10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples

+

+

- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

10: Sine waves and phasors

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples

+

+

- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

For inductors and capacitors $i = C \frac{dv}{dt}$ and $v = L \frac{di}{dt}$ so we need to differentiate i(t) and v(t) when analysing circuits containing them.

10: Sine waves and phasors

+

+

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

For inductors and capacitors $i = C \frac{dv}{dt}$ and $v = L \frac{di}{dt}$ so we need to differentiate i(t) and v(t) when analysing circuits containing them.

Usually differentiation changes the shape of a waveform.

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances

+

- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

For inductors and capacitors $i = C \frac{dv}{dt}$ and $v = L \frac{di}{dt}$ so we need to differentiate i(t) and v(t) when analysing circuits containing them.

Usually differentiation changes the shape of a waveform.

For bounded waveforms there is only one exception:

$$v(t) = \sin t \Rightarrow \frac{dv}{dt} = \cos t$$

10: Sine waves and phasors

+

+

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

For inductors and capacitors $i = C \frac{dv}{dt}$ and $v = L \frac{di}{dt}$ so we need to differentiate i(t) and v(t) when analysing circuits containing them.

Usually differentiation changes the shape of a waveform.

For bounded waveforms there is only one exception:

$$v(t) = \sin t \Rightarrow \frac{dv}{dt} = \cos t$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances

+

- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

For inductors and capacitors $i = C \frac{dv}{dt}$ and $v = L \frac{di}{dt}$ so we need to differentiate i(t) and v(t) when analysing circuits containing them.

Usually differentiation changes the shape of a waveform.

For bounded waveforms there is only one exception:

 $v(t) = \sin t \Rightarrow \frac{dv}{dt} = \cos t$ same shape but with a time shift.

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances

+

- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

For inductors and capacitors $i = C \frac{dv}{dt}$ and $v = L \frac{di}{dt}$ so we need to differentiate i(t) and v(t) when analysing circuits containing them.

Usually differentiation changes the shape of a waveform.

For bounded waveforms there is only one exception:

 $v(t) = \sin t \Rightarrow \frac{dv}{dt} = \cos t$ same shape but with a time shift.

 $\sin t$ completes one full period every time *t* increases by 2π .

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

For inductors and capacitors $i = C \frac{dv}{dt}$ and $v = L \frac{di}{dt}$ so we need to differentiate i(t) and v(t) when analysing circuits containing them.

Usually differentiation changes the shape of a waveform.

For bounded waveforms there is only one exception:

 $v(t) = \sin t \Rightarrow \frac{dv}{dt} = \cos t$ same shape but with a time shift.

 $\sin t$ completes one full period every time t increases by 2π .

 $\sin 2\pi ft$ makes f complete repetitions every time t increases by 1; this gives a *frequency* of f cycles per second, or f Hz.

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

For inductors and capacitors $i = C \frac{dv}{dt}$ and $v = L \frac{di}{dt}$ so we need to differentiate i(t) and v(t) when analysing circuits containing them.

Usually differentiation changes the shape of a waveform.

For bounded waveforms there is only one exception:

 $v(t) = \sin t \Rightarrow \frac{dv}{dt} = \cos t$ same shape but with a time shift.

 $\sin t$ completes one full period every time *t* increases by 2π .

 $(1) = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 2 & 3 & 1 \\ 1 & 1 & 1 & 2 & 3 & 1 \\ 1 & 1 & 1 & 2 & 3 & 1 \\ 1 & 1 & 1 & 2 & 3 & 1 \\ 1 &$

 $\sin 2\pi ft$ makes f complete repetitions every time t increases by 1; this gives a *frequency* of f cycles per second, or f Hz. We often use the *angular frequency*, $\omega = 2\pi f$ instead. ω is measured in radians per second. E.g. 50 Hz $\simeq 314$ rad.s⁻¹.

10: Sine waves and phasors

+

+

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

A useful way to think of a cosine wave is as the projection of a rotating rod onto the horizontal axis.

For a unit-length rod, the projection has length $\cos \theta$.

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances

+

- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

A useful way to think of a cosine wave is as the projection of a rotating rod onto the horizontal axis.

- For a unit-length rod, the projection has length $\cos \theta$.
- If the rod is rotating at a speed of f revolutions per second, then θ increases uniformly with time: $\theta = 2\pi f t$.

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances

+

- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

A useful way to think of a cosine wave is as the projection of a rotating rod onto the horizontal axis.

- For a unit-length rod, the projection has length $\cos \theta$.
- If the rod is rotating at a speed of f revolutions per second, then θ increases uniformly with time: $\theta = 2\pi f t$.

The only difference between \cos and \sin is the starting position of the rod:

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances

+

- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

A useful way to think of a cosine wave is as the projection of a rotating rod onto the horizontal axis.

- For a unit-length rod, the projection has length $\cos \theta$.
- If the rod is rotating at a speed of f revolutions per second, then θ increases uniformly with time: $\theta = 2\pi f t$.

θ

The only difference between \cos and \sin is the starting position of the rod:

 $v = \cos 2\pi f t$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances

+

- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

A useful way to think of a cosine wave is as the projection of a rotating rod onto the horizontal axis.

- For a unit-length rod, the projection has length $\cos \theta$.
- If the rod is rotating at a speed of f revolutions per second, then θ increases uniformly with time: $\theta = 2\pi f t$.

θ

The only difference between \cos and \sin is the starting position of the rod:

 $v = \cos 2\pi f t \qquad \qquad v = \sin 2\pi f t$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances

+

- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

A useful way to think of a cosine wave is as the projection of a rotating rod onto the horizontal axis.

- For a unit-length rod, the projection has length $\cos \theta$.
- If the rod is rotating at a speed of f revolutions per second, then θ increases uniformly with time: $\theta = 2\pi f t$.

θ

The only difference between \cos and \sin is the starting position of the rod:

 $v = \cos 2\pi f t$

 $v = \sin 2\pi ft = \cos\left(2\pi ft - \frac{\pi}{2}\right)$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances

+

- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

A useful way to think of a cosine wave is as the projection of a rotating rod onto the horizontal axis.

For a unit-length rod, the projection has length $\cos \theta$.

If the rod is rotating at a speed of f revolutions per second, then θ increases uniformly with time: $\theta = 2\pi f t$.

