10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

10: Sine waves and phasors

Sine Waves

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

For inductors and capacitors $i=C \frac{d v}{d t}$ and $v=L \frac{d i}{d t}$ so we need to differentiate $i(t)$ and $v(t)$ when analysing circuits containing them.

Sine Waves

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples +
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

For inductors and capacitors $i=C \frac{d v}{d t}$ and $v=L \frac{d i}{d t}$ so we need to differentiate $i(t)$ and $v(t)$ when analysing circuits containing them.

Usually differentiation changes the shape of a waveform.

Sine Waves

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples +
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

For inductors and capacitors $i=C \frac{d v}{d t}$ and $v=L \frac{d i}{d t}$ so we need to differentiate $i(t)$ and $v(t)$ when analysing circuits containing them.

Usually differentiation changes the shape of a waveform.

For bounded waveforms there is only one exception:

$v(t)=\sin t \Rightarrow \frac{d v}{d t}=\cos t$

Sine Waves

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples +
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

For inductors and capacitors $i=C \frac{d v}{d t}$ and $v=L \frac{d i}{d t}$ so we need to differentiate $i(t)$ and $v(t)$ when analysing circuits containing them.

Usually differentiation changes the shape of a waveform.

For bounded waveforms there is only one exception:
$v(t)=\sin t \Rightarrow \frac{d v}{d t}=\cos t$

Sine Waves

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples +
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

For inductors and capacitors $i=C \frac{d v}{d t}$ and $v=L \frac{d i}{d t}$ so we need to differentiate $i(t)$ and $v(t)$ when analysing circuits containing them.

Usually differentiation changes the shape of a waveform.

For bounded waveforms there is only one exception:

$v(t)=\sin t \Rightarrow \frac{d v}{d t}=\cos t$
same shape but with a time shift.

Sine Waves

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples +
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

For inductors and capacitors $i=C \frac{d v}{d t}$ and $v=L \frac{d i}{d t}$ so we need to differentiate $i(t)$ and $v(t)$ when analysing circuits containing them.

Usually differentiation changes the shape of a waveform.

For bounded waveforms there is only one exception:

$v(t)=\sin t \Rightarrow \frac{d v}{d t}=\cos t$ same shape but with a time shift.

Sine Waves

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

For inductors and capacitors $i=C \frac{d v}{d t}$ and $v=L \frac{d i}{d t}$ so we need to differentiate $i(t)$ and $v(t)$ when analysing circuits containing them.

Usually differentiation changes the shape of a waveform.

For bounded waveforms there is only one exception:

$v(t)=\sin t \Rightarrow \frac{d v}{d t}=\cos t$ same shape but with a time shift.

$\sin 2 \pi f t$ makes f complete repetitions every time t increases by 1 ; this gives a frequency of f cycles per second, or $f \mathrm{~Hz}$.

Sine Waves

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

For inductors and capacitors $i=C \frac{d v}{d t}$ and $v=L \frac{d i}{d t}$ so we need to differentiate $i(t)$ and $v(t)$ when analysing circuits containing them.

Usually differentiation changes the shape of a waveform.

For bounded waveforms there is only one exception:

$\sin 2 \pi f t$ makes f complete repetitions every time t increases by 1 ; this gives a frequency of f cycles per second, or $f \mathrm{~Hz}$.
We often use the angular frequency, $\omega=2 \pi f$ instead.
ω is measured in radians per second. E.g. $50 \mathrm{~Hz} \simeq 314 \mathrm{rad} . \mathrm{s}^{-1}$.

Rotating Rod

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

A useful way to think of a cosine wave is as the projection of a rotating rod onto the horizontal axis.

For a unit-length rod, the projection has length $\cos \theta$.

Rotating Rod

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

A useful way to think of a cosine wave is as the projection of a rotating rod onto the horizontal axis.

For a unit-length rod, the projection has length $\cos \theta$.
If the rod is rotating at a speed of f revolutions per second, then θ increases uniformly with time:
$\theta=2 \pi f t$.

Rotating Rod

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

A useful way to think of a cosine wave is as the projection of a rotating rod onto the horizontal axis.

For a unit-length rod, the projection has length $\cos \theta$.
If the rod is rotating at a speed of f revolutions per second, then θ increases uniformly with time:
$\theta=2 \pi f t$.
The only difference between cos and sin is the starting position of the rod:

Rotating Rod

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

A useful way to think of a cosine wave is as the projection of a rotating rod onto the horizontal axis.

For a unit-length rod, the projection has length $\cos \theta$.
If the rod is rotating at a speed of f revolutions per second, then θ increases uniformly with time:
$\theta=2 \pi f t$.

The only difference between cos and sin is the starting position of the rod:

$$
v=\cos 2 \pi f t
$$

Rotating Rod

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

A useful way to think of a cosine wave is as the projection of a rotating rod onto the horizontal axis.

For a unit-length rod, the projection has length $\cos \theta$.
If the rod is rotating at a speed of f revolutions per second, then θ increases uniformly with time:
$\theta=2 \pi f t$.
The only difference between cos and sin is the starting position of the rod:

$$
v=\cos 2 \pi f t
$$

Rotating Rod

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

A useful way to think of a cosine wave is as the projection of a rotating rod onto the horizontal axis.

