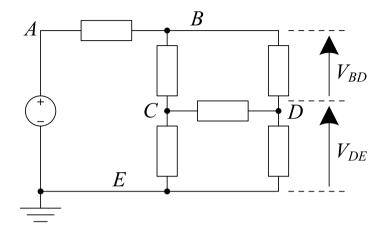
\triangleright 2: Resistor Circuits Kirchoff's Voltage Law Kirchoff's Current Law KCL Example Series and Parallel Dividers Equivalent Resistance: Series Equivalent Resistance: Parallel Equivalent Resistance: Parallel Formulae Simplifying Resistor Networks Non-ideal Voltage Source Summary

2: Resistor Circuits

2: Resistor Circuits Kirchoff's Voltage ▷ Law Kirchoff's Current Law KCL Example Series and Parallel Dividers Equivalent Resistance: Series Equivalent Resistance: Parallel Equivalent Resistance: Parallel Formulae Simplifying Resistor Networks Non-ideal Voltage Source Summary

The five nodes are labelled A, B, C, D, E where E is the reference node.

Each component that links a pair of nodes is called a *branch* of the network.



Kirchoff's Voltage Law (KVL) is a consequence of the fact that the work done in moving a charge from one node to another does not depend on the route you take; in particular the work done in going from one node back to the same node by any route is zero.

KVL: the sum of the voltage changes around any closed loop is zero.

```
Example: V_{DE} + V_{BD} + V_{AB} + V_{EA} = 0
```

Equivalent formulation:

 $V_{XY} = V_{XE} - V_{YE} = V_X - V_Y$ for any nodes X and Y.

2: Resistor Circuits Kirchoff's Voltage Law Kirchoff's Current ▷ Law KCL Example Series and Parallel Dividers Equivalent Resistance: Series Equivalent Resistance: Parallel Equivalent Resistance: Parallel Formulae Simplifying Resistor Networks Non-ideal Voltage Source

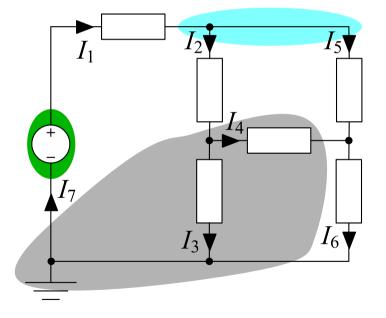
Summary

Wherever charges are free to move around, they will move to ensure charge neutrality everywhere at all times.

A consequence is Kirchoff's Current Law (KCL) which says that the current going into any closed region of a circuit must equal the current coming out. KCL: The currents flowing out of any closed region of a circuit sum to zero.

Green: $I_1 = I_7$ Blue: $-I_1 + I_2 + I_5 = 0$

Gray:
$$-I_2 + I_4 - I_6 + I_7 = 0$$



KCL Example

2: Resistor Circuits Kirchoff's Voltage Law Kirchoff's Current Law \triangleright KCL Example Series and Parallel Dividers Equivalent Resistance: Series Equivalent Resistance: Parallel Equivalent Resistance: Parallel Formulae Simplifying Resistor Networks Non-ideal Voltage Source

Summary

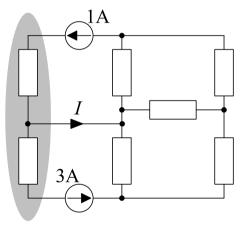
The currents and voltages in any linear circuit can be determined by using KCL, KVL and Ohm's law.

Sometimes KCL allows you to determine currents very easily without having to solve any simultaneous equations:

How do we calculate I ?

 $\begin{array}{l} \mathsf{KCL:} \ -1 + I + 3 = 0 \\ \implies I = -2 \ \mathsf{A} \end{array}$

 $\implies I = -2A$



Note that here I ends up negative which means we chose the wrong arrow direction to label the circuit. This does not matter. You can choose the directions arbitrarily and let the algebra take care of reality.

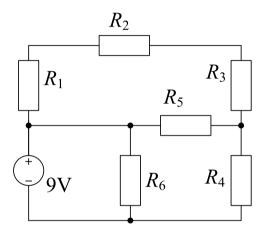
2: Resistor Circuits Kirchoff's Voltage Law Kirchoff's Current Law KCL Example \triangleright Series and Parallel Dividers Equivalent Resistance: Series Equivalent Resistance: Parallel Equivalent Resistance: Parallel Formulae Simplifying Resistor Networks Non-ideal Voltage Source Summary

<u>Series</u>: Components that are connected in a chain so that the same current flows through each one are said to be *in series*.

 R_1, R_2, R_3 are in series and the same current always flows through each.

Within the chain, each internal node connects to only two branches.

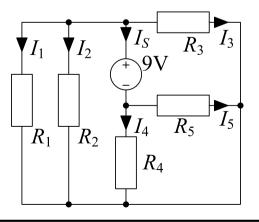
 R_3 and R_4 are not in series and do not necessarily have the same current.



Parallel: Components that are connected to the same pair of nodes are said to be *in parallel*.

 R_1, R_2, R_3 are in parallel and the same voltage is across each resistor (even though R_3 is not close to the others).