The only difference between \cos and \sin is the starting position of the rod:

 $v = \cos 2\pi ft \qquad \qquad v = \sin 2\pi ft = \cos \left(2\pi ft - \frac{\pi}{2}\right)$

 $\sin 2\pi ft \log \cos 2\pi ft$ by 90° (or $\frac{\pi}{2}$ radians) because its peaks occurs $\frac{1}{4}$ of a cycle later (equivalently $\cos \text{leads } \sin$).

10: Sine waves and phasors

+

+

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

If the rod has length A and starts at an angle ϕ then the projection onto the horizontal axis is

$$A\cos\left(2\pi ft + \phi\right)$$

10: Sine waves and phasors

+

+

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

If the rod has length A and starts at an angle ϕ then the projection onto the horizontal axis is

 $A\cos(2\pi ft + \phi) = A\cos\phi\cos 2\pi ft - A\sin\phi\sin 2\pi ft$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances

+

- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

If the rod has length A and starts at an angle ϕ then the projection onto the horizontal axis is

- $A\cos(2\pi ft + \phi) = A\cos\phi\cos 2\pi ft A\sin\phi\sin 2\pi ft$
 - $= X\cos 2\pi ft Y\sin 2\pi ft$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances

+

- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

If the rod has length A and starts at an angle ϕ then the projection onto the horizontal axis is

 $A\cos(2\pi ft + \phi)$ = $A\cos\phi\cos 2\pi ft - A\sin\phi\sin 2\pi ft$ = $X\cos 2\pi ft - Y\sin 2\pi ft$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

If the rod has length A and starts at an angle ϕ then the projection onto the horizontal axis is

 $A\cos\left(2\pi ft + \phi\right)$ = $A\cos\phi\cos2\pi ft - A\sin\phi\sin2\pi ft$

At time t = 0, the tip of the rod has coordinates

 $(X, Y) = (A \cos \phi, A \sin \phi).$ If we think of the plane as an Argand Diagram (or complex plane), then the complex number X + jY corresponding to the tip of the rod at t = 0 is called a *phasor*.

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

If the rod has length A and starts at an angle ϕ then the projection onto the horizontal axis is

 $A\cos\left(2\pi ft + \phi\right)$ = $A\cos\phi\cos2\pi ft - A\sin\phi\sin2\pi ft$

At time t = 0, the tip of the rod has coordinates $(X, Y) = (A \cos \phi, A \sin \phi).$

If we think of the plane as an Argand Diagram (or complex plane), then the complex number X + jY corresponding to the tip of the rod at t = 0 is called a *phasor*.

The *magnitude* of the phasor, $A = \sqrt{X^2 + Y^2}$, gives the amplitude (peak value) of the sine wave.

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

If the rod has length A and starts at an angle ϕ then the projection onto the horizontal axis is

 $A\cos\left(2\pi ft + \phi\right)$ = $A\cos\phi\cos2\pi ft - A\sin\phi\sin2\pi ft$

$$= X\cos 2\pi ft - Y\sin 2\pi ft$$

Y- A Ø X

At time t = 0, the tip of the rod has coordinates $(X, Y) = (A \cos \phi, A \sin \phi).$

If we think of the plane as an Argand Diagram (or complex plane), then the complex number X + jY corresponding to the tip of the rod at t = 0 is called a *phasor*.

The *magnitude* of the phasor, $A = \sqrt{X^2 + Y^2}$, gives the amplitude (peak value) of the sine wave.

The *argument* of the phasor, $\phi = \arctan \frac{Y}{X}$, gives the phase shift relative to $\cos 2\pi ft$.

If $\phi > 0$, it is *leading* and if $\phi < 0$, it is *lagging* relative to $\cos 2\pi f t$.

 $V = 1, f = 50 \, \text{Hz}$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples

+

+

- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

• Summary

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples

+

+

- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

• Summary

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples

+

+

- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples

+

+

- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples

+

+

- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

- V = -j $v(t) = \sin 2\pi f t$
 - V = -1 0.5j

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples

+

+

- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

V = -j $v(t) = \sin 2\pi f t$

V = -1 - 0.5j $v(t) = -\cos 2\pi f t + 0.5 \sin 2\pi f t$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples

+

+

- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

V = -j $v(t) = \sin 2\pi f t$

 $V = -1 - 0.5j = 1.12 \angle -153^{\circ}$ $v(t) = -\cos 2\pi ft + 0.5\sin 2\pi ft$

E1.1 Analysis of Circuits (2017-10213)

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples

+

+

- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

V = -j $v(t) = \sin 2\pi f t$

 $V = -1 - 0.5j = 1.12\angle -153^{\circ}$ $v(t) = -\cos 2\pi ft + 0.5\sin 2\pi ft$ $= 1.12\cos (2\pi ft - 2.68)$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples

+

+

- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

$$V = 1, f = 50 \text{ Hz}$$
$$v(t) = \cos 2\pi f t$$

$$V = -j$$
$$v(t) = \sin 2\pi f t$$

 $V = -1 - 0.5j = 1.12\angle -153^{\circ}$ $v(t) = -\cos 2\pi ft + 0.5\sin 2\pi ft$ $= 1.12\cos (2\pi ft - 2.68)$

$$V = X + jY$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples

+

+

- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

$$V = 1, f = 50 \text{ Hz}$$
$$v(t) = \cos 2\pi f t$$

$$V = -j$$
$$v(t) = \sin 2\pi f t$$

 $V = -1 - 0.5j = 1.12\angle -153^{\circ}$ $v(t) = -\cos 2\pi ft + 0.5\sin 2\pi ft$ $= 1.12\cos (2\pi ft - 2.68)$

V = X + jY $v(t) = X \cos 2\pi ft - Y \sin 2\pi ft$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples

+

+

- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

V = -j $v(t) = \sin 2\pi f t$

 $V = -1 - 0.5j = 1.12\angle -153^{\circ}$ $v(t) = -\cos 2\pi ft + 0.5\sin 2\pi ft$ $= 1.12\cos (2\pi ft - 2.68)$

V = X + jY $v(t) = X \cos 2\pi ft - Y \sin 2\pi ft$ Beware minus sign.

