8: Nonlinear Components

- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave
- Rectifier
- Summary

8: Nonlinear Components

8: Nonlinear Components

- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier

• Summary

The *characteristic* of a component is a plot of I against V using the passive sign convention.

All our components have had straight-line characteristics.

8: Nonlinear Components

- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier

• Summary

The characteristic of a component is a plot of I against V using the passive sign convention.

All our components have had straight-line characteristics.

8: Nonlinear Components

- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

The *characteristic* of a component is a plot of I against V using the passive sign convention.

All our components have had straight-line characteristics.

8: Nonlinear Components

- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

The *characteristic* of a component is a plot of I against V using the passive sign convention.

All our components have had straight-line characteristics.

An ideal *diode* allows current to flow in one direction only.

8: Nonlinear Components

- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

The *characteristic* of a component is a plot of I against V using the passive sign convention.

All our components have had straight-line characteristics.

An ideal *diode* allows current to flow in one direction only.

Its characteristic is <u>not</u> a straight line, but is made from two straight line segments: *piecewise-linear*.

8: Nonlinear Components

- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

The *characteristic* of a component is a plot of I against V using the passive sign convention.

All our components have had straight-line characteristics.

An ideal *diode* allows current to flow in one direction only.

Its characteristic is <u>not</u> a straight line, but is made from two straight line segments: *piecewise-linear*. Each segment is a *mode of operation*.

8: Nonlinear Components

- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

The *characteristic* of a component is a plot of I against V using the passive sign convention.

All our components have had straight-line characteristics.

An ideal *diode* allows current to flow in one direction only.

Its characteristic is <u>not</u> a straight line, but is made from two straight line segments: *piecewise-linear*. Each segment is a *mode of operation*.

0.2

Each mode applies only when a particular condition is true:

Mode Conducting (or "forward bias" or "on") Non-conducting (or "reverse bias" or "off")

Condition	Equation
I > 0	V = 0
V < 0	I = 0

8: Nonlinear Components

- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave
- Rectifier
- Summary

To analyse a circuit with a diode in it, you first guess which mode it is operating in, solve the circuit and then check the condition. If you guessed wrongly, the condition will not be met.

Mode	Condition	Equation
Conducting	I > 0	$V_D = 0$
Non-conducting	$V_D < 0$	I = 0

8: Nonlinear Components

- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

To analyse a circuit with a diode in it, you first guess which mode it is operating in, solve the circuit and then check the condition. If you guessed wrongly, the condition will not be met.

Mode	Condition	Equation
Conducting	I > 0	$V_D = 0$
Non-conducting	$V_D < 0$	I = 0

Voltage across diode is $V_D = U - X$. Current through diode is $I = \frac{X}{2}$ mA.

8: Nonlinear Components

- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

To analyse a circuit with a diode in it, you first guess which mode it is operating in, solve the circuit and then check the condition. If you guessed wrongly, the condition will not be met.

Mode	Condition	Equation
Conducting	I > 0	$V_D = 0$
Non-conducting	$V_D < 0$	I = 0

Voltage across diode is $V_D = U - X$. Current through diode is $I = \frac{X}{2}$ mA.

Assume Conducting Mode $\Rightarrow V_D = 0$

8: Nonlinear Components

- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

To analyse a circuit with a diode in it, you first guess which mode it is operating in, solve the circuit and then check the condition. If you guessed wrongly, the condition will not be met.

Mode	Condition	Equation
Conducting	I > 0	$V_D = 0$
Non-conducting	$V_D < 0$	I = 0

Voltage across diode is $V_D = U - X$. Current through diode is $I = \frac{X}{2}$ mA.

Assume Conducting Mode $\Rightarrow V_D = 0$ $V_D = 0$

8: Nonlinear Components

- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

To analyse a circuit with a diode in it, you first guess which mode it is operating in, solve the circuit and then check the condition. If you guessed wrongly, the condition will not be met.

Mode	Condition	Equation
Conducting	I > 0	$V_D = 0$
Non-conducting	$V_D < 0$	I = 0

Voltage across diode is $V_D = U - X$. Current through diode is $I = \frac{X}{2}$ mA.

Assume Conducting Mode $\Rightarrow V_D = 0$ $V_D = 0 \Rightarrow X = U = -6$

8: Nonlinear Components

- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

To analyse a circuit with a diode in it, you first guess which mode it is operating in, solve the circuit and then check the condition. If you guessed wrongly, the condition will not be met.

Mode	Condition	Equation
Conducting	I > 0	$V_D = 0$
Non-conducting	$V_D < 0$	I = 0

Voltage across diode is $V_D = U - X$. Current through diode is $I = \frac{X}{2}$ mA.

Assume Conducting Mode $\Rightarrow V_D = 0$ $V_D = 0 \Rightarrow X = U = -6 \Rightarrow I = -3$

8: Nonlinear Components

- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

To analyse a circuit with a diode in it, you first guess which mode it is operating in, solve the circuit and then check the condition. If you guessed wrongly, the condition will not be met.

Mode	Condition	Equation
Conducting	I > 0	$V_D = 0$
Non-conducting	$V_D < 0$	I = 0

Voltage across diode is $V_D = U - X$. Current through diode is $I = \frac{X}{2}$ mA.

Assume Conducting Mode $\Rightarrow V_D = 0$ $V_D = 0 \Rightarrow X = U = -6 \Rightarrow I = -3$ but condition is I > 0 so bad guess

8: Nonlinear Components

- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

To analyse a circuit with a diode in it, you first guess which mode it is operating in, solve the circuit and then check the condition. If you guessed wrongly, the condition will not be met.

Mode	Condition	Equation
Conducting	I > 0	$V_D = 0$
Non-conducting	$V_D < 0$	I = 0

Voltage across diode is $V_D = U - X$. Current through diode is $I = \frac{X}{2}$ mA.

