn = Une
i2πnF0.5 = Une

i0.25πn = sin 0.25πn
πn . Since v(t) is real and

symmetric, Vnwill also be real and symmetric. The time-shifting affects only the phase and so
|Vn| = |Un|.
(c) By linearity and the time-shift formula, Wn = Vn

(
1 + ei2πnF2

)
= Vn

(
1 + eiπn

)
= Vn (1 + (−1)

n
).

The quantity (1 + (−1)
n
) equals 2 for even values of n and 0 for odd values of n. Since in addition,

Vn = 0 when n is a non-zero multiple of 4, Wn is only non-zero for n = 0 and for odd multiplies of
2. In fact, the period of w(t) is 2 rather than 4 which explains why Wn = 0 for all odd values of
n. In addition, when considered with a period of 2, (w(t)−W0) is anti-periodic and so all its even
Fourier coefficients will be zero.
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E1.10 Fourier Series and Transforms

Problem Sheet 3 (Lectures 4, 5)

Key: [A]= easy ... [E]=hard

Questions from RBH textbook: 12.19, 12.23, 12.25.

1. [C] (a) Determine the fundamental frequency, the Fourier coefficients and the complex Fourier coef-
ficients of u(t) = cos2 t.

(b) Determine the power, Pu =
〈
u2(t)

〉
where 〈· · · 〉 denotes the time average. Hint: cos4 t =

1
8 cos 4t+ 1

2 cos 2t+ 3
8 .

(c) Show that Parseval’s theorem applies: Pu =
∑∞
n=−∞ |Un|

2
= 1

4a
2
0 + 1

2

∑∞
n=1

(
a2n + b2n

)
.

2. [C] The even function u(t) with period T = 1 is defined in the region |t| ≤ 1
2 by u(t) =

{
a−1 |t| ≤ a

2

0 |t| > a
2

where 0 < a < 1.

(a) Determine the complex Fourier coefficients, Un.

(b) Explain why U0 does not depend on a.

(c) Show that
∑∞
n=−∞

(
sin anπ
anπ

)2
= 1

a .

3. [C] Determine the fundamental frequency and the complex Fourier Series coefficients of x(t) =
(6 + 4 cos 8πt) cos 20πt in two ways: (a) by expanding our the product using trigonometrical formulae
and (b) by convolving the Fourier coefficients of the two factors.

4. [C] (a) Give the complex Fourier coefficients, Un, if u(t) = cos t. (b) Show, by using the convolution
theorem, that v(t) = u2(t) = 1

2 cos 2t + 1
2 . (c) Show, by using the convolution theorem again that

w(t) = v2(t) = u4(t) = 1
8 cos 4t+ 1

2 cos 2t+ 3
8 .

5. [C] Suppose u(t) = sin t and v(t) =

{
1 0 ≤ t < π

0 π ≤ t < 2π
both with period T = 2π.

(a) Determine the complex Fourier coefficients Un and Vn.

(b) If w(t) = u(t)v(t), determine Wn = Un ∗ Vn by convolving Un and Vn.

6. [B] The waveform u(t) has period T = 1 and equals u(t) = 4t − 1 for 0 ≤ t < 1. If uN (t) =∑N
n=−N Une

i2πnt estimate, for large N , the minimum value and maximum value of uN (t) and also
the value of uN (0).

7. [B] The waveform u(t) has period T = 1. Estimate how rapidly Un will decrease with |n| when u(t)
in the range 0 ≤ t < 1 is given by

(a) t, (b) t2, (c) t (1− t), (d) t2 (1− t)2, (e) 2t3 − 3t2 + t+ 1

8. [C] The waveform u(t) has period Tu = 1 and satisfies u(t) = exp t for 0 ≤ t < 1. The waveform v(t)
has period Tv = 2 and satisfies v(t) = exp |t| for −1 ≤ t < 1.