For a unit-length rod, the projection has length $\cos \theta$.
If the rod is rotating at a speed of f revolutions per second, then θ increases uniformly with time:
$\theta=2 \pi f t$.
The only difference between cos and sin is the starting position of the rod:

$$
v=\cos 2 \pi f t
$$

$v=\sin 2 \pi f t=\cos \left(2 \pi f t-\frac{\pi}{2}\right)$

Rotating Rod

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

A useful way to think of a cosine wave is as the projection of a rotating rod onto the horizontal axis.

For a unit-length rod, the projection has length $\cos \theta$.
If the rod is rotating at a speed of f revolutions per second, then θ increases uniformly with time:
$\theta=2 \pi f t$.
The only difference between cos and sin is the starting position of the rod:

$$
v=\cos 2 \pi f t
$$

$$
v=\sin 2 \pi f t=\cos \left(2 \pi f t-\frac{\pi}{2}\right)
$$

$\sin 2 \pi f t$ lags $\cos 2 \pi f t$ by 90° (or $\frac{\pi}{2}$ radians) because its peaks occurs $\frac{1}{4}$ of a cycle later (equivalently cos leads sin).

Phasors

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

If the rod has length A and starts at an angle ϕ then the projection onto the horizontal axis is

$$
A \cos (2 \pi f t+\phi)
$$

Phasors

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

If the rod has length A and starts at an angle ϕ then the projection onto the horizontal axis is

$$
\begin{aligned}
& A \cos (2 \pi f t+\phi) \\
& \quad=A \cos \phi \cos 2 \pi f t-A \sin \phi \sin 2 \pi f t
\end{aligned}
$$

Phasors

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

If the rod has length A and starts at an angle ϕ then the projection onto the horizontal axis is

$$
\begin{aligned}
& A \cos (2 \pi f t+\phi) \\
& \quad=A \cos \phi \cos 2 \pi f t-A \sin \phi \sin 2 \pi f t \\
& \quad=X \cos 2 \pi f t-Y \sin 2 \pi f t
\end{aligned}
$$

Phasors

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

If the rod has length A and starts at an angle ϕ then the projection onto the horizontal axis is

$$
\begin{aligned}
& A \cos (2 \pi f t+\phi) \\
& \quad=A \cos \phi \cos 2 \pi f t-A \sin \phi \sin 2 \pi f t \\
& \quad=X \cos 2 \pi f t-Y \sin 2 \pi f t \\
& \text { At time } t=0 \text {, the tip of the rod has coordinates } \\
& (X, Y)=(A \cos \phi, A \sin \phi) .
\end{aligned}
$$

Phasors

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

If the rod has length A and starts at an angle ϕ then the projection onto the horizontal axis is

$$
\begin{aligned}
& A \cos (2 \pi f t+\phi) \\
& \quad=A \cos \phi \cos 2 \pi f t-A \sin \phi \sin 2 \pi f t \\
& \quad=X \cos 2 \pi f t-Y \sin 2 \pi f t
\end{aligned}
$$

At time $t=0$, the tip of the rod has coordinates $(X, Y)=(A \cos \phi, A \sin \phi)$.

If we think of the plane as an Argand Diagram (or complex plane), then the complex number $X+j Y$ corresponding to the tip of the rod at $t=0$ is called a phasor.

Phasors

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

If the rod has length A and starts at an angle ϕ then the projection onto the horizontal axis is

$$
\begin{aligned}
& A \cos (2 \pi f t+\phi) \\
& \quad=A \cos \phi \cos 2 \pi f t-A \sin \phi \sin 2 \pi f t \\
& \quad=X \cos 2 \pi f t-Y \sin 2 \pi f t
\end{aligned}
$$

At time $t=0$, the tip of the rod has coordinates $(X, Y)=(A \cos \phi, A \sin \phi)$.

If we think of the plane as an Argand Diagram (or complex plane), then the complex number $X+j Y$ corresponding to the tip of the rod at $t=0$ is called a phasor.

The magnitude of the phasor, $A=\sqrt{X^{2}+Y^{2}}$, gives the amplitude (peak value) of the sine wave.

Phasors

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

If the rod has length A and starts at an angle ϕ then the projection onto the horizontal axis is

$$
\begin{aligned}
& A \cos (2 \pi f t+\phi) \\
& \quad=A \cos \phi \cos 2 \pi f t-A \sin \phi \sin 2 \pi f t \\
& \quad=X \cos 2 \pi f t-Y \sin 2 \pi f t
\end{aligned}
$$

At time $t=0$, the tip of the rod has coordinates $(X, Y)=(A \cos \phi, A \sin \phi)$.

If we think of the plane as an Argand Diagram (or complex plane), then the complex number $X+j Y$ corresponding to the tip of the rod at $t=0$ is called a phasor.

The magnitude of the phasor, $A=\sqrt{X^{2}+Y^{2}}$, gives the amplitude (peak value) of the sine wave.

The argument of the phasor, $\phi=\arctan \frac{Y}{X}$, gives the phase shift relative to $\cos 2 \pi f t$.
If $\phi>0$, it is leading and if $\phi<0$, it is lagging relative to $\cos 2 \pi f t$.