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples

+

+

- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

V = -j $v(t) = \sin 2\pi f t$

 $V = -1 - 0.5j = 1.12\angle -153^{\circ}$ $v(t) = -\cos 2\pi ft + 0.5\sin 2\pi ft$ $= 1.12\cos (2\pi ft - 2.68)$

V = X + jY $v(t) = X \cos 2\pi ft - Y \sin 2\pi ft$ Beware minus sign.

 $V = A \angle \phi$

Phasors: 10 - 5 / 11

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples

+

+

- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

V = -j $v(t) = \sin 2\pi f t$

 $V = -1 - 0.5j = 1.12 \angle -153^{\circ}$ $v(t) = -\cos 2\pi ft + 0.5 \sin 2\pi ft$ $= 1.12 \cos (2\pi ft - 2.68)$

V = X + jY $v(t) = X \cos 2\pi ft - Y \sin 2\pi ft$ Beware minus sign.

 $V = A \angle \phi$ $v(t) = A \cos \left(2\pi f t + \phi\right)$

Phasors: 10 - 5 / 11
10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples

+

+

- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

V = -j $v(t) = \sin 2\pi f t$

 $V = -1 - 0.5j = 1.12 \angle -153^{\circ}$ $v(t) = -\cos 2\pi ft + 0.5 \sin 2\pi ft$ $= 1.12 \cos (2\pi ft - 2.68)$

V = X + jY $v(t) = X \cos 2\pi ft - Y \sin 2\pi ft$ Beware minus sign.

 $V = A \angle \phi = A e^{j\phi}$ $v(t) = A \cos \left(2\pi f t + \phi\right)$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples

+

- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

V = -j $v(t) = \sin 2\pi f t$

 $V = -1 - 0.5j = 1.12 \angle -153^{\circ}$ $v(t) = -\cos 2\pi ft + 0.5 \sin 2\pi ft$ $= 1.12 \cos (2\pi ft - 2.68)$

V = X + jY $v(t) = X \cos 2\pi ft - Y \sin 2\pi ft$ Beware minus sign.

 $V = A \angle \phi = A e^{j\phi}$ $v(t) = A \cos \left(2\pi f t + \phi\right)$

A phasor represents an entire waveform (encompassing all time) as a single complex number. We assume the frequency, f, is known.

Phasors: 10 - 5 / 11

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

V = -j $v(t) = \sin 2\pi f t$

 $V = -1 - 0.5j = 1.12 \angle -153^{\circ}$ $v(t) = -\cos 2\pi ft + 0.5 \sin 2\pi ft$ $= 1.12 \cos (2\pi ft - 2.68)$

V = X + jY $v(t) = X \cos 2\pi ft - Y \sin 2\pi ft$ Beware minus sign.

 $V = A \angle \phi = A e^{j\phi}$ $v(t) = A \cos \left(2\pi f t + \phi\right)$

A phasor represents an entire waveform (encompassing all time) as a single complex number. We assume the frequency, f, is known.

A phasor is not time-varying, so we use a capital letter: V. A waveform is time-varying, so we use a small letter: v(t).

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples

+

- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

V = -j $v(t) = \sin 2\pi f t$

 $V = -1 - 0.5j = 1.12\angle -153^{\circ}$ $v(t) = -\cos 2\pi ft + 0.5\sin 2\pi ft$ $= 1.12\cos (2\pi ft - 2.68)$

V = X + jY $v(t) = X \cos 2\pi ft - Y \sin 2\pi ft$ Beware minus sign.

 $V = A \angle \phi = A e^{j\phi}$ $v(t) = A \cos \left(2\pi f t + \phi\right)$

A phasor represents an entire waveform (encompassing all time) as a single complex number. We assume the frequency, f, is known.

A phasor is not time-varying, so we use a capital letter: V. A waveform is time-varying, so we use a small letter: v(t).

Casio: $\operatorname{Pol}(X, Y) \to A, \phi, \operatorname{Rec}(A, \phi) \to X, Y$. Saved $\to X \& Y$ mems.

Phasors: 10 - 5 / 11

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples

+

+

- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

Phasors

V=P+jQ

Waveforms

 $v(t) = P \cos \omega t - Q \sin \omega t$ where $\omega = 2\pi f$.

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples

+

+

- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

Phasors

V = P + jQ

Waveforms

 $v(t) = P \cos \omega t - Q \sin \omega t$ where $\omega = 2\pi f$.

 $a \times v(t)$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples

+

+

- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

Phasors

V = P + jQ

Waveforms

 $v(t) = P \cos \omega t - Q \sin \omega t$ where $\omega = 2\pi f$.

 $a \times v(t) = aP\cos\omega t - aQ\sin\omega t$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

Phasors

- V = P + jQ
- aV

+

+

Waveforms

 $v(t) = P \cos \omega t - Q \sin \omega t$ where $\omega = 2\pi f$.

 $a \times v(t) = aP\cos\omega t - aQ\sin\omega t$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

Phasors

- V = P + jQ
- aV

+

+

Waveforms

 $v(t) = P \cos \omega t - Q \sin \omega t$ where $\omega = 2\pi f$.

 $a \times v(t) = aP \cos \omega t - aQ \sin \omega t$ $v_1(t) + v_2(t)$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

Phasors

- V = P + jQ
- aV

+

+

 $V_1 + V_2$

Waveforms

 $v(t) = P \cos \omega t - Q \sin \omega t$ where $\omega = 2\pi f$.

 $a \times v(t) = aP \cos \omega t - aQ \sin \omega t$ $v_1(t) + v_2(t)$

E1.1 Analysis of Circuits (2017-10213)

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

|--|

- V = P + jQ
- aV

+

+

 $V_1 + V_2$

Waveforms

 $v(t) = P \cos \omega t - Q \sin \omega t$ where $\omega = 2\pi f$.

 $a \times v(t) = aP\cos\omega t - aQ\sin\omega t$

 $v_1(t) + v_2(t)$

Adding or scaling is the same for waveforms and phasors.

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

Phasors

- V = P + jQ
- aV

+

+

 $V_1 + V_2$

Waveforms

 $v(t) = P \cos \omega t - Q \sin \omega t$ where $\omega = 2\pi f$.