(a) Find expressions for the complex Fourier coefficients Un and Vn.
(b) Calculate the average powers

〈
u2(t)

〉
and

〈
v2(t)

〉
and also those of

〈
u22(t)

〉
and

〈
v22(t)

〉
where

uN (t) is the waveform formed by summing harmonics −N to +N .

(c) Determine the average error powers
〈

(u(t)− u2(t))
2
〉

and
〈

(v(t)− v2(t))
2
〉

.
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E1.10 Fourier Series and Transforms

Problem Sheet 3 - Solutions

1. (a) We have u(t) = cos2 t = 1
2 + 1

2 cos 2t. So the fundamental period is T = π and the fundamental
frequency is F = 1

T = 1
π . The Fourier coefficients are a0 = 1 and a1 = 1

2 , so the complex Fourier
coefficients are U0 = 1

2 , U−1 = U1 = 1
4 .

(b) Pu = 1
π

´ π
0

cos4 t dt = 1
32π [12t+ 8 sin 2t+ sin 4t]

π
0 = 1

32π (12π + 0 + 0) = 3
8 .

(c)
∑∞
n=−∞ |Un|

2
=
(
1
4

)2
+
(
1
2

)2
+
(
1
4

)2
= 3

8 . Also 1
4a

2
0 + 1

2

∑∞
n=1

(
a2n + b2n

)
= 1

4 × 12 + 1
2 ×

(
1
2

)2
= 3

8 .
Note that the formula for Parseval’s theorem is much more elegant and memorable when using
complex Fourier coefficients.

2. (a) We have

Un =
1

T

ˆ T
2

−T
2

u(t)e−i2πnFtdt

=
1

1

ˆ a
2

− a
2

a−1e−i2πntdt

=
i

2anπ

[
e−i2πnt

] a
2

t=− a
2

=
−i

2anπ

(
eiπna − e−iπna

)
=

sin anπ

anπ

Note that Un is real-valued and even as expected since u(t) is real-valued and even.

(b) From the formula U0 = sin anπ
anπ

∣∣
n=0

but this is not defined so we either determine U0 directly

from the original integral as U0 = 1
T

´ T
2

−T
2

u(t) dt = 1 or else as a limit: U0 = limn→0
sin anπ
anπ . We can

find this limit using L’Hôpital’s rule: limn→0
sin anπ
anπ = aπ cos anπ

aπ

∣∣
n=0

= 1 or, equivalently, by using

the small angle approximation, sinx ≈ x, which is exact for x = 0 and gives U0 = limn→0
sin anπ
anπ =

anπ
anπ = 1. It is always true that U0 = 〈u(t)〉 so since the average value of u(t) is 1 for all values of a,
it follows that U0 will not depend on a.

(c) We can calculate

〈
|u(t)|2

〉
=

1

T

ˆ T
2

−T
2

u2(t) dt

=

ˆ w
2

−w
2

w−2dt

=
1

w

So, by Parseval’s theorem, we know that

∞∑
n=−∞

|Un|2 =

∞∑
n=−∞

(
sinwnπ

wnπ

)2

=
〈
|u(t)|2

〉
=

1

w

3. (a) Expanding the product gives x(t) = 6 cos 20πt + 4 cos 8πt cos 20πt = 6 cos 20πt + 2 cos 12πt +
2 cos 28πt. The fundamental frequency is the HCF of the frequencies of these three components (or,
equivalently, of the original two components) and equals 2 Hz (or 4π rad/s). The three frequency
components ar therefore at 5, 3 and 7 times the fundamental frequency giving the coefficient set:
X−7:+7 = [1, 0, 3, 0, 1, 0, 0, 0, 0, 0, 1, 0, 3, 0, 1]. Note that since x(t) is even, the coefficients are
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are symmetrical around X0 which is underlined.
(b) We can write x(t) = u(t)v(t) where u(t) = 6 + 4 cos 8πt and v(t) = cos 20πt. Using the funda-
mental frequency of the output (i.e. 2 Hz), the coefficients of u(t) and v(t) are U−2:2 = [2, 0, 6, 0, 2]
and V−5:5 = [0.5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.5]. To convolve these, we replace each non-zero entry in
V−5:5 with a complete copy of U−2:2 scaled by the corresponding entry of V−5:5. This gives the same
coefficients as in the previous part.