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

$$
V=1, f=50 \mathrm{~Hz}
$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

$$
\begin{aligned}
V & =1, f=50 \mathrm{~Hz} \\
v(t) & =\cos 2 \pi f t
\end{aligned}
$$

Phasor Examples

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL

Impedance and
Admittance

- Summary

$$
\begin{aligned}
V & =1, f=50 \mathrm{~Hz} \\
v(t) & =\cos 2 \pi f t
\end{aligned}
$$

$$
V=-j
$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

$$
\begin{aligned}
V & =1, f=50 \mathrm{~Hz} \\
v(t) & =\cos 2 \pi f t
\end{aligned}
$$

$$
V=-j
$$

$$
v(t)=\sin 2 \pi f t
$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

$$
\begin{aligned}
V & =1, f=50 \mathrm{~Hz} \\
v(t) & =\cos 2 \pi f t
\end{aligned}
$$

$$
V=-j
$$

$$
v(t)=\sin 2 \pi f t
$$

$$
V=-1-0.5 j
$$

$\left.\right|_{-1}$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

$$
\begin{aligned}
V & =1, f=50 \mathrm{~Hz} \\
v(t) & =\cos 2 \pi f t \\
V & =-j \\
v(t) & =\sin 2 \pi f t \\
V & =-1-0.5 j \\
v(t) & =-\cos 2 \pi f t+0.5 \sin 2 \pi f t
\end{aligned}
$$

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

$$
\begin{aligned}
V & =1, f=50 \mathrm{~Hz} \\
v(t) & =\cos 2 \pi f t \\
V & =-j \\
v(t) & =\sin 2 \pi f t \\
V & =-1-0.5 j=1.12 \angle-153^{\circ} \\
v(t) & =-\cos 2 \pi f t+0.5 \sin 2 \pi f t
\end{aligned}
$$

Phasor Examples

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

$$
\begin{aligned}
V & =1, f=50 \mathrm{~Hz} \\
v(t) & =\cos 2 \pi f t \\
V & =-j \\
v(t) & =\sin 2 \pi f t \\
V & =-1-0.5 j=1.12 \angle-153^{\circ} \\
v(t) & =-\cos 2 \pi f t+0.5 \sin 2 \pi f t \\
& =1.12 \cos (2 \pi f t-2.68)
\end{aligned}
$$

Phasor Examples

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

$$
\begin{aligned}
V & =1, f=50 \mathrm{~Hz} \\
v(t) & =\cos 2 \pi f t \\
V & =-j \\
v(t) & =\sin 2 \pi f t \\
V & =-1-0.5 j=1.12 \angle-153^{\circ} \\
v(t) & =-\cos 2 \pi f t+0.5 \sin 2 \pi f t \\
& =1.12 \cos (2 \pi f t-2.68) \\
V & =X+j Y
\end{aligned}
$$

Phasor Examples

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

$$
\begin{aligned}
V & =1, f=50 \mathrm{~Hz} \\
v(t) & =\cos 2 \pi f t \\
V & =-j \\
v(t) & =\sin 2 \pi f t \\
V & =-1-0.5 j=1.12 \angle-153^{\circ} \\
v(t) & =-\cos 2 \pi f t+0.5 \sin 2 \pi f t \\
& =1.12 \cos (2 \pi f t-2.68) \\
V & =X+j Y \\
v(t) & =X \cos 2 \pi f t-Y \sin 2 \pi f t
\end{aligned}
$$

-1

$$
\underset{0}{\stackrel{\perp}{>}} 0
$$

Phasor Examples

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary $+$

$$
\begin{aligned}
V & =1, f=50 \mathrm{~Hz} \\
v(t) & =\cos 2 \pi f t \\
V & =-j \\
v(t) & =\sin 2 \pi f t \\
V & =-1-0.5 j=1.12 \angle-153^{\circ} \\
v(t) & =-\cos 2 \pi f t+0.5 \sin 2 \pi f t \\
& =1.12 \cos (2 \pi f t-2.68) \\
V & =X+j Y \\
v(t) & =X \cos 2 \pi f t-Y \sin 2 \pi f t
\end{aligned}
$$

Beware minus sign.

Beware minus sign.

Phasor Examples

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

$$
\begin{aligned}
V & =1, f=50 \mathrm{~Hz} \\
v(t) & =\cos 2 \pi f t \\
V & =-j \\
v(t) & =\sin 2 \pi f t \\
V & =-1-0.5 j=1.12 \angle-153^{\circ} \\
v(t) & =-\cos 2 \pi f t+0.5 \sin 2 \pi f t \\
& =1.12 \cos (2 \pi f t-2.68) \\
V & =X+j Y \\
v(t) & =X \cos 2 \pi f t-Y \sin 2 \pi f t
\end{aligned}
$$

Beware minus sign.

Phasor Examples

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

$$
\begin{aligned}
V & =1, f=50 \mathrm{~Hz} \\
v(t) & =\cos 2 \pi f t \\
V & =-j \\
v(t) & =\sin 2 \pi f t \\
V & =-1-0.5 j=1.12 \angle-153^{\circ} \\
v(t) & =-\cos 2 \pi f t+0.5 \sin 2 \pi f t \\
& =1.12 \cos (2 \pi f t-2.68) \\
V & =X+j Y \\
v(t) & =X \cos 2 \pi f t-Y \sin 2 \pi f t
\end{aligned}
$$

Beware minus sign.