 $a \times v(t) = aP \cos \omega t - aQ \sin \omega t$ $v_1(t) + v_2(t)$

Adding or scaling is the same for waveforms and phasors.

$$\frac{dv}{dt} = -\omega P \sin \omega t - \omega Q \cos \omega t$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

- V = P + jQ
- aV

+

+

 $V_1 + V_2$

Waveforms

 $v(t) = P \cos \omega t - Q \sin \omega t$ where $\omega = 2\pi f$.

 $a \times v(t) = aP \cos \omega t - aQ \sin \omega t$ $v_1(t) + v_2(t)$

Adding or scaling is the same for waveforms and phasors.

 $\frac{dv}{dt} = -\omega P \sin \omega t - \omega Q \cos \omega t$ $= (-\omega Q) \cos \omega t - (\omega P) \sin \omega t$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

- V = P + jQ
- aV

+

+

 $V_1 + V_2$

Waveforms

 $v(t) = P \cos \omega t - Q \sin \omega t$ where $\omega = 2\pi f$.

 $a \times v(t) = aP \cos \omega t - aQ \sin \omega t$ $v_1(t) + v_2(t)$

Adding or scaling is the same for waveforms and phasors.

$$\dot{V} = (-\omega Q) + j(\omega P) \qquad \qquad \frac{\omega \sigma}{dt} = -\omega P \sin \omega t - \omega Q \cos \omega t \\ = (-\omega Q) \cos \omega t - (\omega P) \sin \omega t$$

dn

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

- V = P + jQ
- aV

+

+

 $V_1 + V_2$

Waveforms

 $v(t) = P \cos \omega t - Q \sin \omega t$ where $\omega = 2\pi f$.

 $a \times v(t) = aP \cos \omega t - aQ \sin \omega t$ $v_1(t) + v_2(t)$

Adding or scaling is the same for waveforms and phasors.

$$\dot{V} = (-\omega Q) + j (\omega P)$$
$$= j\omega (P + jQ)$$

 $\frac{dv}{dt} = -\omega P \sin \omega t - \omega Q \cos \omega t$ $= (-\omega Q) \cos \omega t - (\omega P) \sin \omega t$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

Ρ	hasors

- V = P + jQ
- aV

+

+

 $V_1 + V_2$

Waveforms

 $v(t) = P \cos \omega t - Q \sin \omega t$ where $\omega = 2\pi f$.

 $a \times v(t) = aP \cos \omega t - aQ \sin \omega t$ $v_1(t) + v_2(t)$

Adding or scaling is the same for waveforms and phasors.

$$\dot{V} = (-\omega Q) + j (\omega P)$$

= $j\omega (P + jQ)$
= $j\omega V$

$$\frac{dv}{dt} = -\omega P \sin \omega t - \omega Q \cos \omega t$$
$$= (-\omega Q) \cos \omega t - (\omega P) \sin \omega t$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

P	hasors	

- V = P + jQ
- aV

+

 $V_1 + V_2$

Waveforms

 $v(t) = P \cos \omega t - Q \sin \omega t$ where $\omega = 2\pi f$.

 $a \times v(t) = aP \cos \omega t - aQ \sin \omega t$ $v_1(t) + v_2(t)$

Adding or scaling is the same for waveforms and phasors.

 $\frac{dv}{dt} = -\omega P \sin \omega t - \omega Q \cos \omega t$ $= (-\omega Q) \cos \omega t - (\omega P) \sin \omega t$

Differentiating waveforms corresponds to multiplying phasors by $j\omega$.

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

P	hasors	

- V = P + jQ
- aV

+

 $V_1 + V_2$

Waveforms

 $v(t) = P \cos \omega t - Q \sin \omega t$ where $\omega = 2\pi f$.

 $a \times v(t) = aP \cos \omega t - aQ \sin \omega t$ $v_1(t) + v_2(t)$

Adding or scaling is the same for waveforms and phasors.

 $\dot{V} = (-\omega Q) + j (\omega P)$ = $j\omega (P + jQ)$ = $j\omega V$

$$\frac{dv}{dt} = -\omega P \sin \omega t - \omega Q \cos \omega t$$
$$= (-\omega Q) \cos \omega t - (\omega P) \sin \omega t$$

Differentiating waveforms corresponds to multiplying phasors by $j\omega$.

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

Ph	as	0	ſS	

- V = P + jQ
- aV

+

 $V_1 + V_2$

Waveforms

 $v(t) = P \cos \omega t - Q \sin \omega t$ where $\omega = 2\pi f$.

 $a \times v(t) = aP \cos \omega t - aQ \sin \omega t$ $v_1(t) + v_2(t)$

Adding or scaling is the same for waveforms and phasors.

 $\dot{V} = (-\omega Q) + j(\omega P)$ = $j\omega (P + jQ)$ = $j\omega V$ $\frac{dv}{dt} = -\omega P \sin \omega t - \omega Q \cos \omega t$ = $(-\omega Q) \cos \omega t - (\omega P) \sin \omega t$

Differentiating waveforms corresponds to multiplying phasors by $j\omega.$

Rotate anti-clockwise 90° and scale by $\omega = 2\pi f$.

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples

+

+

- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and
- Admittance
- Summary

Resistor:

$$v(t) = Ri(t)$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples

+

+

- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and
- Admittance
- Summary

Resistor:

$$v(t) = Ri(t) \Rightarrow V = RI$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples

+

+

- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

• Summary

$$v(t) = Ri(t) \Rightarrow V = RI \Rightarrow \frac{V}{I} = R$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples

+

+

- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

Resistor:

$$v(t) = Ri(t) \Rightarrow V = RI \quad \Rightarrow \frac{V}{I} = R$$

 $v(t) = L\frac{di}{dt}$

V

E1.1 Analysis of Circuits (2017-10213)

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples

+

+

- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

Resistor:

$$v(t) = Ri(t) \Rightarrow V = RI \quad \Rightarrow \frac{V}{I} = R$$

Inductor:

$$v(t) = L\frac{di}{dt} \Rightarrow V = j\omega LI$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples

+

+

- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

Resistor:

$$v(t) = Ri(t) \Rightarrow V = RI \quad \Rightarrow \frac{V}{I} = R$$

$$v(t) = L \frac{di}{dt} \Rightarrow V = j\omega LI \quad \Rightarrow \frac{V}{I} = j\omega L$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples

+

+

- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

Resistor:

$$v(t) = Ri(t) \Rightarrow V = RI \quad \Rightarrow \frac{V}{I} = R$$

Inductor:

$$v(t) = L \frac{di}{dt} \Rightarrow V = j\omega LI \quad \Rightarrow \frac{V}{I} = j\omega L$$

Capacitor:

$$i(t) = C \frac{dv}{dt}$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples

+

+

- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

Resistor:

$$v(t) = Ri(t) \Rightarrow V = RI \quad \Rightarrow \frac{V}{I} = R$$

Inductor:

$$v(t) = L \frac{di}{dt} \Rightarrow V = j\omega LI \quad \Rightarrow \frac{V}{I} = j\omega L$$

Capacitor:

$$i(t) = C \frac{dv}{dt} \Rightarrow I = j\omega CV$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples

+

+

- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

Resistor:

$$v(t) = Ri(t) \Rightarrow V = RI \quad \Rightarrow \frac{V}{I} = R$$

$$v(t) = L \frac{di}{dt} \Rightarrow V = j\omega LI \quad \Rightarrow \frac{V}{I} = j\omega L$$

$$i(t) = C \frac{dv}{dt} \Rightarrow I = j\omega CV \Rightarrow \frac{V}{I} = \frac{1}{j\omega C}$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

Resistor:

$$v(t) = Ri(t) \Rightarrow V = RI \quad \Rightarrow \frac{V}{I} = R$$

Inductor:

$$v(t) = L \frac{di}{dt} \Rightarrow V = j\omega LI \quad \Rightarrow \frac{V}{I} = j\omega L$$

Capacitor:

$$i(t) = C \frac{dv}{dt} \Rightarrow I = j\omega CV \Rightarrow \frac{V}{I}$$

For all three components, phasors obey Ohm's law if we use the *complex impedances* $j\omega L$ and $\frac{1}{j\omega C}$ as the "resistance" of an inductor or capacitor.

 $\frac{1}{j\omega C}$

amples +

+

+

Complex Impedances

- 10: Sine waves and phasors Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis

 Impedance and Admittance

Summary

For all three components, phasors obey Ohm's law if we use the *complex impedances* $j\omega L$ and $\frac{1}{j\omega C}$ as the "resistance" of an inductor or capacitor.

If all sources in a circuit are sine waves having the same frequency, we can do circuit analysis exactly as before by using complex impedances.

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples

+

+

- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and
- Admittance
- Summary

Given $v = 10 \sin \omega t$ where $\omega = 2\pi \times 1000$, find $v_C(t)$.

 v_R

100n

 v_C

1k

v

10: Sine waves and phasors

+

+

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

Given $v = 10 \sin \omega t$ where $\omega = 2\pi \times 1000$, find $v_C(t)$.

(1) Find capacitor complex impedance $Z = \frac{1}{j\omega C} = \frac{1}{6.28j \times 10^{-4}} = -1592j$

10: Sine waves and phasors

+

+

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

Given $v = 10 \sin \omega t$ where $\omega = 2\pi \times 1000$, find $v_C(t)$.

- (1) Find capacitor complex impedance $Z = \frac{1}{j\omega C} = \frac{1}{6.28j \times 10^{-4}} = -1592j$
 - (2) Solve circuit with phasors $V_C = V \times \frac{Z}{R+Z}$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances

+

- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

Given $v = 10 \sin \omega t$ where $\omega = 2\pi \times 1000$, find $v_C(t)$.

(1) Find capacitor complex impedance $Z = \frac{1}{j\omega C} = \frac{1}{6.28j \times 10^{-4}} = -1592j$

(2) Solve circuit with phasors $V_C = V \times \frac{Z}{R+Z}$ $= -10j \times \frac{-1592j}{1000-1592j}$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances

+

- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

Given $v = 10 \sin \omega t$ where $\omega = 2\pi \times 1000$, find $v_C(t)$.

(1) Find capacitor complex impedance $Z = \frac{1}{j\omega C} = \frac{1}{6.28j \times 10^{-4}} = -1592j$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances

+

- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

Given $v = 10 \sin \omega t$ where $\omega = 2\pi \times 1000$, find $v_C(t)$.

(1) Find capacitor complex impedance $Z = \frac{1}{j\omega C} = \frac{1}{6.28j \times 10^{-4}} = -1592j$

Phasor Analysis

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances

+

- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

Given $v = 10 \sin \omega t$ where $\omega = 2\pi \times 1000$, find $v_C(t)$.

(1) Find capacitor complex impedance $Z = \frac{1}{j\omega C} = \frac{1}{6.28j \times 10^{-4}} = -1592j$

(2) Solve circuit with phasors $V_C = V \times \frac{Z}{R+Z}$ $= -10j \times \frac{-1592j}{1000-1592j}$ $= -4.5 - 7.2j = 8.47\angle -122^{\circ}$ $v_C = 8.47\cos(\omega t - 122^{\circ})$

Phasor Analysis

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances

+

- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

Given $v = 10 \sin \omega t$ where $\omega = 2\pi \times 1000$, find $v_C(t)$.

(1) Find capacitor complex impedance $Z = \frac{1}{j\omega C} = \frac{1}{6.28j \times 10^{-4}} = -1592j$

Phasor Analysis

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances

+

- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

Given $v = 10 \sin \omega t$ where $\omega = 2\pi \times 1000$, find $v_C(t)$.

(1) Find capacitor complex impedance $Z = \frac{1}{j\omega C} = \frac{1}{6.28j \times 10^{-4}} = -1592j$

Phasors add like vectors

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples

+

+

- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

Capacitors: $i = C \frac{dv}{dt} \Rightarrow I$ leads VInductors: $v = L \frac{di}{dt} \Rightarrow V$ leads I

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis

+

- CIVIL
- Impedance and Admittance
- Summary

Capacitors: $i = C \frac{dv}{dt} \Rightarrow I$ leads VInductors: $v = L \frac{di}{dt} \Rightarrow V$ leads I

Mnemonic: CIVIL = "In a capacitor I lead V but V leads I in an inductor".

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis

+

- CIVIL
- Impedance and Admittance
- Summary

Capacitors: $i = C \frac{dv}{dt} \Rightarrow I$ leads VInductors: $v = L \frac{di}{dt} \Rightarrow V$ leads I

Mnemonic: CIVIL = "In a capacitor I lead V but V leads I in an inductor".