Assume Conducting Mode $\Rightarrow V_D = 0$ $V_D = 0 \Rightarrow X = U = -6 \Rightarrow I = -3$ but condition is I > 0 so bad guess

Assume Non-conducting Mode $\Rightarrow I = 0$

8: Nonlinear Components

- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

To analyse a circuit with a diode in it, you first guess which mode it is operating in, solve the circuit and then check the condition. If you guessed wrongly, the condition will not be met.

Mode	Condition	Equation
Conducting	I > 0	$V_D = 0$
Non-conducting	$V_D < 0$	I = 0

Voltage across diode is $V_D = U - X$. Current through diode is $I = \frac{X}{2}$ mA.

Assume Conducting Mode $\Rightarrow V_D = 0$ $V_D = 0 \Rightarrow X = U = -6 \Rightarrow I = -3$ but condition is I > 0 so bad guess

Assume Non-conducting Mode $\Rightarrow I = 0$ I = 0

8: Nonlinear Components

- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

To analyse a circuit with a diode in it, you first guess which mode it is operating in, solve the circuit and then check the condition. If you guessed wrongly, the condition will not be met.

Mode	Condition	Equation
Conducting	I > 0	$V_D = 0$
Non-conducting	$V_D < 0$	I = 0

Voltage across diode is $V_D = U - X$. Current through diode is $I = \frac{X}{2}$ mA.

Assume Conducting Mode $\Rightarrow V_D = 0$ $V_D = 0 \Rightarrow X = U = -6 \Rightarrow I = -3$ but condition is I > 0 so bad guess

Assume Non-conducting Mode $\Rightarrow I = 0$ $I = 0 \Rightarrow X = 2I = 0$

8: Nonlinear Components

- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

To analyse a circuit with a diode in it, you first guess which mode it is operating in, solve the circuit and then check the condition. If you guessed wrongly, the condition will not be met.

Mode	Condition	Equation
Conducting	I > 0	$V_D = 0$
Non-conducting	$V_D < 0$	I = 0

Voltage across diode is $V_D = U - X$. Current through diode is $I = \frac{X}{2}$ mA.

Assume Conducting Mode $\Rightarrow V_D = 0$ $V_D = 0 \Rightarrow X = U = -6 \Rightarrow I = -3$ but condition is I > 0 so bad guess

Assume Non-conducting Mode $\Rightarrow I = 0$ $I = 0 \Rightarrow X = 2I = 0 \Rightarrow V_D = U - X = -6$

8: Nonlinear Components

- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

To analyse a circuit with a diode in it, you first guess which mode it is operating in, solve the circuit and then check the condition. If you guessed wrongly, the condition will not be met.

Mode	Condition	Equation
Conducting	I > 0	$V_D = 0$
Non-conducting	$V_D < 0$	I = 0

Voltage across diode is $V_D = U - X$. Current through diode is $I = \frac{X}{2}$ mA.

Assume Conducting Mode $\Rightarrow V_D = 0$ $V_D = 0 \Rightarrow X = U = -6 \Rightarrow I = -3$ but condition is I > 0 so bad guess

Assume Non-conducting Mode $\Rightarrow I = 0$ $I = 0 \Rightarrow X = 2I = 0 \Rightarrow V_D = U - X = -6$ condition is $V_D < 0$ so good guess

8: Nonlinear Components

- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

To analyse a circuit with a diode in it, you first guess which mode it is operating in, solve the circuit and then check the condition. If you guessed wrongly, the condition will not be met.

Mode	Condition	Equation
Conducting	I > 0	$V_D = 0$
Non-conducting	$V_D < 0$	I = 0

Voltage across diode is $V_D = U - X$. Current through diode is $I = \frac{X}{2}$ mA.

Assume Conducting Mode $\Rightarrow V_D = 0$ $V_D = 0 \Rightarrow X = U = -6 \Rightarrow I = -3$ but condition is I > 0 so bad guess

Assume Non-conducting Mode $\Rightarrow I = 0$ $I = 0 \Rightarrow X = 2I = 0 \Rightarrow V_D = U - X = -6$ condition is $V_D < 0$ so good guess Anode

Current flows from anode to cathode.

- 8: Nonlinear Components
- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave
- Rectifier
- Summary

How does X change with U ?

- 8: Nonlinear Components
- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- •
- Summary

How does X change with U ?

Voltage across diode is $V_D = Y - 3$. Current through diode is $I_D = \frac{X-Y}{1}$ mA.

- 8: Nonlinear Components
- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

How does X change with U ?

Voltage across diode is $V_D = Y - 3$. Current through diode is $I_D = \frac{X-Y}{1}$ mA.

Assume Conducting Mode $\Rightarrow Y = 3$

- 8: Nonlinear Components
- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

How does X change with U ?

Voltage across diode is $V_D = Y - 3$. Current through diode is $I_D = \frac{X-Y}{1}$ mA.

Assume Conducting Mode $\Rightarrow Y=3$

KCL:
$$\frac{X-U}{4} + \frac{X-3}{1} + \frac{X}{4} = 0$$

 $\Rightarrow X = \frac{1}{6}U + 2$

- 8: Nonlinear Components
- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

How does X change with U ?

Voltage across diode is $V_D = Y - 3$. Current through diode is $I_D = \frac{X-Y}{1}$ mA.

Assume Conducting Mode $\Rightarrow Y=3$

KCL:
$$\frac{X-U}{4} + \frac{X-3}{1} + \frac{X}{4} = 0$$

 $\Rightarrow X = \frac{1}{6}U + 2$
 $I_D = \frac{X-3}{1} = \frac{1}{6}U - 1$

- 8: Nonlinear Components
- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

How does X change with U ?

Voltage across diode is $V_D = Y - 3$. Current through diode is $I_D = \frac{X-Y}{1}$ mA.