$$
V=A \angle \phi
$$

$$
v(t)=A \cos (2 \pi f t+\phi)
$$

Phasor Examples

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

$$
\begin{aligned}
V & =1, f=50 \mathrm{~Hz} \\
v(t) & =\cos 2 \pi f t \\
V & =-j \\
v(t) & =\sin 2 \pi f t \\
V & =-1-0.5 j=1.12 \angle-153^{\circ} \\
v(t) & =-\cos 2 \pi f t+0.5 \sin 2 \pi f t \\
& =1.12 \cos (2 \pi f t-2.68) \\
V & =X+j Y \\
v(t) & =X \cos 2 \pi f t-Y \sin 2 \pi f t
\end{aligned}
$$

Beware minus sign.

$$
V=A \angle \phi=A e^{j \phi}
$$

$$
v(t)=A \cos (2 \pi f t+\phi)
$$

Phasor Examples

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

$$
\begin{aligned}
V & =1, f=50 \mathrm{~Hz} \\
v(t) & =\cos 2 \pi f t \\
V & =-j \\
v(t) & =\sin 2 \pi f t \\
V & =-1-0.5 j=1.12 \angle-153^{\circ} \\
v(t) & =-\cos 2 \pi f t+0.5 \sin 2 \pi f t \\
& =1.12 \cos (2 \pi f t-2.68) \\
V & =X+j Y \\
v(t) & =X \cos 2 \pi f t-Y \sin 2 \pi f t r
\end{aligned}
$$

Beware minus sign.
A phasor represents an entire waveform (encompassing all time) as a single complex number. We assume the frequency, f, is known.

Phasor Examples

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

$$
\begin{aligned}
V & =1, f=50 \mathrm{~Hz} \\
v(t) & =\cos 2 \pi f t \\
V & =-j \\
v(t) & =\sin 2 \pi f t \\
V & =-1-0.5 j=1.12 \angle-153^{\circ} \\
v(t) & =-\cos 2 \pi f t+0.5 \sin 2 \pi f t \\
& =1.12 \cos (2 \pi f t-2.68) \\
V & =X+j Y \\
v(t) & =X \cos 2 \pi f t-Y \sin 2 \pi f t
\end{aligned}
$$

$$
\begin{aligned}
V & =A \angle \phi=A e^{j \phi} \\
v(t) & =A \cos (2 \pi f t+\phi)
\end{aligned}
$$

Beware minus sign.
A phasor represents an entire waveform (encompassing all time) as a single complex number. We assume the frequency, f, is known.

A phasor is not time-varying, so we use a capital letter: V.
A waveform is time-varying, so we use a small letter: $v(t)$.

Phasor Examples

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary
$+$

$$
\begin{aligned}
V & =1, f=50 \mathrm{~Hz} \\
v(t) & =\cos 2 \pi f t \\
V & =-j \\
v(t) & =\sin 2 \pi f t \\
V & =-1-0.5 j=1.12 \angle-153^{\circ} \\
v(t) & =-\cos 2 \pi f t+0.5 \sin 2 \pi f t \\
& =1.12 \cos (2 \pi f t-2.68) \\
V & =X+j Y \\
v(t) & =X \cos 2 \pi f t-Y \sin 2 \pi f t
\end{aligned}
$$

Beware minus sign.

Phasor arithmetic

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors

Phasors
$V=P+j Q$

Waveforms

$v(t)=P \cos \omega t-Q \sin \omega t$
where $\omega=2 \pi f$.

Phasor arithmetic

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors

Phasors
$V=P+j Q$

- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

Waveforms
$v(t)=P \cos \omega t-Q \sin \omega t$
where $\omega=2 \pi f$.
$a \times v(t)$

Phasor arithmetic

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors

Phasors
$V=P+j Q$

- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
$+$
- CIVIL
- Impedance and

Admittance

- Summary

Waveforms

$v(t)=P \cos \omega t-Q \sin \omega t$
where $\omega=2 \pi f$.
$a \times v(t)=a P \cos \omega t-a Q \sin \omega t$

Phasor arithmetic

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis $+$
- CIVIL
- Impedance and

Admittance

- Summary

Phasors
$V=P+j Q$
$a V$

Waveforms

$v(t)=P \cos \omega t-Q \sin \omega t$
where $\omega=2 \pi f$.
$a \times v(t)=a P \cos \omega t-a Q \sin \omega t$

Phasor arithmetic

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
$+$
- CIVIL

Impedance and
Admittance

- Summary
$+$

Phasors
$V=P+j Q$
$+\quad a V$
$+$
V

Phasor arithmetic

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
$+$
- CIVIL

Impedance and
Admittance

- Summary

Phasors
$V=P+j Q$
$a V$
$V_{1}+V_{2}$

Waveforms

$v(t)=P \cos \omega t-Q \sin \omega t$ where $\omega=2 \pi f$.
$a \times v(t)=a P \cos \omega t-a Q \sin \omega t$
$v_{1}(t)+v_{2}(t)$

Phasor arithmetic

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
$+$
- CIVIL
- Impedance and

Admittance

- Summary

Phasors
$V=P+j Q$
$a V$
$V_{1}+V_{2}$

Waveforms

$v(t)=P \cos \omega t-Q \sin \omega t$
where $\omega=2 \pi f$.
$a \times v(t)=a P \cos \omega t-a Q \sin \omega t$
$v_{1}(t)+v_{2}(t)$

Adding or scaling is the same for waveforms and phasors.