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis

+

- CIVIL
- Impedance and Admittance
- Summary

Capacitors: $i = C \frac{dv}{dt} \Rightarrow I$ leads VInductors: $v = L \frac{di}{dt} \Rightarrow V$ leads I

Mnemonic: CIVIL = "In a capacitor I lead V but V leads I in an inductor".

COMPLEX ARITHMETIC TRICKS:

(1) $j \times j = -j \times -j = -1$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis

+

- CIVIL
- Impedance and Admittance
- Summary

Capacitors: $i = C \frac{dv}{dt} \Rightarrow I$ leads VInductors: $v = L \frac{di}{dt} \Rightarrow V$ leads I

Mnemonic: CIVIL = "In a capacitor I lead V but V leads I in an inductor".

COMPLEX ARITHMETIC TRICKS:

(1) $j \times j = -j \times -j = -1$ (2) $\frac{1}{j} = -j$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis

+

- CIVIL
- Impedance and Admittance
- Summary

Capacitors: $i = C \frac{dv}{dt} \Rightarrow I$ leads VInductors: $v = L \frac{di}{dt} \Rightarrow V$ leads I

Mnemonic: CIVIL = "In a capacitor I lead V but V leads I in an inductor".

(1)
$$j \times j = -j \times -j = -1$$

(2) $\frac{1}{j} = -j$
(3) $a + jb = r \angle \theta = re^{j\theta}$
where $r = \sqrt{a^2 + b^2}$ and $\theta = \arctan \frac{b}{a}$ (±180° if $a < 0$)

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis

+

- CIVIL
- Impedance and Admittance
- Summary

Capacitors: $i = C \frac{dv}{dt} \Rightarrow I$ leads VInductors: $v = L \frac{di}{dt} \Rightarrow V$ leads I

Mnemonic: CIVIL = "In a capacitor I lead V but V leads I in an inductor".

(1)
$$j \times j = -j \times -j = -1$$

(2) $\frac{1}{j} = -j$
(3) $a + jb = r \angle \theta = re^{j\theta}$
where $r = \sqrt{a^2 + b^2}$ and $\theta = \arctan \frac{b}{a}$ (±180° if $a < 0$)
(4) $r \angle \theta = re^{j\theta} = (r \cos \theta) + j (r \sin \theta)$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis

+

- CIVIL
- Impedance and Admittance
- Summary

Capacitors: $i = C \frac{dv}{dt} \Rightarrow I$ leads VInductors: $v = L \frac{di}{dt} \Rightarrow V$ leads I

Mnemonic: CIVIL = "In a capacitor I lead V but V leads I in an inductor".

(1)
$$j \times j = -j \times -j = -1$$

(2) $\frac{1}{j} = -j$
(3) $a + jb = r \angle \theta = re^{j\theta}$
where $r = \sqrt{a^2 + b^2}$ and $\theta = \arctan \frac{b}{a}$ (±180° if $a < 0$)
(4) $r \angle \theta = re^{j\theta} = (r \cos \theta) + j (r \sin \theta)$
(5) $a \angle \theta \times b \angle \phi = ab \angle (\theta + \phi)$ and $\frac{a \angle \theta}{b \angle \phi} = \frac{a}{b} \angle (\theta - \phi)$.
Multiplication and division are much easier in polar form.

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis

+

- CIVIL
- Impedance and Admittance
- Summary

Capacitors: $i = C \frac{dv}{dt} \Rightarrow I$ leads VInductors: $v = L \frac{di}{dt} \Rightarrow V$ leads I

Mnemonic: CIVIL = "In a capacitor I lead V but V leads I in an inductor".

COMPLEX ARITHMETIC TRICKS:

(1)
$$j \times j = -j \times -j = -1$$

(2) $\frac{1}{j} = -j$
(3) $a + jb = r \angle \theta = re^{j\theta}$
where $r = \sqrt{a^2 + b^2}$ and $\theta = \arctan \frac{b}{a}$ (±180° if $a < 0$)
(4) $r \angle \theta = re^{j\theta} = (r \cos \theta) + j (r \sin \theta)$
(5) $a \angle \theta \times b \angle \phi = ab \angle (\theta + \phi)$ and $\frac{a \angle \theta}{b \angle \phi} = \frac{a}{b} \angle (\theta - \phi)$.
Multiplication and division are much easier in polar form.

(6) All scientific calculators will convert rectangular to/from polar form.

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis

+

- CIVIL
- Impedance and Admittance
- Summary

Capacitors: $i = C \frac{dv}{dt} \Rightarrow I$ leads VInductors: $v = L \frac{di}{dt} \Rightarrow V$ leads I

Mnemonic: CIVIL = "In a capacitor I lead V but V leads I in an inductor".

COMPLEX ARITHMETIC TRICKS:

arithmetic $(+, -, \times, \div, x^2, \frac{1}{x}, |x|, x^*)$ in CMPLX mode.

Learn how to use this: it will save lots of time and errors.

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples

+

+

- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

For any network (resistors+capacitors+inductors):

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples

+

+

- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

For any network (resistors+capacitors+inductors):

```
(1) Impedance = Resistance + j \times Reactance
```

```
Z = R + jX (\Omega)
```

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis

+

- CIVIL
- Impedance and Admittance
- Summary

For any network (resistors+capacitors+inductors):

(1) Impedance = Resistance + $j \times$ Reactance

 $Z = R + jX (\Omega)$ $|Z|^2 = R^2 + X^2 \qquad \angle Z = \arctan \frac{X}{R}$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances

+

- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

For any network (resistors+capacitors+inductors):

(1) Impedance = Resistance + $j \times$ Reactance

 $Z = R + jX (\Omega)$ $|Z|^{2} = R^{2} + X^{2} \qquad \qquad \angle Z = \arctan \frac{X}{R}$

(2) Admittance = $\frac{1}{\text{Impedance}}$ = Conductance + $j \times$ Susceptance $Y = \frac{1}{Z} = G + jB$ Siemens (S)

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances

+

- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

For any network (resistors+capacitors+inductors):

(1) Impedance = Resistance + $j \times$ Reactance

 $Z = R + jX (\Omega)$ $|Z|^{2} = R^{2} + X^{2} \qquad \qquad \angle Z = \arctan \frac{X}{R}$