Assume Conducting Mode $\Rightarrow Y=3$

$$\begin{aligned} \text{KCL:} \ &\frac{X-U}{4} + \frac{X-3}{1} + \frac{X}{4} = 0 \\ &\Rightarrow X = \frac{1}{6}U + 2 \\ &I_D = \frac{X-3}{1} = \frac{1}{6}U - 1 \\ &I_D > 0 \Leftrightarrow U > 6 \end{aligned}$$

- 8: Nonlinear Components
- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

How does X change with U ?

Voltage across diode is $V_D = Y - 3$. Current through diode is $I_D = \frac{X-Y}{1}$ mA.

Assume Conducting Mode $\Rightarrow Y = 3$

$$\begin{array}{l} \text{KCL:} \ \frac{X-U}{4} + \frac{X-3}{1} + \frac{X}{4} = 0 \\ \Rightarrow X = \frac{1}{6}U + 2 \\ I_D = \frac{X-3}{1} = \frac{1}{6}U - 1 \\ I_D > 0 \Leftrightarrow U > 6 \end{array}$$

Assume Non-conducting Mode $\Rightarrow I_D = 0$

- 8: Nonlinear Components
- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

How does X change with U ?

Voltage across diode is $V_D = Y - 3$. Current through diode is $I_D = \frac{X-Y}{1}$ mA.

Assume Conducting Mode $\Rightarrow Y = 3$

$$\begin{array}{l} \text{KCL:} \ \frac{X-U}{4} + \frac{X-3}{1} + \frac{X}{4} = 0 \\ \Rightarrow X = \frac{1}{6}U + 2 \\ I_D = \frac{X-3}{1} = \frac{1}{6}U - 1 \\ I_D > 0 \ \Leftrightarrow \ U > 6 \end{array}$$

Assume Non-conducting Mode $\Rightarrow I_D = 0$

Potential Div: $X = Y = \frac{1}{2}U$

- 8: Nonlinear Components
- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

How does X change with U ?

Voltage across diode is $V_D = Y - 3$. Current through diode is $I_D = \frac{X-Y}{1}$ mA.

Assume Conducting Mode $\Rightarrow Y = 3$

$$\begin{array}{l} \text{KCL:} \ \frac{X-U}{4} + \frac{X-3}{1} + \frac{X}{4} = 0 \\ \Rightarrow X = \frac{1}{6}U + 2 \\ I_D = \frac{X-3}{1} = \frac{1}{6}U - 1 \\ I_D > 0 \ \Leftrightarrow \ U > 6 \end{array}$$

Assume Non-conducting Mode $\Rightarrow I_D = 0$

Potential Div: $X = Y = \frac{1}{2}U$ $V_D = Y - 3 = \frac{1}{2}U - 3$

- 8: Nonlinear Components
- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

How does X change with U ?

Voltage across diode is $V_D = Y - 3$. Current through diode is $I_D = \frac{X-Y}{1}$ mA.

Assume Conducting Mode $\Rightarrow Y = 3$

$$\begin{array}{l} \text{KCL:} \ \frac{X-U}{4} + \frac{X-3}{1} + \frac{X}{4} = 0 \\ \Rightarrow X = \frac{1}{6}U + 2 \\ I_D = \frac{X-3}{1} = \frac{1}{6}U - 1 \\ I_D > 0 \ \Leftrightarrow \ U > 6 \end{array}$$

Assume Non-conducting Mode $\Rightarrow I_D = 0$

Potential Div: $X = Y = \frac{1}{2}U$ $V_D = Y - 3 = \frac{1}{2}U - 3$ $V_D < 0 \Leftrightarrow U < 6$

- 8: Nonlinear Components
- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

How does X change with U ?

Voltage across diode is $V_D = Y - 3$. Current through diode is $I_D = \frac{X-Y}{1}$ mA.

Assume Conducting Mode $\Rightarrow Y = 3$

$$\begin{aligned} \text{KCL:} \ &\frac{X-U}{4} + \frac{X-3}{1} + \frac{X}{4} = 0 \\ &\Rightarrow X = \frac{1}{6}U + 2 \\ &I_D = \frac{X-3}{1} = \frac{1}{6}U - 1 \\ &I_D > 0 \Leftrightarrow U > 6 \end{aligned}$$

Assume Non-conducting Mode $\Rightarrow I_D = 0$

Potential Div: $X = Y = \frac{1}{2}U$ $V_D = Y - 3 = \frac{1}{2}U - 3$ $V_D < 0 \Leftrightarrow U < 6$

Diode switches between regions where the graphs intersect (U = 6). At this point both the diode equations, $V_D = 0$ and $I_D = 0$, are true.

- 8: Nonlinear Components
- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave
- Rectifier
- Summary

Bridge Rectifier: 4 diodes:

- D_1 and D_2 both point towards node X.
- D_3 and D_4 both point away from ground.

The input voltage is U = B - A.

- 8: Nonlinear Components
- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave
- Rectifier
- Summary

Bridge Rectifier: 4 diodes:

- D_1 and D_2 both point towards node X.
- D_3 and D_4 both point away from ground.

The input voltage is U = B - A.

Case 1: U > 0.

- 8: Nonlinear Components
- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave
- Rectifier
- Summary

Bridge Rectifier: 4 diodes:

- D_1 and D_2 both point towards node X.
- D_3 and D_4 both point away from ground.

The input voltage is U = B - A.

Case 1: U > 0. D_1, D_4 on $\Rightarrow X = U$

- 8: Nonlinear Components
- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

Bridge Rectifier: 4 diodes:

- D_1 and D_2 both point towards node X.
- D_3 and D_4 both point away from ground.

The input voltage is U = B - A.

Case 1:
$$U > 0$$
. D_1, D_4 on $\Rightarrow X = U$
Check D_1, D_4 : $I_1 = I_4 = I = \frac{U}{100} > 0$

Note: I_n, V_n apply to diode n
- 8: Nonlinear Components
- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

Bridge Rectifier: 4 diodes:

- D_1 and D_2 both point towards node X.
- D_3 and D_4 both point away from ground.