Phasor arithmetic

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

Phasors
$V=P+j Q$
$a V$
$V_{1}+V_{2}$

Waveforms

$v(t)=P \cos \omega t-Q \sin \omega t$
where $\omega=2 \pi f$.

$$
\begin{aligned}
& a \times v(t)=a P \cos \omega t-a Q \sin \omega t \\
& v_{1}(t)+v_{2}(t)
\end{aligned}
$$

Adding or scaling is the same for waveforms and phasors.

$$
\frac{d v}{d t}=-\omega P \sin \omega t-\omega Q \cos \omega t
$$

Phasor arithmetic

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

Phasors
$V=P+j Q$
$a V$
$V_{1}+V_{2}$

Waveforms

$v(t)=P \cos \omega t-Q \sin \omega t$
where $\omega=2 \pi f$.

$$
\begin{aligned}
& a \times v(t)=a P \cos \omega t-a Q \sin \omega t \\
& v_{1}(t)+v_{2}(t)
\end{aligned}
$$

Adding or scaling is the same for waveforms and phasors.

$$
\begin{aligned}
\frac{d v}{d t} & =-\omega P \sin \omega t-\omega Q \cos \omega t \\
& =(-\omega Q) \cos \omega t-(\omega P) \sin \omega t
\end{aligned}
$$

Phasor arithmetic

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

Phasors
$V=P+j Q$
$a V$
$V_{1}+V_{2}$

Waveforms

$v(t)=P \cos \omega t-Q \sin \omega t$
where $\omega=2 \pi f$.
$a \times v(t)=a P \cos \omega t-a Q \sin \omega t$
$v_{1}(t)+v_{2}(t)$

Adding or scaling is the same for waveforms and phasors.

$$
\dot{V}=(-\omega Q)+j(\omega P)
$$

$$
\begin{aligned}
\frac{d v}{d t} & =-\omega P \sin \omega t-\omega Q \cos \omega t \\
& =(-\omega Q) \cos \omega t-(\omega P) \sin \omega t
\end{aligned}
$$

Phasor arithmetic

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

Phasors

$$
V=P+j Q
$$

$$
a V
$$

$$
V_{1}+V_{2}
$$

Waveforms

$v(t)=P \cos \omega t-Q \sin \omega t$ where $\omega=2 \pi f$.

$$
\begin{aligned}
& a \times v(t)=a P \cos \omega t-a Q \sin \omega t \\
& v_{1}(t)+v_{2}(t)
\end{aligned}
$$

Adding or scaling is the same for waveforms and phasors.

$$
\begin{aligned}
\dot{V} & =(-\omega Q)+j(\omega P) \\
& =j \omega(P+j Q)
\end{aligned}
$$

Phasor arithmetic

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

Phasors

$$
V=P+j Q
$$

$$
a V
$$

$$
V_{1}+V_{2}
$$

Waveforms

$v(t)=P \cos \omega t-Q \sin \omega t$ where $\omega=2 \pi f$.
$a \times v(t)=a P \cos \omega t-a Q \sin \omega t$
$v_{1}(t)+v_{2}(t)$

Adding or scaling is the same for waveforms and phasors.

$$
\begin{aligned}
\dot{V} & =(-\omega Q)+j(\omega P) \\
& =j \omega(P+j Q) \\
& =j \omega V
\end{aligned}
$$

$$
\begin{aligned}
\frac{d v}{d t} & =-\omega P \sin \omega t-\omega Q \cos \omega t \\
& =(-\omega Q) \cos \omega t-(\omega P) \sin \omega t
\end{aligned}
$$

Phasor arithmetic

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
$+$
- CIVIL

Impedance and
Admittance

- Summary

Phasors

$$
V=P+j Q
$$

$$
a V
$$

$$
V_{1}+V_{2}
$$

Waveforms

$v(t)=P \cos \omega t-Q \sin \omega t$ where $\omega=2 \pi f$.

$$
\begin{aligned}
& a \times v(t)=a P \cos \omega t-a Q \sin \omega t \\
& v_{1}(t)+v_{2}(t)
\end{aligned}
$$

Adding or scaling is the same for waveforms and phasors.

$$
\begin{aligned}
\dot{V} & =(-\omega Q)+j(\omega P) \\
& =j \omega(P+j Q) \\
& =j \omega V
\end{aligned}
$$

Differentiating waveforms corresponds to multiplying phasors by $j \omega$.

Phasor arithmetic

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

Phasors

```
\[
V=P+j Q
\]
\[
a V
\]
\[
V_{1}+V_{2}
\]
```


Waveforms

$v(t)=P \cos \omega t-Q \sin \omega t$ where $\omega=2 \pi f$.
$a \times v(t)=a P \cos \omega t-a Q \sin \omega t$
$v_{1}(t)+v_{2}(t)$

Adding or scaling is the same for waveforms and phasors.