 R_4 and R_5 are also in parallel.



2: Resistor Circuits Kirchoff's Voltage Law Kirchoff's Current Law KCL Example Series and Parallel Dividers Equivalent **Resistance:** Series Equivalent Resistance: Parallel Equivalent Resistance: Parallel Formulae Simplifying Resistor Networks Non-ideal Voltage Source Summary

 $V_X = V_1 + V_2 + V_3$ = $IR_1 + IR_2 + IR_3$ = $I(R_1 + R_2 + R_3)$ $\frac{V_1}{V_X} = \frac{IR_1}{I(R_1 + R_2 + R_3)}$ = $\frac{R_1}{R_1 + R_2 + R_3} = \frac{R_1}{R_T}$

where $R_T = R_1 + R_2 + R_3$ is the total resistance of the chain.

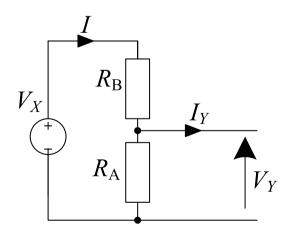


 V_X is divided into $V_1: V_2: V_3$ in the proportions $R_1: R_2: R_3$.

Approximate Voltage Divider:

If
$$I_Y = 0$$
, then $V_Y = \frac{R_A}{R_A + R_B} V_X$.

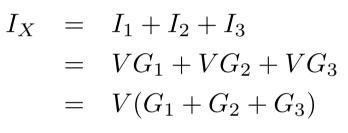
If
$$I_Y \ll I$$
, then $V_Y \approx \frac{R_A}{R_A + R_B} V_X$.

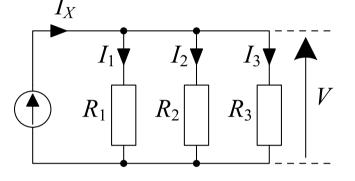


2: Resistor Circuits Kirchoff's Voltage Law Kirchoff's Current Law KCL Example Series and Parallel \triangleright Dividers Equivalent Resistance: Series Equivalent Resistance: Parallel Equivalent Resistance: Parallel Formulae Simplifying Resistor Networks Non-ideal Voltage Source Summary

Parallel resistors all share the same V.

$$I_1 = \frac{V}{R_1} = VG_1$$
 where $G_1 = \frac{1}{R_1}$ is the *conductance* of R_1 .





$$\frac{I_1}{I_X} = \frac{VG_1}{V(G_1 + G_2 + G_3)} = \frac{G_1}{G_1 + G_2 + G_3} = \frac{G_1}{G_F}$$

where $G_P = G_1 + G_2 + G_3$ is the total conductance of the resistors.

 I_X is divided into $I_1: I_2: I_3$ in the proportions $G_1: G_2: G_3$.

Special case for only two resistors:

$$I_1: I_2 = G_1: G_2 = R_2: R_1 \implies I_1 = \frac{R_2}{R_1 + R_2} I_X.$$

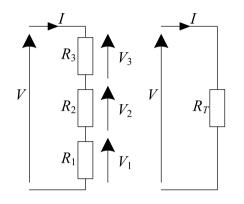
2: Resistor Circuits Kirchoff's Voltage Law Kirchoff's Current Law KCL Example Series and Parallel Dividers Equivalent Resistance: Series Equivalent Resistance: Parallel Equivalent Resistance: Parallel Formulae Simplifying Resistor Networks Non-ideal Voltage Source Summary

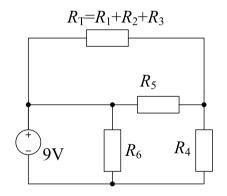
We know that $V = V_1 + V_2 + V_3 = I(R_1 + R_2 + R_3) = IR_T$

So we can replace the three resistors by a single *equivalent resistor* of value R_T without affecting the relationship between V and I.

Replacing series resistors by their equivalent resistor will not affect any of the voltages or currents in the rest of the circuit.

However the individual voltages V_1 , V_2 and V_3 are no longer accessible.

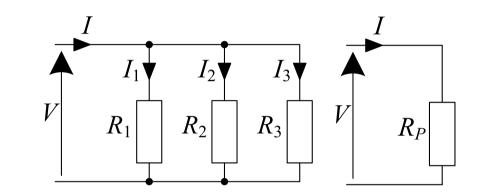




2: Resistor Circuits Kirchoff's Voltage Law Kirchoff's Current Law KCL Example Series and Parallel Dividers Equivalent Resistance: Series Equivalent Resistance: Parallel Equivalent Resistance: Parallel Formulae Simplifying Resistor Networks Non-ideal Voltage Source Summary

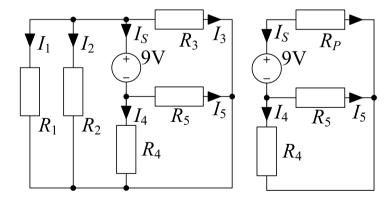
Similarly we known that
$$I = I_1 + I_2 + I_3 = V(G_1 + G_2 + G_3) = VG_P$$
.
So $V = IR_P$ where $R_P = \frac{1}{G_P} = \frac{1}{G_1 + G_2 + G_3} = \frac{1}{\frac{1}{R_1 + \frac{1}{R_2} + \frac{1}{R_3}}}$

We can use a single equivalent resistor of resistance R_P without affecting the relationship between V and I.