4. (a) The only non-zero coefficients are U±1 = 0.5. (b) Convolving Un with itself gives V±2 = 0.25
and V0 = 0.25 + 0.25 = 0.5. Thinverse Fourier transform gives v(t) = 1

2 cos 2t + 1
2 as required.

(c) Convolving Vnwith itself gives W±4 = 0.252 = 0.0625, W±2 = 0.5× 0.25 + 0.25× 0.5 = 0.25 and
W0 = 0.252 + 0.52 + 0.252 = 0.375. Taking the inverse Fourier transform gives the required answer.

5. (a) U−1 = i
2 and U1 = −i

2 . For Vn we write

V0 =
1

2π

ˆ π

0

e−i0tdt =
1

2

forn 6= 0 : Vn =
1

2π

ˆ π

0

e−intdt

=
i

2nπ

[
e−int

]π
0

=
i

2nπ

(
e−inπ − 1

)
=

i

2nπ
((−1)

n − 1)

=


−i
nπ n odd

0 n even,
1
2 n = 0

n 6= 0

Note that, except for its DC component of V0 = 1
2 , v(t) is a real-valued, odd, anti-periodic function

and therefore has purely imaginary coefficients with all even coefficients (except V0) equal to zero.

(b) From the notes (slide 4-5) the convolution is defined byWn = Un∗Vn = Vn∗Un =
∑∞
m=−∞ Vn−mUm.

Since Um = 0 except for m = ±1, the infinite sum actually only has two non-zero terms and
Wn = U1Vn−1+U−1Vn+1 = i

2 (Vn+1 − Vn−1). If n is even, then n+1 and n−1 are both odd so, using

the formula for Vn given above, Wn = i
2 (Vn+1 − Vn−1) = i

2

(
−i

(n+1)π −
−i

(n−1)π

)
= 1

2π

(
1

n+1 −
1

n−1

)
=

1
2π

(
−2
n2−1

)
= −1

(n2−1)π . If n is odd then n+ 1 and n− 1 are both even and Vn+1 and Vn−1 are both

zero unless n + 1 or n − 1 equals zero, i.e. unless n = ±1. So we have W1 = i
2 (−V0) = −i

4 and

W−1 = i
2 (V0) = i

4 . We can combine all these results to give

Wn =


0 n odd, n 6= ±1
−i
4n n = ±1
−1

(n2−1)π n even

6. We have u(0−) = u(1−) = 3 but u(0+) = −1 so there is a discontinuity at t = 0. Therefore

uN (0)→ 3+(−1))
2 = 1. Notice that the actual value defined for u(0) = 0 has no affect on this answer.

Due to Gibbs phenomenon, uN (t) will undershoot and overshoot the discontinuity by about 9% of
the discontinuity height: 3 − (−1) = 4. So 0.09 ∗ 4 = 0.36. So the maximum value of uN (t) will be
3.36 and the minimum value will be −1.36.

7. (a) u(0) = 0 but u(1) = 1 so the waveform has a discontinuity and the coefficients, Un, will decrease

∝ |n|−1.

(b) u(0) = 0 but u(1) = 1 so the waveform again has a discontinuity and the coefficients, Un, will

decrease ∝ |n|−1.

(c) u(0) = u(1) = 0 but u′(0) 6= u′(1) so coefficients, Un, will decrease ∝ |n|−2.
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(d) The first non-equal derivative is u′′(0) 6= u′′(1) so coefficients, Un, will decrease ∝ |n|−3.