Differentiating waveforms corresponds to multiplying phasors by $j \omega$.

$$
\begin{aligned}
\dot{V} & =(-\omega Q)+j(\omega P) \\
& =j \omega(P+j Q) \\
& =j \omega V
\end{aligned}
$$

$$
\begin{aligned}
\frac{d v}{d t} & =-\omega P \sin \omega t-\omega Q \cos \omega t \\
& =(-\omega Q) \cos \omega t-(\omega P) \sin \omega t
\end{aligned}
$$

Phasor arithmetic

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

Phasors

```
\[
V=P+j Q
\]
\[
a V
\]
\[
V_{1}+V_{2}
\]
```


Waveforms

$v(t)=P \cos \omega t-Q \sin \omega t$ where $\omega=2 \pi f$.
$a \times v(t)=a P \cos \omega t-a Q \sin \omega t$
$v_{1}(t)+v_{2}(t)$

Adding or scaling is the same for waveforms and phasors.

$$
\begin{aligned}
\dot{V} & =(-\omega Q)+j(\omega P) \\
& =j \omega(P+j Q) \\
& =j \omega V
\end{aligned}
$$

Differentiating waveforms corresponds to multiplying phasors by $j \omega$.

Rotate anti-clockwise 90° and scale by $\omega=2 \pi f$.

$$
\begin{aligned}
\frac{d v}{d t} & =-\omega P \sin \omega t-\omega Q \cos \omega t \\
& =(-\omega Q) \cos \omega t-(\omega P) \sin \omega t
\end{aligned}
$$

Complex Impedances

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
$v(t)=R i(t)$
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

Resistor:

Complex Impedances

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

Resistor:

$$
v(t)=R i(t) \Rightarrow V=R I
$$

Complex Impedances

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

Resistor:
$v(t)=R i(t) \Rightarrow V=R I \Rightarrow \frac{V}{I}=R$

Complex Impedances

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

Inductor:
$v(t)=L \frac{d i}{d t}$

Complex Impedances

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

Resistor:
$v(t)=R i(t) \Rightarrow V=R I \quad \Rightarrow \frac{V}{I}=R$

Inductor:
$v(t)=L \frac{d i}{d t} \Rightarrow V=j \omega L I$

Complex Impedances

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

Resistor:
$v(t)=R i(t) \Rightarrow V=R I \quad \Rightarrow \frac{V}{I}=R$

Inductor:
$v(t)=L \frac{d i}{d t} \Rightarrow V=j \omega L I \quad \Rightarrow \frac{V}{I}=j \omega L$

Complex Impedances

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

Resistor:
$v(t)=R i(t) \Rightarrow V=R I \quad \Rightarrow \frac{V}{I}=R$

Inductor:
$v(t)=L \frac{d i}{d t} \Rightarrow V=j \omega L I \quad \Rightarrow \frac{V}{I}=j \omega L$

Capacitor:

$$
i(t)=C \frac{d v}{d t}
$$

Complex Impedances

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

Resistor:
$v(t)=R i(t) \Rightarrow V=R I \quad \Rightarrow \frac{V}{I}=R$

Inductor:
$v(t)=L \frac{d i}{d t} \Rightarrow V=j \omega L I \quad \Rightarrow \frac{V}{I}=j \omega L$

Capacitor:

$$
i(t)=C \frac{d v}{d t} \Rightarrow I=j \omega C V
$$

Complex Impedances

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

Resistor:
$v(t)=R i(t) \Rightarrow V=R I \quad \Rightarrow \frac{V}{I}=R$

Inductor:
$v(t)=L \frac{d i}{d t} \Rightarrow V=j \omega L I \quad \Rightarrow \frac{V}{I}=j \omega L$

Capacitor:

$$
i(t)=C \frac{d v}{d t} \Rightarrow I=j \omega C V \quad \Rightarrow \frac{V}{I}=\frac{1}{j \omega C}
$$

Complex Impedances

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

Resistor:
$v(t)=R i(t) \Rightarrow V=R I \quad \Rightarrow \frac{V}{I}=R$

Inductor:
$v(t)=L \frac{d i}{d t} \Rightarrow V=j \omega L I \quad \Rightarrow \frac{V}{I}=j \omega L$

Capacitor:

$$
i(t)=C \frac{d v}{d t} \Rightarrow I=j \omega C V \quad \Rightarrow \frac{V}{I}=\frac{1}{j \omega C}
$$

For all three components, phasors obey Ohm's law if we use the complex impedances $j \omega L$ and $\frac{1}{j \omega C}$ as the "resistance" of an inductor or capacitor.

Complex Impedances

- Rotating Rod
- Phasors

Resistor:
$v(t)=R i(t) \Rightarrow V=R I \quad \Rightarrow \frac{V}{I}=R$

- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

Inductor:
$v(t)=L \frac{d i}{d t} \Rightarrow V=j \omega L I \quad \Rightarrow \frac{V}{I}=j \omega L$

Capacitor:

$$
i(t)=C \frac{d v}{d t} \Rightarrow I=j \omega C V \quad \Rightarrow \frac{V}{I}=\frac{1}{j \omega C}
$$

For all three components, phasors obey Ohm's law if we use the complex impedances $j \omega L$ and $\frac{1}{j \omega C}$ as the "resistance" of an inductor or capacitor.
If all sources in a circuit are sine waves having the same frequency, we can do circuit analysis exactly as before by using complex impedances.

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

Given $v=10 \sin \omega t$ where $\omega=2 \pi \times 1000$, find $v_{C}(t)$.