The input voltage is U = B - A.

Case 1:
$$U > 0$$
. D_1, D_4 on $\Rightarrow X = U$
Check D_1, D_4 : $I_1 = I_4 = I = \frac{U}{100} > 0$

Check
$$D_2$$
, D_3 : $V_2 = V_3 = -U < 0$

Note: I_n, V_n apply to diode n

- 8: Nonlinear Components
- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

Bridge Rectifier: 4 diodes:

 D_1 and D_2 both point towards node X. D_3 and D_4 both point away from ground.

The input voltage is U = B - A.

Case 1:
$$U > 0$$
. D_1, D_4 on $\Rightarrow X = U$
Check D_1, D_4 : $I_1 = I_4 = I = \frac{U}{100} > 0$

Check
$$D_2$$
, D_3 : $V_2 = V_3 = -U < 0$
All diodes OK

Note: I_n, V_n apply to diode n

- 8: Nonlinear Components
- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

Bridge Rectifier: 4 diodes:

 D_1 and D_2 both point towards node X. D_3 and D_4 both point away from ground. The input voltage is U = B - A.

Case 1: U > 0. D_1, D_4 on $\Rightarrow X = U$ Check D_1, D_4 : $I_1 = I_4 = I = \frac{U}{100} > 0$

Check D_2 , D_3 : $V_2 = V_3 = -U < 0$ All diodes OK

Case 2: U < 0.

Note: I_n, V_n apply to diode n

- 8: Nonlinear Components
- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

Bridge Rectifier: 4 diodes:

 D_1 and D_2 both point towards node X. D_3 and D_4 both point away from ground. The input voltage is U = B - A.

Case 1:
$$U > 0$$
. D_1, D_4 on $\Rightarrow X = U$
Check D_1, D_4 : $I_1 = I_4 = I = \frac{U}{100} > 0$

 $\begin{array}{l} \mbox{Check } D_2, \, D_3 \hbox{:} \, V_2 = V_3 = -U < 0 \\ \mbox{All diodes OK} \end{array}$

Case 2: U < 0. D_2, D_3 on $\Rightarrow X = -U$

Note: I_n, V_n apply to diode n

- 8: Nonlinear Components
- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

Bridge Rectifier: 4 diodes:

 D_1 and D_2 both point towards node X. D_3 and D_4 both point away from ground. The input voltage is U = B - A.

Case 1:
$$U > 0$$
. D_1, D_4 on $\Rightarrow X = U$
Check D_1, D_4 : $I_1 = I_4 = I = \frac{U}{100} > 0$

 $\begin{array}{l} \mbox{Check } D_2, \, D_3 \hbox{:} \, V_2 = V_3 = -U < 0 \\ \mbox{All diodes OK} \end{array}$

Case 2: U < 0. D_2, D_3 on $\Rightarrow X = -U$ Check D_2, D_3 : $I_{2,3} = I = \frac{-U}{100} > 0$

Note: I_n, V_n apply to diode n

- 8: Nonlinear Components
- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

Bridge Rectifier: 4 diodes:

 D_1 and D_2 both point towards node X. D_3 and D_4 both point away from ground. The input voltage is U = B - A.

Case 1:
$$U > 0$$
. D_1, D_4 on $\Rightarrow X = U$
Check D_1, D_4 : $I_1 = I_4 = I = \frac{U}{100} > 0$

 $\begin{array}{l} \mbox{Check } D_2, \, D_3 \hbox{:} \, V_2 = V_3 = -U < 0 \\ \mbox{All diodes OK} \end{array}$

Case 2: U < 0. D_2, D_3 on $\Rightarrow X = -U$ Check D_2, D_3 : $I_{2,3} = I = \frac{-U}{100} > 0$ Check D_1, D_4 : $V_1 = V_4 = U < 0$

Note: I_n, V_n apply to diode n

- 8: Nonlinear Components
- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

Bridge Rectifier: 4 diodes:

 D_1 and D_2 both point towards node X. D_3 and D_4 both point away from ground. The input voltage is U = B - A.

Case 1:
$$U > 0$$
. D_1, D_4 on $\Rightarrow X = U$
Check D_1, D_4 : $I_1 = I_4 = I = \frac{U}{100} > 0$

 $\begin{array}{l} \mbox{Check } D_2, \, D_3 \hbox{:} \, V_2 = V_3 = -U < 0 \\ \mbox{All diodes OK} \end{array}$

Case 2: U < 0. D_2, D_3 on $\Rightarrow X = -U$ Check D_2, D_3 : $I_{2,3} = I = \frac{-U}{100} > 0$ Check D_1, D_4 : $V_1 = V_4 = U < 0$ All diodes OK

Note: I_n, V_n apply to diode n

- 8: Nonlinear Components
- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

Bridge Rectifier: 4 diodes:

 D_1 and D_2 both point towards node X. D_3 and D_4 both point away from ground. The input voltage is U = B - A.

Case 1:
$$U > 0$$
. D_1, D_4 on $\Rightarrow X = U$
Check D_1, D_4 : $I_1 = I_4 = I = \frac{U}{100} > 0$

 $\begin{array}{l} \mbox{Check } D_2, \, D_3 \hbox{:} \, V_2 = V_3 = -U < 0 \\ \mbox{All diodes OK} \end{array}$

Case 2: U < 0. D_2, D_3 on $\Rightarrow X = -U$ Check D_2, D_3 : $I_{2,3} = I = \frac{-U}{100} > 0$ Check D_1, D_4 : $V_1 = V_4 = U < 0$ All diodes OK

X is always equal to $\left|U\right|$: this is an absolute value circuit.

Note: I_n, V_n apply to diode n

- 8: Nonlinear Components
- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

Bridge Rectifier: 4 diodes:

 D_1 and D_2 both point towards node X. D_3 and D_4 both point away from ground. The input voltage is U = B - A.