(e) u(0) = u(1) = 1 and u′(0) = u′(1) = 1. The first non-equal derivative is −6 = u′′(0) 6= u′′(1) = 6

so coefficients, Un, will decrease ∝ |n|−3.

8. (a) Un = 1
Tu

´ 1
0
ete−i2πnFutdt =

´ 1
0
e(1−i2πn)tdt= 1

1−i2πn
[
e(1−i2πn)t

]1
t=0

= 1
1−i2πn

(
e(1−i2πn) − 1

)
= 1

1−i2πn
(
e× e−i2πn − 1

)
= 1

1−i2πn (e− 1) = e−1
1−i2πn . Note that we use the fact that e−i2πn = 1 for

any integer n.

Vn = 1
Tv

´ 1
−1 e

|t|e−i2πnFvtdt= 1
2

(´ 0
−1 e

−te−iπntdt+
´ 1
0
ete−iπntdt

)
= 1

2

(
1

−1−iπn
(
1− e−(−1−iπn)

)
+ 1

1−iπn
(
e(1−iπn) − 1

))
= 1

2

(
1

−1−iπn (1− e× (−1)
n
) + 1

1−iπn (e× (−1)
n − 1)

)
= (−1)ne−1

2

(
1

1+iπn + 1
1−iπn

)
= (−1)ne−1

2 × 2
1+π2n2 = (−1)ne−1

1+π2n2 . We see that this is real-symmetric

(because v(t) is real-symmetric) and that it decays ∝ n−2 because v(t) is continuous but has gradient
discontinuities at t = 0 and t = 1.
(b)

〈
u2(t)

〉
= 1

Tu

´ 1
0

(et)
2
dt=

´ 1
0
e2tdt= 1

2

[
e2t
]1
t=0

= e2−1
2 = 3.1945.〈

v2(t)
〉

=
〈
u2(t)

〉
= e2−1

2 since reflecting a waveform in time does not affect its power.〈
u22(t)

〉
=
∑2
−2 |Un|

2
= U2

0 + 2 |U1|2 + 2 |U2|2

= 1.71832 + 2
(
0.27012 + 0.13632

)
= 2.9525 + 0.1459 + 0.0372 = 3.1355.〈

v22(t)
〉

=
∑2
−2 |Vn|

2
= V 2

0 + 2 |V1|2 + 2 |V2|2

= 1.71832 + 2
(
0.34212 + 0.04242

)
= 2.9525 + 0.2340 + 0.0036 = 3.1901.

-1 -0.5 0 0.5 1
1

2

|u
2(t

)|

 u(t)

-1 -0.5 0 0.5 1
1

2

|v
2(t

)|

 u(t)

We see that, for the same number of harmonics, v2(t) fits the exponential much better than u2(t)
over the range 0 ≤ t < 1 and that it includes much more of the energy of u(t).

(c) We can use Parseval’s theorem to calculate the power of the error,
〈

(u(t)− u2(t))
2
〉

. We

know that u(t) =
∑+∞
−∞ Une

i2πnt and that u2(t) =
∑+2
−2 Une

i2πnt, so it follows that u(t) − u2(t) =∑
|n|>2 Une

i2πnt. Applying Parseval’s theorem to these threee expressions gives
〈
u2(t)

〉
=
∑+∞
−∞ |Un|

2
,〈

u22(t)
〉

=
∑+2
−2 |Un|

2
and

〈
(u(t)− u2(t))

2
〉

=
∑
|n|>2 |Un|

2
. By subtracting the first two of these

equations, we can see that
〈
u2(t)

〉
−
〈
u22(t)

〉
=
〈

(u(t)− u2(t))
2
〉

and so, from part (b),
〈

(u(t)− u2(t))
2
〉

=〈
u2(t)

〉
−
〈
u22(t)

〉
= 3.1945 − 3.1355 = 0.0590. Likewise

〈
(v(t)− v2(t))