Phasor Analysis

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

Given $v=10 \sin \omega t$ where $\omega=2 \pi \times 1000$, find $v_{C}(t)$.
(1) Find capacitor complex impedance

$$
Z=\frac{1}{j \omega C}=\frac{1}{6.28 j \times 10^{-4}}=-1592 j
$$

Phasor Analysis

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples +
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

Given $v=10 \sin \omega t$ where $\omega=2 \pi \times 1000$, find $v_{C}(t)$.
(1) Find capacitor complex impedance

$$
Z=\frac{1}{j \omega C}=\frac{1}{6.28 j \times 10^{-4}}=-1592 j
$$

(2) Solve circuit with phasors

$$
V_{C}=V \times \frac{Z}{R+Z}
$$

Phasor Analysis

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples +
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

Given $v=10 \sin \omega t$ where $\omega=2 \pi \times 1000$, find $v_{C}(t)$.
(1) Find capacitor complex impedance

$$
Z=\frac{1}{j \omega C}=\frac{1}{6.28 j \times 10^{-4}}=-1592 j
$$

(2) Solve circuit with phasors

$$
\begin{aligned}
V_{C} & =V \times \frac{Z}{R+Z} \\
& =-10 j \times \frac{-1592 j}{1000-1592 j}
\end{aligned}
$$

Phasor Analysis

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

Given $v=10 \sin \omega t$ where $\omega=2 \pi \times 1000$, find $v_{C}(t)$.
(1) Find capacitor complex impedance

$$
Z=\frac{1}{j \omega C}=\frac{1}{6.28 j \times 10^{-4}}=-1592 j
$$

(2) Solve circuit with phasors

$$
\begin{aligned}
V_{C} & =V \times \frac{Z}{R+Z} \\
& =-10 j \times \frac{-1592 j}{1000-1592 j} \\
& =-4.5-7.2 j=8.47 \angle-122^{\circ}
\end{aligned}
$$

Phasor Analysis

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

Given $v=10 \sin \omega t$ where $\omega=2 \pi \times 1000$, find $v_{C}(t)$.
(1) Find capacitor complex impedance

$$
Z=\frac{1}{j \omega C}=\frac{1}{6.28 j \times 10^{-4}}=-1592 j
$$

(2) Solve circuit with phasors

$$
\begin{aligned}
V_{C} & =V \times \frac{Z}{R+Z} \\
& =-10 j \times \frac{-1592 j}{1000-1592 j} \\
& =-4.5-7.2 j=8.47 \angle-122^{\circ} \\
v_{C} & =8.47 \cos \left(\omega t-122^{\circ}\right)
\end{aligned}
$$

Phasor Analysis

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

Given $v=10 \sin \omega t$ where $\omega=2 \pi \times 1000$, find $v_{C}(t)$.
(1) Find capacitor complex impedance

$$
Z=\frac{1}{j \omega C}=\frac{1}{6.28 j \times 10^{-4}}=-1592 j
$$

(2) Solve circuit with phasors

$$
\begin{aligned}
V_{C} & =V \times \frac{Z}{R+Z} \\
& =-10 j \times \frac{-1592 j}{1000-1592 j} \\
& =-4.5-7.2 j=8.47 \angle-122^{\circ} \\
v_{C} & =8.47 \cos \left(\omega t-122^{\circ}\right)
\end{aligned}
$$

(3) Draw a phasor diagram showing KVL:

$$
\begin{aligned}
& V=-10 j \\
& V_{C}=-4.5-7.2 j \\
& V_{R}=V-V_{C}=4.5-2.8 j=5.3 \angle-32^{\circ}
\end{aligned}
$$

Phasor Analysis

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

Given $v=10 \sin \omega t$ where $\omega=2 \pi \times 1000$, find $v_{C}(t)$.
(1) Find capacitor complex impedance

$$
Z=\frac{1}{j \omega C}=\frac{1}{6.28 j \times 10^{-4}}=-1592 j
$$

(2) Solve circuit with phasors

$$
\begin{aligned}
V_{C} & =V \times \frac{Z}{R+Z} \\
& =-10 j \times \frac{-1592 j}{1000-1592 j} \\
& =-4.5-7.2 j=8.47 \angle-122^{\circ} \\
v_{C} & =8.47 \cos \left(\omega t-122^{\circ}\right)
\end{aligned}
$$

(3) Draw a phasor diagram showing KVL:

$$
\begin{aligned}
& V=-10 j \\
& V_{C}=-4.5-7.2 j \\
& V_{R}=V-V_{C}=4.5-2.8 j=5.3 \angle-32^{\circ}
\end{aligned}
$$

Phasor Analysis

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

Given $v=10 \sin \omega t$ where $\omega=2 \pi \times 1000$, find $v_{C}(t)$.
(1) Find capacitor complex impedance

$$
Z=\frac{1}{j \omega C}=\frac{1}{6.28 j \times 10^{-4}}=-1592 j
$$

(2) Solve circuit with phasors

$$
\begin{aligned}
V_{C} & =V \times \frac{Z}{R+Z} \\
& =-10 j \times \frac{-1592 j}{1000-1592 j} \\
& =-4.5-7.2 j=8.47 \angle-122^{\circ} \\
v_{C} & =8.47 \cos \left(\omega t-122^{\circ}\right)
\end{aligned}
$$

(3) Draw a phasor diagram showing KVL:

$$
\begin{aligned}
& V=-10 j \\
& V_{C}=-4.5-7.2 j \\
& V_{R}=V-V_{C}=4.5-2.8 j=5.3 \angle-32^{\circ}
\end{aligned}
$$

Phasors add like vectors

CIVIL

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

Capacitors: $i=C \frac{d v}{d t} \quad \Rightarrow I$ leads V
Inductors: $v=L \frac{d i}{d t} \quad \Rightarrow V$ leads I

CIVIL

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

Capacitors: $i=C \frac{d v}{d t} \quad \Rightarrow I$ leads V
Inductors: $v=L \frac{d i}{d t} \quad \Rightarrow V$ leads I
Mnemonic: CIVIL $=$ "In a capacitor I lead V but V leads I in an inductor".