Case 1:
$$U > 0$$
. D_1, D_4 on $\Rightarrow X = U$
Check D_1, D_4 : $I_1 = I_4 = I = \frac{U}{100} > 0$

 $\begin{array}{l} \mbox{Check } D_2, \, D_3 \hbox{:} \, V_2 = V_3 = -U < 0 \\ \mbox{All diodes OK} \end{array}$

Case 2: U < 0. D_2, D_3 on $\Rightarrow X = -U$ Check D_2, D_3 : $I_{2,3} = I = \frac{-U}{100} > 0$ Check D_1, D_4 : $V_1 = V_4 = U < 0$ All diodes OK

X is always equal to $\left|U\right|$: this is an absolute value circuit.

If U is a sine wave,

Note: I_n, V_n apply to diode n

- 8: Nonlinear Components
- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

Bridge Rectifier: 4 diodes:

 D_1 and D_2 both point towards node X. D_3 and D_4 both point away from ground. The input voltage is U = B - A.

Case 1:
$$U > 0$$
. D_1, D_4 on $\Rightarrow X = U$
Check D_1, D_4 : $I_1 = I_4 = I = \frac{U}{100} > 0$

 $\begin{array}{l} \mbox{Check } D_2, \, D_3 \hbox{:} \, V_2 = V_3 = -U < 0 \\ \mbox{All diodes OK} \end{array}$

Case 2: U < 0. D_2, D_3 on $\Rightarrow X = -U$ Check D_2, D_3 : $I_{2,3} = I = \frac{-U}{100} > 0$ Check D_1, D_4 : $V_1 = V_4 = U < 0$ All diodes OK

X is always equal to $\left|U\right|$: this is an absolute value circuit.

If U is a sine wave, then X is a *full-wave rectified* sine wave with twice the frequency.

Note: I_n, V_n apply to diode n

- 8: Nonlinear Components
- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave
- Rectifier
- Summary

An *ideal* diode allows has V = 0 whenever it is "on".

- 8: Nonlinear Components
- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

An *ideal* diode allows has V = 0 whenever it is "on".

A *real* diode has a voltage drop that depends approximately logarithmically on the current: it increases by about 0.1 V for every 50-fold increase in

current.

- 8: Nonlinear Components
- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

An *ideal* diode allows has V = 0 whenever it is "on".

 $I = \frac{1}{10}$ $I = \frac{1}{10}$ I =

A real diode has a voltage drop that depends approximately logarithmically on the current: it increases by about $0.1\,V$ for every 50-fold increase in current.

For a wide range of currents we can treat V as almost constant:

- 8: Nonlinear Components
- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

An *ideal* diode allows has V = 0 whenever it is "on".

 $\begin{array}{c}
20 \\
1 \text{ N4148} \\
\hline
V \\
\hline
V$

A *real* diode has a voltage drop that depends approximately logarithmically on the current: it increases by about $0.1 \, V$ for every 50-fold increase in current.

For a wide range of currents we can treat V as almost constant: (a) For low-current circuits (e.g I < 20 mA): $V \simeq 0.7$ V.

- 8: Nonlinear Components
- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

An *ideal* diode allows has V = 0 whenever it is "on".

A real diode has a voltage drop that depends approximately logarithmically on the current: it increases by about $0.1\,V$ for every 50-fold increase in current.

For a wide range of currents we can treat V as almost constant:

- (a) For low-current circuits (e.g I < 20 mA): $V \simeq 0.7$ V.
- (b) For high-current circuits: $V \simeq 1.0 \,\mathrm{V}$.

- 8: Nonlinear Components
- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

An *ideal* diode allows has V = 0 whenever it is "on".

 $\begin{array}{c}
1 \\
v \\
v \\
\hline v$

A real diode has a voltage drop that depends approximately logarithmically on the current: it increases by about $0.1\,V$ for every 50-fold increase in current.

For a wide range of currents we can treat V as almost constant:

- (a) For low-current circuits (e.g I < 20 mA): $V \simeq 0.7$ V.
- (b) For high-current circuits: $V \simeq 1.0 \,\mathrm{V}$.

The two regions of operation are now:

8: Nonlinear Components

- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

A halfwave rectifier aims for $X = \max(U, 0)$

- 8: Nonlinear Components
- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

A halfwave rectifier aims for $X = \max(U, 0)$ (a) U > 0.7Diode on, X = U - 0.7, $I = \frac{U - 0.7}{2 \text{ k}} > 0$

- 8: Nonlinear Components
- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

A halfwave rectifier aims for $X = \max(U, 0)$ (a) U > 0.7Diode on, X = U - 0.7, $I = \frac{U - 0.7}{2 \text{ k}} > 0$ (b) U < 0.7Diode off, I = 0, X = 0, $V_D = U < 0.7$

- 8: Nonlinear Components
- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

A halfwave rectifier aims for $X = \max(U, 0)$ (a) U > 0.7Diode on, X = U - 0.7, $I = \frac{U - 0.7}{2 \text{ k}} > 0$ (b) U < 0.7Diode off, I = 0, X = 0, $V_D = U < 0.7$

We actually have $X = \max(U - 0.7, 0)$

- 8: Nonlinear Components
- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

A halfwave rectifier aims for $X = \max(U, 0)$ (a) U > 0.7Diode on, X = U - 0.7, $I = \frac{U - 0.7}{2 \text{ k}} > 0$ (b) U < 0.7Diode off, I = 0, X = 0, $V_D = U < 0.7$

We actually have $X = \max(U - 0.7, 0)$

(1) $u(t) = 20 \sin \omega t$ The 0.7 V drop makes little difference.

(1) $u(t) = 20 \sin \omega t$

difference.

difference.