2
〉

= 3.1945 − 3.1901 =

0.0044. Note that, for arbitrary functions x(t) and y(t) having the same period, the relationship〈
(x(t)− y(t))

2
〉

=
〈
x2(t)

〉
−
〈
y2(t)

〉
is only true if 〈x(t)y(t)〉 = 0 or, equivalently, if they have

non-overlapping Fourier series (i.e. Xn and Yn are never both non-zero for any n).
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E1.10 Fourier Series and Transforms

Problem Sheet 4 (Lectures 6, 7, 8)

Key: [A]= easy ... [E]=hard

Fourier Transform: X(f) =
´∞
−∞ x(t)e−i2πftdt Inverse Transform: x(t) =

´∞
−∞X(f)ei2πftdf

Questions from RBH textbook: 13.1, 13.2, 13.3, 13.5, 13.7, 13.9, 13.19, 13.20.

1. [B] Evaluate
´∞
−∞ δ(t− 3)t3e−tdt.

2. [B] (a) Evaluate
´∞
−∞ δ(t− 6)t2 dt. (b) Now make the substitution t = 3τ for the integration variable

and show that the integral remains unchanged.

3. [B] Express 2x2δ(8− 2x) in the form aδ(x− b)

4. [C] (a) If v(t) = e−|t|, show that its Fourier transform is V (f) = 2
1+4π2f2 .

(b) Using the time shifting and scaling formulae from slides 6-9 and 6-10 and without doing any
additional integrations, determine the Fourier transforms of (i) v1(t) = e−|at|, (ii) v2(t) = e−|t−b|,
(iii) v3(t) = 1

1+t2 .

5. [D] Determine the Fourier transform, X(f), when x(t) = t2e−|t|.

6. [C] If x(t) = δ(t) determine the Fourier transform, X(f). Hence, by considering the inverse transform,
show that

´∞
−∞ eiαftdf = 2π

|α|δ(t) where α 6= 0 is a real constant.

7. [B] Determine the Fourier transform, X(f), when x(t) is a DC voltage: x(t) = 10.

8. [B] Determine the Fourier transform, X(f), when x(t) = 12 cos 200πt+ 8 sin 400πt.

9. [C] If v(t) is a periodic signal with frequency F for which v(t) = δ(t) for − 1
2F ≤ t < 1

2F , determine
the coefficients, Vn, of its complex Fourier series. Hence find the Fourier transform, X(f), of the
“impulse train” given by x(t) =

∑∞
n=−∞ δ(t− n

F ).

10. [C] If the Fourier transform of x(t) is X(f) = cos 100f , determine x(t) in two ways: (a) using the
duality relation: v(t) = U(t) ⇔ V (f) = u(−f) and (b) by directly evaluating the inverse transform
integral and using the result of question 6.

11. [B] If x(t) =

{
1 |t| ≤ 0.5

0 |t| > 0.5
show that X(f) = sinπf

πf . This function is often called a top-hat function

or rect(t).

12. [B] If x(t) =

{
e−at t ≥ 0

0 t < 0
show that X(f) = 1

i2πf+a for a > 0.

13. [C] An electronic circuit, whose input and output signals are x(t) and y(t) respectively, has a fre-
quency response given by Y

X (iω) = 2000
iω+1000 .

(a) If x(t) = cos2(1000t), use phasors to find an expression for y(t). Give expressions for the Fourier
transforms X(f) and Y (f).

(b) If x(t) =

{
e−500t t ≥ 0

0 t < 0
give an expression for Y (f) (you may use without proof the result of

question 12). Show that Y (f) may be written as c
i2πf+500 + d

i2πf+1000 and find the values of the

constants c and d. Hence give an expression for y(t).