(2) Admittance = $\frac{1}{\text{Impedance}}$ = Conductance + $j \times$ Susceptance $Y = \frac{1}{Z} = G + jB$ Siemens (S) $|Y|^2 = \frac{1}{|Z|^2} = G^2 + B^2$ $\angle Y = -\angle Z = \arctan \frac{B}{G}$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances

+

- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

For any network (resistors+capacitors+inductors):

(1) Impedance = Resistance + $j \times$ Reactance

 $Z = R + jX (\Omega)$ $|Z|^{2} = R^{2} + X^{2} \qquad \qquad \angle Z = \arctan \frac{X}{R}$

(2) Admittance = $\frac{1}{\text{Impedance}}$ = Conductance + $j \times$ Susceptance $Y = \frac{1}{Z} = G + jB$ Siemens (S) $|Y|^2 = \frac{1}{|Z|^2} = G^2 + B^2$ $\angle Y = -\angle Z = \arctan \frac{B}{G}$

Note:

 $Y = G + jB = \frac{1}{Z}$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances

+

- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

For any network (resistors+capacitors+inductors):

(1) Impedance = Resistance + $j \times$ Reactance

 $Z = R + jX (\Omega)$ $|Z|^{2} = R^{2} + X^{2} \qquad \qquad \angle Z = \arctan \frac{X}{R}$

(2) Admittance = $\frac{1}{\text{Impedance}}$ = Conductance + $j \times$ Susceptance $Y = \frac{1}{Z} = G + jB$ Siemens (S) $|Y|^2 = \frac{1}{|Z|^2} = G^2 + B^2$ $\angle Y = -\angle Z = \arctan \frac{B}{G}$

Note:

$$Y = G + jB = \frac{1}{Z} = \frac{1}{R+jX}$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances

+

- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

For any network (resistors+capacitors+inductors):

(1) Impedance = Resistance + $j \times$ Reactance

 $Z = R + jX (\Omega)$ $|Z|^{2} = R^{2} + X^{2} \qquad \qquad \angle Z = \arctan \frac{X}{R}$

(2) Admittance = $\frac{1}{\text{Impedance}}$ = Conductance + $j \times$ Susceptance $Y = \frac{1}{Z} = G + jB$ Siemens (S) $|Y|^2 = \frac{1}{|Z|^2} = G^2 + B^2$ $\angle Y = -\angle Z = \arctan \frac{B}{G}$

Note:

$$Y = G + jB = \frac{1}{Z} = \frac{1}{R+jX} = \frac{R}{R^2 + X^2} + j\frac{-X}{R^2 + X^2}$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances

+

- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

For any network (resistors+capacitors+inductors):

(1) Impedance = Resistance + $j \times$ Reactance

 $Z = R + jX (\Omega)$ $|Z|^{2} = R^{2} + X^{2} \qquad \qquad \angle Z = \arctan \frac{X}{R}$

(2) Admittance = $\frac{1}{\text{Impedance}}$ = Conductance + $j \times$ Susceptance $Y = \frac{1}{Z} = G + jB$ Siemens (S) $|Y|^2 = \frac{1}{|Z|^2} = G^2 + B^2$ $\angle Y = -\angle Z = \arctan \frac{B}{G}$

Note:

$$Y = G + jB = \frac{1}{Z} = \frac{1}{R + jX} = \frac{R}{R^2 + X^2} + j\frac{-X}{R^2 + X^2}$$

So $G = \frac{R}{R^2 + X^2} = \frac{R}{|Z|^2}$
 $B = \frac{-X}{R^2 + X^2} = \frac{-X}{|Z|^2}$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances

+

- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

For any network (resistors+capacitors+inductors):

(1) Impedance = Resistance + $j \times$ Reactance

 $Z = R + jX (\Omega)$ $|Z|^{2} = R^{2} + X^{2} \qquad \qquad \angle Z = \arctan \frac{X}{R}$

(2) Admittance = $\frac{1}{\text{Impedance}}$ = Conductance + $j \times$ Susceptance $Y = \frac{1}{Z} = G + jB$ Siemens (S) $|Y|^2 = \frac{1}{|Z|^2} = G^2 + B^2$ $\angle Y = -\angle Z = \arctan \frac{B}{G}$

Note:

$$Y = G + jB = \frac{1}{Z} = \frac{1}{R + jX} = \frac{R}{R^2 + X^2} + j\frac{-X}{R^2 + X^2}$$

So $G = \frac{R}{R^2 + X^2} = \frac{R}{|Z|^2}$
 $B = \frac{-X}{R^2 + X^2} = \frac{-X}{|Z|^2}$

<u>Beware:</u> $G \neq \frac{1}{R}$ unless X = 0.

Phasors: 10 - 10 / 11

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples

+

+

- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

• Sine waves are the only bounded signals whose shape is unchanged by differentiation.

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances

+

- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

- Sine waves are the only bounded signals whose shape is unchanged by differentiation.
- Think of a sine wave as the projection of a rotating rod onto the horizontal (or real) axis.
 - A *phasor* is a complex number representing the length and position of the rod at time t = 0.

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances

+

- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

- Sine waves are the only bounded signals whose shape is unchanged by differentiation.
- Think of a sine wave as the projection of a rotating rod onto the horizontal (or real) axis.
 - A *phasor* is a complex number representing the length and position of the rod at time t = 0.

• If
$$V = a + jb = r \angle \theta = re^{j\theta}$$
, then
 $v(t) = a \cos \omega t - b \sin \omega t = r \cos (\omega t + \theta) = \Re \left(Ve^{j\omega t} \right)$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances

+

- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

- Sine waves are the only bounded signals whose shape is unchanged by differentiation.
- Think of a sine wave as the projection of a rotating rod onto the horizontal (or real) axis.
 - A *phasor* is a complex number representing the length and position of the rod at time t = 0.

• If
$$V = a + jb = r \angle \theta = re^{j\theta}$$
, then
 $v(t) = a \cos \omega t - b \sin \omega t = r \cos (\omega t + \theta) = \Re (Ve^{j\omega t})$

• The angular frequency $\omega = 2\pi f$ is assumed known.