Replacing parallel resistors by their equivalent resistor will not affect any of the voltages or currents in the rest of the circuit.

 R_4 and R_5 are also in parallel.



Much simpler - although none of the original currents I_1, \dots, I_5 are now accessible. Current I_S and the three node voltages are identical.

2: Resistor Circuits Kirchoff's Voltage Law Kirchoff's Current Law KCL Example Series and Parallel Dividers Equivalent Resistance: Series Equivalent Resistance: Parallel Equivalent Resistance: Parallel Formulae Simplifying Resistor Networks Non-ideal Voltage Source Summary

For parallel resistors $G_P = G_1 + G_2 + G_3$ or equivalently $R_P = R_1 ||R_2||R_3 = \frac{1}{1/R_1 + 1/R_2 + 1/R_3}$. These formulae work for any number of resistors. • For the special case of two parallel resistors

 $R_P = \frac{1}{1/R_1 + 1/R_2} = \frac{R_1 R_2}{R_1 + R_2}$ ("product over sum")

• If one resistor is a multiple of the other Suppose $R_2 = kR_1$, then $R_P = \frac{R_1R_2}{R_1+R_2} = \frac{kR_1^2}{(k+1)R_1} = \frac{k}{k+1}R_1 = (1 - \frac{1}{k+1})R_1$ Example: $1 \text{ k}\Omega \mid\mid 99 \text{ k}\Omega = \frac{99}{100} \text{ k}\Omega = (1 - \frac{1}{100}) \text{ k}\Omega$

Important: The equivalent resistance of parallel resistors is always less than any of them.

2: Resistor Circuits Kirchoff's Voltage Law Kirchoff's Current Law KCL Example Series and Parallel Dividers Equivalent Resistance: Series Equivalent Resistance: Parallel Equivalent Resistance: Parallel Formulae Simplifying Resistor Networks Non-ideal Voltage Source Summary

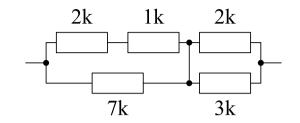
Many resistor circuits can be simplified by alternately combining series and parallel resistors.

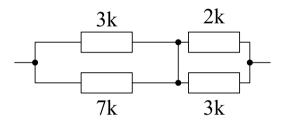
Series: 2 k + 1 k = 3 k

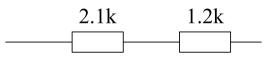
Parallel: 3 k || 7 k = 2.1 kParallel: 2 k || 3 k = 1.2 k

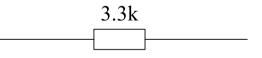
Series: 2.1 k + 1.2 k = 3.3 k

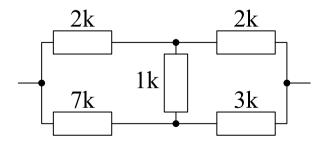
Sadly this method does not always work: there are no series or parallel resistors here.











2: Resistor Circuits Kirchoff's Voltage Law Kirchoff's Current Law KCL Example Series and Parallel Dividers Equivalent Resistance: Series Equivalent Resistance: Parallel Equivalent Resistance: Parallel Formulae Simplifying Resistor Networks Non-ideal Voltage Source

Summary

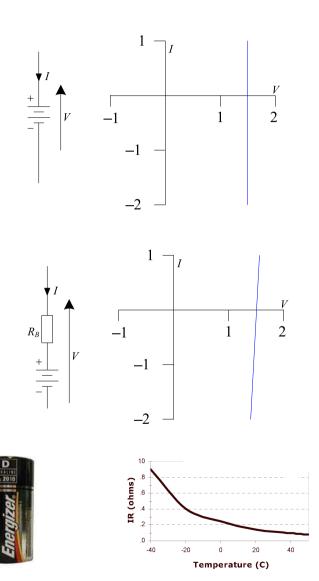
An ideal battery has a characteristic that is vertical: battery voltage does not vary with current.

Normally a battery is supplying energy so V and I have opposite signs, so $I \leq 0$.

An real battery has a characteristic that has a slight positive slope: battery voltage decreases as the (negative) current increases.

Model this by including a small resistor in series. $V = V_B + IR_B$.

The equivalent resistance for a battery increases at low temperatures.



Summary

- 2: Resistor Circuits Kirchoff's Voltage Law Kirchoff's Current Law KCL Example Series and Parallel Dividers Equivalent Resistance: Series Equivalent Resistance: Parallel Equivalent Resistance: Parallel Formulae Simplifying Resistor Networks Non-ideal Voltage Source \triangleright Summary
- □ Kichoff's Voltage and Current Laws
- □ Series and Parallel components
- □ Voltage and Current Dividers
- □ Simplifying Resistor Networks
- □ Battery Internal Resistance

For further details see Hayt Ch 3 or Irwin Ch 2.