14. [C] The triangle function is given by y(t) =

{
1− |t| |t| ≤ 1

0 |t| > 1
. Show that y(t) may be obtained by

convolving x(t) with itself where x(t) = rect(t) as defined in question 11, i.e. y(t) = x(t) ∗ x(t) ,´∞
−∞ x(τ)x(t − τ)dτ . Hence use the convolution theorem and the result of question 11 to give the

Fourier transform Y (f).
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15. [B] An “energy signal” has finite energy: Ex =
´∞
−∞ |x(t)|2 dt < ∞. A “power signal” has infinite

energy but finite power:
〈
|x(t)|2

〉
= limA,B→∞

1
B−A

´ B
−A |x(t)|2 dt < ∞. Say whether each of the

following functions of time, t, is (i) an energy signal, (ii) a power signal or (iii) neither: (a) 2 cosωt,
(b) 10, (c) t, (d)

√
|t|, (e) et, (f) e−t, (g) e−|t|, (h) 1

1+t2 , (i) cos t2, (i) 1
1+|t| , (k) 1√

|t|
.

16. [C] Suppose the Fourier transform of x(t) is X(f) = 1
1+(2πf)2

+ 2i (δ(f + 4)− δ(f − 4)). Give ex-

pressions for the alternative versions of the Fourier transform: (a) X̃(ω) =
´∞
−∞ x(t)e−iωtdt and

(b) X̂(ω) = 1√
2π

´∞
−∞ x(t)e−iωtdt. State the general formulae for the inverse transform integrals that

give x(t) in terms of X̂(ω) and X̃(ω).
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E1.10 Fourier Series and Transforms

Problem Sheet 4 - Solutions

1.
´∞
−∞ δ(t− 3)t3e−tdt =

[
t3e−t

]
t=3

= 33e−3 = 27× 0.498 = 1.344.

2. (a)
´∞
−∞ δ(t− 6)t2 dt =

[
t2
]
t=6

= 36

(b) Substituting t = 3τ gives
´∞
−∞ δ(3τ − 6)9τ2 3dτ = 27

´∞
−∞ δ(3 (τ − 2))τ2 dτ

= 27
´∞
−∞

1
|3|δ(τ − 2)τ2 dτ = 9

[
τ2
]
τ=2

= 36. We here use the relation that |c| δ(cx) = δ(x).

3. 2x2δ(8− 2x) = 2x2δ (−2 (x− 4)) = 2x2

|−2|δ (x− 4) = x2δ (x− 4) = 16δ (x− 4).

4. (a) V (f) =
´∞
−∞ e−|t|e−i2πftdt=

´ 0
−∞ ete−i2πftdt+

´∞
0
e−te−i2πftdt

= 1
1−i2πf

[
e(1−i2πf)t

]0
t=−∞ + 1

−1−i2πf
[
e(−1−i2πf)t

]∞
t=0

= 1
1−i2πf −

1
−1−i2πf = 2

1+4π2f2 . Notice that in

the first step we split the integral up into the two ranges of t for which the quantity |t| is equal to
−t and +t respectively; this is necessary for any integral involving absolute values. Also notice that
e(a+bi)t is zero at t = +∞ if a < 0 and zero at t = −∞ if a > 0.

(b) If v1(t) = v(at) then V1(f) = 1
|a|V

(
f
a

)
= 2a2

a2+4π2f2 .

If v2(t) = v(t− b) then V2(f) = e−i2πfbV (f) = 2e−i2πfb

1+4π2f2 .

If w(t) = V (t) = 2
1+4π2t2 then W (f) = v(−f) = e−|f |. However we want v3(t) = 0.5w

(
t
2π

)
so

V3(f) = 0.5× 2π ×W (2πf) = πe−|2πf |.

5.