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

- Sine waves are the only bounded signals whose shape is unchanged by differentiation.
- Think of a sine wave as the projection of a rotating rod onto the horizontal (or real) axis.
 - A *phasor* is a complex number representing the length and position of the rod at time t = 0.

• If
$$V = a + jb = r \angle \theta = re^{j\theta}$$
, then

- $v(t) = a\cos\omega t b\sin\omega t = r\cos\left(\omega t + \theta\right) = \Re\left(Ve^{j\omega t}\right)$
- The angular frequency $\omega = 2\pi f$ is assumed known.
- If all sources in a linear circuit are sine waves having the same frequency, we can use phasors for circuit analysis:

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

- Sine waves are the only bounded signals whose shape is unchanged by differentiation.
- Think of a sine wave as the projection of a rotating rod onto the horizontal (or real) axis.
 - A *phasor* is a complex number representing the length and position of the rod at time t = 0.

• If
$$V = a + jb = r \angle \theta = re^{j\theta}$$
, then

- $v(t) = a\cos\omega t b\sin\omega t = r\cos\left(\omega t + \theta\right) = \Re\left(Ve^{j\omega t}\right)$
- The angular frequency $\omega = 2\pi f$ is assumed known.
- If all sources in a linear circuit are sine waves having the same frequency, we can use phasors for circuit analysis:

• Use complex impedances: $j\omega L$ and $\frac{1}{j\omega C}$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

- Sine waves are the only bounded signals whose shape is unchanged by differentiation.
- Think of a sine wave as the projection of a rotating rod onto the horizontal (or real) axis.
 - A *phasor* is a complex number representing the length and position of the rod at time t = 0.

• If
$$V = a + jb = r \angle \theta = re^{j\theta}$$
, then

- $v(t) = a\cos\omega t b\sin\omega t = r\cos\left(\omega t + \theta\right) = \Re\left(Ve^{j\omega t}\right)$
- The angular frequency $\omega = 2\pi f$ is assumed known.
- If all sources in a linear circuit are sine waves having the same frequency, we can use phasors for circuit analysis:
 - Use complex impedances: $j\omega L$ and $\frac{1}{j\omega C}$
 - Mnemonic: CIVIL tells you whether I leads V or vice versa ("leads" means "reaches its peak before").

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

- Sine waves are the only bounded signals whose shape is unchanged by differentiation.
- Think of a sine wave as the projection of a rotating rod onto the horizontal (or real) axis.
 - A *phasor* is a complex number representing the length and position of the rod at time t = 0.

• If
$$V = a + jb = r \angle \theta = re^{j\theta}$$
, then

 $v(t) = a\cos\omega t - b\sin\omega t = r\cos\left(\omega t + \theta\right) = \Re\left(Ve^{j\omega t}\right)$

- \circ $\;$ The angular frequency $\omega=2\pi f$ is assumed known.
- If all sources in a linear circuit are sine waves having the same frequency, we can use phasors for circuit analysis:
 - Use complex impedances: $j\omega L$ and $\frac{1}{j\omega C}$
 - Mnemonic: CIVIL tells you whether I leads V or vice versa ("leads" means "reaches its peak before").
 - Phasors eliminate time from equations ©

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

- Sine waves are the only bounded signals whose shape is unchanged by differentiation.
- Think of a sine wave as the projection of a rotating rod onto the horizontal (or real) axis.
 - A *phasor* is a complex number representing the length and position of the rod at time t = 0.

• If
$$V = a + jb = r \angle \theta = re^{j\theta}$$
, then

 $v(t) = a\cos\omega t - b\sin\omega t = r\cos\left(\omega t + \theta\right) = \Re\left(Ve^{j\omega t}\right)$

- The angular frequency $\omega = 2\pi f$ is assumed known.
- If all sources in a linear circuit are sine waves having the same frequency, we can use phasors for circuit analysis:
 - Use complex impedances: $j\omega L$ and $\frac{1}{j\omega C}$
 - Mnemonic: CIVIL tells you whether I leads V or vice versa ("leads" means "reaches its peak before").
 - Phasors eliminate time from equations ☺, converts simultaneous differential equations into simultaneous linear equations ☺☺☺.

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

- Sine waves are the only bounded signals whose shape is unchanged by differentiation.
- Think of a sine wave as the projection of a rotating rod onto the horizontal (or real) axis.
 - A *phasor* is a complex number representing the length and position of the rod at time t = 0.

• If
$$V = a + jb = r \angle \theta = re^{j\theta}$$
, then

 $v(t) = a\cos\omega t - b\sin\omega t = r\cos\left(\omega t + \theta\right) = \Re\left(Ve^{j\omega t}\right)$

- \circ $\;$ The angular frequency $\omega=2\pi f$ is assumed known.
- If all sources in a linear circuit are sine waves having the same frequency, we can use phasors for circuit analysis:
 - Use complex impedances: $j\omega L$ and $\frac{1}{j\omega C}$
 - Mnemonic: CIVIL tells you whether I leads V or vice versa ("leads" means "reaches its peak before").
 - Phasors eliminate time from equations ☺, converts simultaneous differential equations into simultaneous linear equations ☺☺☺.
 - Needs complex numbers 🙂 but worth it.

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and Admittance
- Summary

- Sine waves are the only bounded signals whose shape is unchanged by differentiation.
- Think of a sine wave as the projection of a rotating rod onto the horizontal (or real) axis.
 - A *phasor* is a complex number representing the length and position of the rod at time t = 0.

• If
$$V = a + jb = r \angle \theta = re^{j\theta}$$
, then

 $v(t) = a\cos\omega t - b\sin\omega t = r\cos\left(\omega t + \theta\right) = \Re\left(Ve^{j\omega t}\right)$

- \circ $\;$ The angular frequency $\omega=2\pi f$ is assumed known.
- If all sources in a linear circuit are sine waves having the same frequency, we can use phasors for circuit analysis:
 - Use complex impedances: $j\omega L$ and $\frac{1}{j\omega C}$
 - Mnemonic: CIVIL tells you whether I leads V or vice versa ("leads" means "reaches its peak before").
 - Phasors eliminate time from equations ☺, converts simultaneous differential equations into simultaneous linear equations ☺☺☺.
 - Needs complex numbers 🙂 but worth it.

See Hayt Ch 10 or Irwin Ch 8