8: Nonlinear Components Ideal Diode Operating modes Switching Point Bridge Rectifier Non-Ideal Diode Halfwave Rectifier Precision Halfwave Rectifier Summary

8: Nonlinear Components

Ideal Diode

8: Nonlinear Components Ideal Diode Operating modes Switching Point Bridge Rectifier Non-Ideal Diode Halfwave Rectifier Precision Halfwave Rectifier Summary The *characteristic* of a component is a plot of I against V using the passive sign convention.

All our components have had straight-line characteristics.

An ideal *diode* allows current to flow in one direction only.

Its characteristic is <u>not</u> a straight line, but is made from two straight line segments: *piecewise-linear*. Each segment is a *mode of operation*.

Each mode applies only when a particular condition is true:

Mode

Conducting (or "forward bias" or "on") I > 0Non-conducting (or "reverse bias" or "off") V < 0

$\begin{array}{ll} \mbox{Condition} & \mbox{Equation} \\ I > 0 & V = 0 \end{array}$

 $0 \qquad I = 0$

Operating modes

8: Nonlinear Components Ideal Diode Deprating modes Switching Point Bridge Rectifier Non-Ideal Diode Halfwave Rectifier Precision Halfwave Rectifier Summary To analyse a circuit with a diode in it, you first guess which mode it is operating in, solve the circuit and then check the condition. If you guessed wrongly, the condition will not be met.

Mode	Condition	Equation
Conducting	I > 0	$V_D = 0$
Non-conducting	$V_D < 0$	I = 0

Voltage across diode is $V_D = U - X$. Current through diode is $I = \frac{X}{2}$ mA.

Assume Conducting Mode $\Rightarrow V_D = 0$ $V_D = 0 \Rightarrow X = U = -6 \Rightarrow I = -3$ but condition is I > 0 so bad guess

Assume Non-conducting Mode $\Rightarrow I = 0$ $I = 0 \Rightarrow X = 2I = 0 \Rightarrow V_D = U - X = -6$ condition is $V_D < 0$ so good guess

Anode Cathode

Current flows from *anode* to *cathode*.

Switching Point

8: Nonlinear Components Ideal Diode Operating modes Dividge Rectifier Non-Ideal Diode Halfwave Rectifier Precision Halfwave Rectifier Summary

How does X change with U? X 1kVoltage across diode is $V_D = Y - 3$. 4k Current through diode is $I_D = \frac{X-Y}{1}$ mA. 4k Assume Conducting Mode $\Rightarrow Y = 3$ **I**] KCL: $\frac{X-U}{A} + \frac{X-3}{1} + \frac{X}{A} = 0$ $\Rightarrow X = \frac{1}{6}U + 2$ $I_D = \frac{X-3}{1} = \frac{1}{6}U - 1$ $I_{\rm D} > 0 \Leftrightarrow U > 6$ Assume Non-conducting Mode $\Rightarrow I_D = 0$ X (Volts) Potential Div: $X = Y = \frac{1}{2}U$ $V_D = Y - 3 = \frac{1}{2}U - 3$ 5 10 0 $V_D < 0 \Leftrightarrow U < 6$ U (Volts)

Diode switches between regions where the graphs intersect (U = 6). At this point both the diode equations, $V_D = 0$ and $I_D = 0$, are true. 8: Nonlinear Components Ideal Diode Operating modes Switching Point Bridge Rectifier Non-Ideal Diode Halfwave Rectifier Precision Halfwave Rectifier Summary

Bridge Rectifier: 4 diodes:

 D_1 and D_2 both point towards node X. D_3 and D_4 both point away from ground. The input voltage is U = B - A.

Case 1: U > 0. D_1, D_4 on $\Rightarrow X = U$ Check D_1, D_4 : $I_1 = I_4 = I = \frac{U}{100} > 0$ Check D_2, D_3 : $V_2 = V_3 = -U < 0$ All diodes OK

Case 2: U < 0. D_2, D_3 on $\Rightarrow X = -U$ Check D_2, D_3 : $I_{2,3} = I = \frac{-U}{100} > 0$ Check D_1, D_4 : $V_1 = V_4 = U < 0$ All diodes OK

X is always equal to $|U|{:}\ {\rm this}\ {\rm is}\ {\rm an}\ {\rm absolute}\ {\rm value}\ {\rm circuit}.$

If U is a sine wave, then X is a *full-wave* rectified sine wave with twice the frequency.