X(f) =

ˆ ∞
−∞

t2e−|t|e−i2πftdt

=

ˆ 0

−∞
t2ete−i2πftdt+

ˆ ∞
0

t2e−te−i2πftdt

=

ˆ 0

−∞
t2e(1−i2πf)tdt+

ˆ ∞
0

t2e(−1−i2πf)tdt

=

[(
(1− i2πf)

2
t2 − 2 (1− i2πf) t+ 2

) e(1−i2πf)t

(1− i2πf)
3

]0
t=−∞

+

[(
(−1− i2πf)

2
t2 − 2 (−1− i2πf) t+ 2

) e(−1−i2πf)t

(−1− i2πf)
3

]∞
t=0

= 2

(
1

(1− i2πf)
3 −

1

(−1− i2πf)
3

)

=
4 + 48π2f2

(1 + 4π2f2)
3

6. X(f) =
´∞
−∞ x(t)e−i2πftdt=

´∞
−∞ δ(t)e−i2πftdt=

[
e−i2πft

]
t=0

1. Note that this is the same for all
values of f and is called a “flat” or “white” spectrum. The inverse transform is

δ(t) =

ˆ ∞
−∞

X(f)ei2πftdf =

ˆ ∞
−∞

ei2πftdf.

If we now substitute τ = 2π
α t, we obtain

´∞
−∞ eiαfτdf = δ

(
α
2π τ
)

= 2π
|α|δ(τ). Alternatively, we could

substitute ν = 2π
α f to obtain δ(t) = 2π

α

´∞
f=−∞ eiανtdν. The new limits (in terms of ν) are either

ν = ∓∞ if α > 0 or else ν = ±∞ if α < 0 and in the latter case we need to reverse the order of the
limits and multiply by −1. Thus we end up with δ(t) = 2π

|α|
´∞
f=−∞ eiανtdν which is the same result

as before.

7. X(f) =
´∞
−∞ 10e−i2πftdt = 10δ(f). This follows from the answer to question 6 with α = −2π.
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8. The Fourier transform of a periodic waveform is iust the complex Fourier series coefficients multiplied
by delta functions at the appropriate positive and negative frequencies. So X(f) = 6δ(f + 100) +
6δ(f − 100) + 4iδ(f + 200)− 4iδ(f − 200).

9. The complex Fourier series coefficients are Vn = F
´ 0.5t
−0.5T δ(t)e

−i2πFtdt = F
[
e−i2πFt

]
t=0

= F (i.e.
the same for all n). In fact, x(t) is equal to v(t) but iust written in a different way. So, from the
theorem on page 6-8 of the notes, X(f) =

∑∞
n=−∞Xnδ(f − nF ) = F

∑∞
n=−∞ δ(f − nF ). Thus the

Fourier transform of an impulse train with spacing 1
F is another impulse train with spacing F .

10. (a) If v(t) = X(t) = cos 100t, then V (f) = 1
2δ(f + 50

π ) + 1
2δ(f −

50
π ). So, from the duality theorem,

x(f) = V (−f), so x(t) = 1
2δ(t+ 50

π ) + 1
2δ(t−

50
π ).

(b) x(t) =
´∞
−∞ cos (100f) ei2πftdf = 1

2

´∞
−∞

(
ei100f + e−i100f

)
ei2πftdf

= 1
2

´∞
−∞ ei(2π(t+ 50

π ))fdf + 1
2

´∞
−∞ ei(2π(t− 50

π ))fdf == 1
2δ(t+ 50

π ) + 1
2δ(t−

50
π ).

11. X(f) =
´ 0.5
−0.5 e

−i2πftdt= 1
−i2πf

[
e−i2πft

]0.5
t=−0.5 = 1

−i2πf ×−2i sinπf = sinπf
πf .

12. X(f) =
´∞
0
e−ate−i2πftdt=

´∞
0
e(−a−i2πf)tdt= 1

−a−i2πf
[
e(−a−i2πf)t

]∞
t=0

= −1
−a−i2πf = 1

a+i2πf . Note

that the value of e(−a−i2πf)t is zero at t =∞ provided that a > 0.

13. (a) x(t) = cos2(1000t) = 0.5+0.5 cos(2000t). The gains at these component frequencies are Y
X (i0) = 2

and Y
X (i2000) = 2

1+2i = 0.4− 0.8i. It follows (from phasors) that

y(t) = 1 + 0.2 cos(2000t) + 0.4 sin(2000t).