(2) $u(t) = \sin \omega t$

The 0.7 V drop makes little

The 0.7 V drop makes a big

- 8: Nonlinear Components
- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

A halfwave rectifier aims for $X = \max(U, 0)$ (a) U > 0.7Diode on, X = U - 0.7, $I = \frac{U - 0.7}{2 \text{ k}} > 0$ (b) U < 0.7Diode off, I = 0, X = 0, $V_D = U < 0.7$ We actually have $X = \max(U - 0.7, 0)$

8: Nonlinear Components

- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave

Rectifier

• Summary

8: Nonlinear Components

- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave

Rectifier

• Summary

Both op-amps have negative feedback, so A = B = 0. Second op-amp is an inverting amplifier so X = -Y.

Case 1: U > 0.

8: Nonlinear Components

- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave

Rectifier

• Summary

Both op-amps have negative feedback, so A = B = 0. Second op-amp is an inverting amplifier so X = -Y.

Case 1: U > 0. D_2 on $\Rightarrow W = Y - 0.7$

8: Nonlinear Components

- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave
- Rectifier
- Summary

Case 1: $U > 0$. D_2 on $\Rightarrow W = Y - 0.7$
KCL @ A: $\frac{0-U}{10} + \frac{0-Y}{10} = 0$
$\Rightarrow V = -U$

8: Nonlinear Components

- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

Both op-amps have negative feedback, so A = B = 0. Second op-amp is an inverting amplifier so X = -Y.

Case 1: $U>0$. D_2 on $\Rightarrow W=Y-0.7$
KCL @ A: $\frac{0-U}{10} + \frac{0-Y}{10} = 0$
$\Rightarrow Y = -U$
KCL @ Y: $\frac{Y-0}{10} + \frac{Y-0}{10} + I_2 = 0$
$\Rightarrow I_2 = \frac{U}{5} > 0$

Note: I_n, V_n apply to diode n

8: Nonlinear Components

- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

Both op-amps have negative feedback, so A = B = 0. Second op-amp is an inverting amplifier so X = -Y.

Case 1:
$$U > 0$$
. D_2 on $\Rightarrow W = Y - 0.7$
KCL @ A: $\frac{0-U}{10} + \frac{0-Y}{10} = 0$
 $\Rightarrow Y = -U$
KCL @ Y: $\frac{Y-0}{10} + \frac{Y-0}{10} + I_2 = 0$
 $\Rightarrow I_2 = \frac{U}{5} > 0$
Check D_1 : $V_1 = -U - 0.7 < 0.7$

Note: I_n, V_n apply to diode n

8: Nonlinear Components

- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

Case 1:
$$U > 0$$
. D_2 on $\Rightarrow W = Y - 0.7$
KCL @ A: $\frac{0-U}{10} + \frac{0-Y}{10} = 0$
 $\Rightarrow Y = -U$
KCL @ Y: $\frac{Y-0}{10} + \frac{Y-0}{10} + I_2 = 0$
 $\Rightarrow I_2 = \frac{U}{5} > 0$
Check D_1 : $V_1 = -U - 0.7 < 0.7$
Both diodes OK

Note: I_n, V_n apply to diode n

8: Nonlinear Components

- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

Case 1:
$$U > 0$$
. D_2 on $\Rightarrow W = Y - 0.7$
KCL @ A: $\frac{0-U}{10} + \frac{0-Y}{10} = 0$
 $\Rightarrow Y = -U$
KCL @ Y: $\frac{Y-0}{10} + \frac{Y-0}{10} + I_2 = 0$
 $\Rightarrow I_2 = \frac{U}{5} > 0$
Check D_1 : $V_1 = -U - 0.7 < 0.7$
Both diodes OK
Output: $X = -Y = U$

Note: I_n, V_n apply to diode n

8: Nonlinear Components

- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

Case 1:
$$U > 0$$
. D_2 on $\Rightarrow W = Y - 0.7$
KCL @ A: $\frac{0-U}{10} + \frac{0-Y}{10} = 0$
 $\Rightarrow Y = -U$
KCL @ Y: $\frac{Y-0}{10} + \frac{Y-0}{10} + I_2 = 0$
 $\Rightarrow I_2 = \frac{U}{5} > 0$
Check D_1 : $V_1 = -U - 0.7 < 0.7$
Both diodes OK
Output: $X = -Y = U$

Note: I_n, V_n apply to diode n

8: Nonlinear Components

- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

Both op-amps have negative feedback, so A = B = 0. Second op-amp is an inverting amplifier so X = -Y.

Case 1:
$$U > 0$$
. D_2 on $\Rightarrow W = Y - 0.7$
KCL @ A: $\frac{0-U}{10} + \frac{0-Y}{10} = 0$
 $\Rightarrow Y = -U$
KCL @ Y: $\frac{Y-0}{10} + \frac{Y-0}{10} + I_2 = 0$
 $\Rightarrow I_2 = \frac{U}{5} > 0$
Check D_1 : $V_1 = -U - 0.7 < 0.7$
Both diodes OK
Output: $X = -Y = U$

Note: I_n, V_n apply to diode n

Case 2: U < 0. D_1 on $\Rightarrow W = 0.7$

8: Nonlinear Components

- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

Both op-amps have negative feedback, so A = B = 0. Second op-amp is an inverting amplifier so X = -Y.

Case 1:
$$U > 0$$
. D_2 on $\Rightarrow W = Y - 0.7$
KCL @ A: $\frac{0-U}{10} + \frac{0-Y}{10} = 0$
 $\Rightarrow Y = -U$
KCL @ Y: $\frac{Y-0}{10} + \frac{Y-0}{10} + I_2 = 0$
 $\Rightarrow I_2 = \frac{U}{5} > 0$
Check D_1 : $V_1 = -U - 0.7 < 0.7$
Both diodes OK
Output: $X = -Y = U$

Note: I_n, V_n apply to diode n

Case 2: U < 0. D_1 on $\Rightarrow W = 0.7$ KCL @ Y: $\frac{Y-0}{10} + \frac{Y-0}{10} = 0 \Rightarrow Y = 0$

8: Nonlinear Components

- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

Both op-amps have negative feedback, so A = B = 0. Second op-amp is an inverting amplifier so X = -Y.