Note: I_n, V_n apply to diode n

8: Nonlinear Components Ideal Diode Operating modes Switching Point Bridge Rectifier Don-Ideal Diode Halfwave Rectifier Precision Halfwave Rectifier Summary

A *real* diode has a voltage drop that depends approximately logarithmically on the current: it increases by about 0.1 V for every 50-fold increase in current.

For a wide range of currents we can treat V as almost constant: (a) For low-current circuits (e.g I < 20 mA): $V \simeq 0.7 \text{ V}$. (b) For high-current circuits: $V \simeq 1.0 \text{ V}$.

The two regions of operation are now:

RegionConditionEquationConducting Mode ("on")I > 0V = 0.7Non-conducting Mode ("off")V < 0.7I = 0

Halfwave Rectifier

8: Nonlinear Components Ideal Diode Operating modes Switching Point Bridge Rectifier Non-Ideal Diode D Halfwave Rectifier Precision Halfwave Rectifier Summary A halfwave rectifier aims for $X = \max(U, 0)$ (a) U > 0.7Diode on, X = U - 0.7, $I = \frac{U - 0.7}{2 \text{ k}} > 0$ (b) U < 0.7Diode off, I = 0, X = 0, $V_D = U < 0.7$ We actually have $X = \max(U - 0.7, 0)$

(1) $u(t) = 20 \sin \omega t$ The 0.7 V drop makes little difference.

(2) $u(t) = \sin \omega t$ The 0.7 V drop makes a big difference.

8: Nonlinear Components Ideal Diode Operating modes Switching Point Bridge Rectifier Non-Ideal Diode Halfwave Rectifier Precision Halfwave D Rectifier Summary Both op-amps have negative feedback, so A = B = 0. Second op-amp is an inverting amplifier so X = -Y.

Case 1:
$$U > 0$$
. D_2 on $\Rightarrow W = Y - 0.7$
KCL @ A: $\frac{0-U}{10} + \frac{0-Y}{10} = 0$
 $\Rightarrow Y = -U$
KCL @ Y: $\frac{Y-0}{10} + \frac{Y-0}{10} + I_2 = 0$
 $\Rightarrow I_2 = \frac{U}{5} > 0$
Check D_1 : $V_1 = -U - 0.7 < 0.7$
Both diodes OK
Output: $X = -Y = U$
Case 2: $U < 0$. D_1 on $\Rightarrow W = 0.7$
KCL @ Y: $\frac{Y-0}{10} + \frac{Y-0}{10} = 0 \Rightarrow Y = 0$
KCL @ A: $\frac{0-U}{10} + \frac{0-0}{10} + -I_1 = 0$
 $\Rightarrow I_1 = -\frac{U}{10} > 0$
Check D_2 : $V_2 = Y - W = -0.7 < 0.7$

Check D_2 : $V_2 = Y - W = -0.7 <$ Both diodes OK Output: X = -Y = 0

Note: I_n, V_n apply to diode n

So $X = \max(U, 0)$

Putting diodes in a feedback loop allows their voltage drops to be eliminated. 8: Nonlinear Components Ideal Diode Operating modes Switching Point Bridge Rectifier Non-Ideal Diode Halfwave Rectifier Precision Halfwave Rectifier ▷ Summary

- Beware: a nonlinear circuit does not obey superposition
- Ideal diode:
 - Two regions of operation:
 - \triangleright Conducting Mode (= "on"): V = 0 and I > 0
 - ▷ Non-conducting Mode (= "off"): I = 0 and V < 0
- Solving a diode circuit:
 - \circ (a) Guess region
 - (b) Solve circuit: assuming V = 0 or I = 0
 - (c) Check condition: either I > 0 or V < 0
- Real diode: $V \simeq 0.7$ in Conducting Mode ($\simeq 1.0$ for high currents)
- Fullwave and halfwave rectifier circuits
- Precision Rectifier Circuit
 - \circ ~ Use an opamp to eliminate the $0.7\,\text{V}$ diode drop.

For further details see Irwin Ch 17.