The Fourier transforms are X(f) = 0.5δ(f) + 0.25δ
(
f + 1000

π

)
+ 0.25δ

(
f − 1000

π

)
and Y (f) =

δ(f) + (0.1 + 0.2i) δ
(
f + 1000

π

)
+ (0.1− 0.2i) δ

(
f − 1000

π

)
. Note that the positive frequency term,

δ
(
f − 1000

π

)
, is multiplied by Y

X (i2πf) while the negative frequency term, δ
(
f + 1000

π

)
, is multiplied

by its complex conjugate, Y
X (−i2πf).

(b) From question 12 we know that X(f) = 1
i2πf+500 . So it follows that

Y (f) = X(f)× Y

X
(i2πf) =

1

i2πf + 500
× 2000

i2πf + 1000
=

2000

(i2πf + 500) (i2πf + 1000)

We can put the given expression over a common denominator: c
i2πf+500+ d

i2πf+1000 = i2πf(c+d)+1000c+500d
(i2πf+500)(i2πf+1000) .

Equating the numerator to 2000 gives c = 4 and d = −4. Hence y(t) =

{
4
(
e−500t − e−1000t

)
t ≥ 0

0 t < 0
.

14. y(t) =
´∞
−∞ x(τ)x(t − τ)dτ . The integrand is only non-zero when the arguments of both top-hat

functions lie in the range ±0.5. Thus we must have −0.5 < τ < 0.5 and also
−0.5 < t− τ < 0.5⇔ t− 0.5 < τ < t+ 0.5.

We can therefore write y(t) =
´min(0.5, t+0.5)

max(−0.5, t−0.5) dτ =

{´ t+0.5

−0.5 dτ t < 0´ 0.5
t−0.5 dτ t ≥ 0

. The integration range is

empty if |t| > 1 and so we can write y(t) =

{
1 + t t < 0

1− t t ≥ 0
which also equals y(t) =

{
1− |t| |t| ≤ 1

0 |t| > 1

as requested.

From the convolution theorem, Y (f) = X2(f) = sin2 πf
π2f2 .

15. [B] An “energy signal” has finite energy:
´∞
−∞ |x(t)|2 dt < ∞. A “power signal” has infinite energy

but finite power: limA,B→∞
1

B−A
´ B
−A |x(t)|2 dt < ∞. The answers are therefore (a) P, (b) P, (c) N,

(d) N, (e) N, (f) N, (g) E, (h) E, (i) P, (i) E, (i) P. The final example has zero average power but is
not an energy signal because it has infinite energy.
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16. (a) We substitute ω = 2πf to obtain:

X̃(ω) =
1

1 + ω2
+ 2i

(
δ(
ω

2π
+ 4)− δ( ω

2π
− 4)

)
=

1

1 + ω2
+ 2i

(
δ(
ω + 8π

2π
)− δ(ω − 8π

2π
)

)
=

1

1 + ω2
+ 4πi (δ(ω + 8π)− δ(ω − 8π)) .

The final line is obtained using the scaling formula for delta functions: |c| δ(cx) = δ(x). Thus we
see that in the angular-frequency version of the Fourier transform, any continuous functions of f
remain the same amplitude but delta functions are multiplied by 2π. The inverse transform is given
by x(t) = 1

2π

´∞
−∞ X̃(ω)eiωtdω; this can be obtained by changing the variable in the normal inverse

transform from f to ω.

(b) X̂(ω) is exactly the same as X̃(ω) but divided by
√

2π. So

X̃(ω) =
1√

2π (1 + ω2)
+
√

8πi (δ(ω + 8π)− δ(ω − 8π)) .

The inverse transform is the same as in the previous part but multiplied by
√

2π, i.e.

x(t) =
1√
2π

ˆ ∞
−∞

X̂(ω)eiωtdω.
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