Case 1:
$$U > 0$$
. D_2 on $\Rightarrow W = Y - 0.7$
KCL @ A: $\frac{0-U}{10} + \frac{0-Y}{10} = 0$
 $\Rightarrow Y = -U$
KCL @ Y: $\frac{Y-0}{10} + \frac{Y-0}{10} + I_2 = 0$
 $\Rightarrow I_2 = \frac{U}{5} > 0$
Check D_1 : $V_1 = -U - 0.7 < 0.7$
Both diodes OK
Output: $X = -Y = U$

Note: I_n, V_n apply to diode n

Case 2: U < 0. D_1 on $\Rightarrow W = 0.7$ KCL @ Y: $\frac{Y-0}{10} + \frac{Y-0}{10} = 0 \Rightarrow Y = 0$ KCL @ A: $\frac{0-U}{10} + \frac{0-0}{10} + -I_1 = 0$ $\Rightarrow I_1 = -\frac{U}{10} > 0$

8: Nonlinear Components

- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

Both op-amps have negative feedback, so A = B = 0. Second op-amp is an inverting amplifier so X = -Y.

Case 1:
$$U > 0$$
. D_2 on $\Rightarrow W = Y - 0.7$
KCL @ A: $\frac{0-U}{10} + \frac{0-Y}{10} = 0$
 $\Rightarrow Y = -U$
KCL @ Y: $\frac{Y-0}{10} + \frac{Y-0}{10} + I_2 = 0$
 $\Rightarrow I_2 = \frac{U}{5} > 0$
Check D_1 : $V_1 = -U - 0.7 < 0.7$
Both diodes OK
Output: $X = -Y = U$

Note: I_n, V_n apply to diode n

Case 2: U < 0. D_1 on $\Rightarrow W = 0.7$ KCL @ Y: $\frac{Y-0}{10} + \frac{Y-0}{10} = 0 \Rightarrow Y = 0$ KCL @ A: $\frac{0-U}{10} + \frac{0-0}{10} + -I_1 = 0$ $\Rightarrow I_1 = -\frac{U}{10} > 0$

Check D_2 : $V_2 = Y - W = -0.7 < 0.7$

8: Nonlinear Components

- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

Both op-amps have negative feedback, so A = B = 0. Second op-amp is an inverting amplifier so X = -Y.

Case 1:
$$U > 0$$
. D_2 on $\Rightarrow W = Y - 0.7$
KCL @ A: $\frac{0-U}{10} + \frac{0-Y}{10} = 0$
 $\Rightarrow Y = -U$
KCL @ Y: $\frac{Y-0}{10} + \frac{Y-0}{10} + I_2 = 0$
 $\Rightarrow I_2 = \frac{U}{5} > 0$
Check D_1 : $V_1 = -U - 0.7 < 0.7$
Both diodes OK
Output: $X = -Y = U$
Case 2: $U < 0$ D_1 on $\Rightarrow W = 0.7$

Note: I_n, V_n apply to diode n

Case 2: U < 0. D_1 on $\Rightarrow W = 0.7$ KCL @ Y: $\frac{Y-0}{10} + \frac{Y-0}{10} = 0 \Rightarrow Y = 0$ KCL @ A: $\frac{0-U}{10} + \frac{0-0}{10} + -I_1 = 0$ $\Rightarrow I_1 = -\frac{U}{10} > 0$

Check D_2 : $V_2 = Y - W = -0.7 < 0.7$ Both diodes OK
Precision Halfwave Rectifier

8: Nonlinear Components

- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

Both op-amps have negative feedback, so A = B = 0. Second op-amp is an inverting amplifier so X = -Y.

Case 1:
$$U > 0$$
. D_2 on $\Rightarrow W = Y - 0.7$
KCL @ A: $\frac{0-U}{10} + \frac{0-Y}{10} = 0$
 $\Rightarrow Y = -U$
KCL @ Y: $\frac{Y-0}{10} + \frac{Y-0}{10} + I_2 = 0$
 $\Rightarrow I_2 = \frac{U}{5} > 0$
Check D_1 : $V_1 = -U - 0.7 < 0.7$
Both diodes OK
Output: $X = -Y = U$
Case 2: $U < 0$. D_1 on $\Rightarrow W = 0.7$
KCL @ Y: $\frac{Y-0}{10} + \frac{Y-0}{10} = 0 \Rightarrow Y = 0$
KCL @ A: $\frac{0-U}{10} + \frac{0-0}{10} + -I_1 = 0$
 $\Rightarrow I_1 = -\frac{U}{10} > 0$

Note: I_n, V_n apply to diode n

Check D_2 : $V_2 = Y - W = -0.7 < 0.7$ Both diodes OK Output: X = -Y = 0

Precision Halfwave Rectifier

8: Nonlinear Components

- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

Both op-amps have negative feedback, so A = B = 0. Second op-amp is an inverting amplifier so X = -Y.

Case 1:
$$U > 0$$
. D_2 on $\Rightarrow W = Y - 0.7$
KCL @ A: $\frac{0-U}{10} + \frac{0-Y}{10} = 0$
 $\Rightarrow Y = -U$
KCL @ Y: $\frac{Y-0}{10} + \frac{Y-0}{10} + I_2 = 0$
 $\Rightarrow I_2 = \frac{U}{5} > 0$
Check D_1 : $V_1 = -U - 0.7 < 0.7$
Both diodes OK
Output: $X = -Y = U$
Case 2: $U < 0$. D_1 on $\Rightarrow W = 0.7$
KCL @ Y: $\frac{Y-0}{10} + \frac{Y-0}{10} = 0 \Rightarrow Y = 0$
KCL @ A: $\frac{0-U}{10} + \frac{0-0}{10} + -I_1 = 0$
 $\Rightarrow I_1 = -\frac{U}{10} > 0$
Check D_2 : $V_2 = Y - W = -0.7 < 0.7$
Both diodes OK
Output: $X = -Y = 0$

Note: I_n, V_n apply to diode n

So $X = \max(U, 0)$

Precision Halfwave Rectifier

8: Nonlinear Components

- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

Both op-amps have negative feedback, so A = B = 0. Second op-amp is an inverting amplifier so X = -Y.

Case 1:
$$U > 0$$
. D_2 on $\Rightarrow W = Y - 0.7$
KCL @ A: $\frac{0-U}{10} + \frac{0-Y}{10} = 0$
 $\Rightarrow Y = -U$
KCL @ Y: $\frac{Y-0}{10} + \frac{Y-0}{10} + I_2 = 0$
 $\Rightarrow I_2 = \frac{U}{5} > 0$
Check D_1 : $V_1 = -U - 0.7 < 0.7$
Both diodes OK
Output: $X = -Y = U$
Case 2: $U < 0$. D_1 on $\Rightarrow W = 0.7$
KCL @ Y: $\frac{Y-0}{10} + \frac{Y-0}{10} = 0 \Rightarrow Y = 0$
KCL @ A: $\frac{0-U}{10} + \frac{0-0}{10} + -I_1 = 0$
 $\Rightarrow I_1 = -\frac{U}{10} > 0$

Check D_2 : $V_2 = Y - W = -0.7 < 0.7$ Both diodes OK Output: X = -Y = 0

Note: I_n, V_n apply to diode n

So $X = \max(U, 0)$

Putting diodes in a feedback loop allows their voltage drops to be eliminated.

8: Nonlinear Components

- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave

Rectifier

• Summary

• <u>Beware:</u> a nonlinear circuit does not obey superposition

- 8: Nonlinear Components
- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

- Beware: a nonlinear circuit does not obey superposition
- Ideal diode:
 - Two regions of operation:
 - \triangleright Conducting Mode (= "on"): V = 0 and I > 0

- 8: Nonlinear Components
- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

- <u>Beware</u>: a nonlinear circuit does not obey superposition
- Ideal diode:
 - Two regions of operation:
 - \triangleright Conducting Mode (= "on"): V = 0 and I > 0
 - \triangleright Non-conducting Mode (= "off"): I = 0 and V < 0

- 8: Nonlinear Components
- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

- Beware: a nonlinear circuit does not obey superposition
- Ideal diode:
 - Two regions of operation:
 - \triangleright Conducting Mode (= "on"): V = 0 and I > 0
 - \triangleright Non-conducting Mode (= "off"): I = 0 and V < 0
- Solving a diode circuit:
 - (a) Guess region
 - (b) Solve circuit: assuming V = 0 or I = 0
 - \circ (c) Check condition: either I > 0 or V < 0

- 8: Nonlinear Components
- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

- <u>Beware</u>: a nonlinear circuit does not obey superposition
- Ideal diode:
 - Two regions of operation:
 - \triangleright Conducting Mode (= "on"): V = 0 and I > 0
 - \triangleright Non-conducting Mode (= "off"): I = 0 and V < 0
- Solving a diode circuit:
 - (a) Guess region
 - (b) Solve circuit: assuming V = 0 or I = 0
 - \circ (c) Check condition: either I>0 or V<0
- Real diode: $V \simeq 0.7$ in Conducting Mode ($\simeq 1.0$ for high currents)

- 8: Nonlinear Components
- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

- <u>Beware</u>: a nonlinear circuit does not obey superposition
- Ideal diode:
 - Two regions of operation:
 - \triangleright Conducting Mode (= "on"): V = 0 and I > 0
 - \triangleright Non-conducting Mode (= "off"): I = 0 and V < 0
- Solving a diode circuit:
 - (a) Guess region
 - (b) Solve circuit: assuming V = 0 or I = 0
 - $\circ~$ (c) Check condition: either $I>0~{\rm or}~V<0$
- Real diode: $V \simeq 0.7$ in Conducting Mode ($\simeq 1.0$ for high currents)
- Fullwave and halfwave rectifier circuits

- 8: Nonlinear Components
- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

- <u>Beware</u>: a nonlinear circuit does not obey superposition
- Ideal diode:
 - Two regions of operation:
 - \triangleright Conducting Mode (= "on"): V = 0 and I > 0
 - \triangleright Non-conducting Mode (= "off"): I = 0 and V < 0
- Solving a diode circuit:
 - (a) Guess region
 - (b) Solve circuit: assuming V = 0 or I = 0
 - \circ $\$ (c) Check condition: either I>0 or V<0
- Real diode: $V \simeq 0.7$ in Conducting Mode ($\simeq 1.0$ for high currents)
- Fullwave and halfwave rectifier circuits
- Precision Rectifier Circuit
 - \circ Use an opamp to eliminate the 0.7 V diode drop.

- 8: Nonlinear Components
- Ideal Diode
- Operating modes
- Switching Point
- Bridge Rectifier
- Non-Ideal Diode
- Halfwave Rectifier
- Precision Halfwave Rectifier
- Summary

- <u>Beware</u>: a nonlinear circuit does not obey superposition
- Ideal diode:
 - Two regions of operation:
 - \triangleright Conducting Mode (= "on"): V = 0 and I > 0
 - \triangleright Non-conducting Mode (= "off"): I = 0 and V < 0
- Solving a diode circuit:
 - (a) Guess region
 - (b) Solve circuit: assuming V = 0 or I = 0
 - \circ $\$ (c) Check condition: either I>0 or V<0
- Real diode: $V \simeq 0.7$ in Conducting Mode ($\simeq 1.0$ for high currents)
- Fullwave and halfwave rectifier circuits
- Precision Rectifier Circuit
 - \circ Use an opamp to eliminate the $0.7\,\mathrm{V}$ diode drop.

For further details see Irwin Ch 17.