CIVIL

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

Capacitors: $i=C \frac{d v}{d t} \quad \Rightarrow I$ leads V
Inductors: $v=L \frac{d i}{d t} \quad \Rightarrow V$ leads I
Mnemonic: CIVIL = "In a capacitor I lead V but V leads I in an inductor".

COMPLEX ARITHMETIC TRICKS:

CIVIL

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

Capacitors: $i=C \frac{d v}{d t} \quad \Rightarrow I$ leads V
Inductors: $v=L \frac{d i}{d t} \quad \Rightarrow V$ leads I
Mnemonic: CIVIL = "In a capacitor I lead V but V leads I in an inductor".

COMPLEX ARITHMETIC TRICKS:
(1) $j \times j=-j \times-j=-1$

CIVIL

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

Capacitors: $i=C \frac{d v}{d t} \quad \Rightarrow I$ leads V
Inductors: $v=L \frac{d i}{d t} \quad \Rightarrow V$ leads I
Mnemonic: CIVIL = "In a capacitor I lead V but V leads I in an inductor".

COMPLEX ARITHMETIC TRICKS:
(1) $j \times j=-j \times-j=-1$
(2) $\frac{1}{j}=-j$

CIVIL

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

Capacitors: $i=C \frac{d v}{d t} \quad \Rightarrow I$ leads V
Inductors: $v=L \frac{d i}{d t} \quad \Rightarrow V$ leads I
Mnemonic: CIVIL = "In a capacitor I lead V but V leads I in an inductor".

COMPLEX ARITHMETIC TRICKS:

(1) $j \times j=-j \times-j=-1$
(2) $\frac{1}{j}=-j$
(3) $a+j b=r \angle \theta=r e^{j \theta}$
where $r=\sqrt{a^{2}+b^{2}}$ and $\theta=\arctan \frac{b}{a}\left(\pm 180^{\circ}\right.$ if $\left.a<0\right)$

CIVIL

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

Capacitors: $i=C \frac{d v}{d t} \quad \Rightarrow I$ leads V
Inductors: $v=L \frac{d i}{d t} \quad \Rightarrow V$ leads I
Mnemonic: CIVIL = "In a capacitor I lead V but V leads I in an inductor".

COMPLEX ARITHMETIC TRICKS:

(1) $j \times j=-j \times-j=-1$
(2) $\frac{1}{j}=-j$
(3) $a+j b=r \angle \theta=r e^{j \theta}$
where $r=\sqrt{a^{2}+b^{2}}$ and $\theta=\arctan \frac{b}{a}\left(\pm 180^{\circ}\right.$ if $\left.a<0\right)$
(4) $r \angle \theta=r e^{j \theta}=(r \cos \theta)+j(r \sin \theta)$

CIVIL

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

Capacitors: $i=C \frac{d v}{d t} \quad \Rightarrow I$ leads V
Inductors: $v=L \frac{d i}{d t} \quad \Rightarrow V$ leads I
Mnemonic: CIVIL $=$ "In a capacitor I lead V but V leads I in an inductor".

COMPLEX ARITHMETIC TRICKS:

(1) $j \times j=-j \times-j=-1$
(2) $\frac{1}{j}=-j$
(3) $a+j b=r \angle \theta=r e^{j \theta}$
where $r=\sqrt{a^{2}+b^{2}}$ and $\theta=\arctan \frac{b}{a}\left(\pm 180^{\circ}\right.$ if $\left.a<0\right)$
(4) $r \angle \theta=r e^{j \theta}=(r \cos \theta)+j(r \sin \theta)$
(5) $a \angle \theta \times b \angle \phi=a b \angle(\theta+\phi)$ and $\frac{a \angle \theta}{b \angle \phi}=\frac{a}{b} \angle(\theta-\phi)$.

Multiplication and division are much easier in polar form.

CIVIL

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

Capacitors: $i=C \frac{d v}{d t} \quad \Rightarrow I$ leads V
Inductors: $v=L \frac{d i}{d t} \quad \Rightarrow V$ leads I
Mnemonic: CIVIL $=$ "In a capacitor I lead V but V leads I in an inductor".

COMPLEX ARITHMETIC TRICKS:

(1) $j \times j=-j \times-j=-1$
(2) $\frac{1}{j}=-j$
(3) $a+j b=r \angle \theta=r e^{j \theta}$
where $r=\sqrt{a^{2}+b^{2}}$ and $\theta=\arctan \frac{b}{a}\left(\pm 180^{\circ}\right.$ if $\left.a<0\right)$
(4) $r \angle \theta=r e^{j \theta}=(r \cos \theta)+j(r \sin \theta)$
(5) $a \angle \theta \times b \angle \phi=a b \angle(\theta+\phi)$ and $\frac{a \angle \theta}{b \angle \phi}=\frac{a}{b} \angle(\theta-\phi)$.

Multiplication and division are much easier in polar form.
(6) All scientific calculators will convert rectangular to/from polar form.

CIVIL

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

Capacitors: $i=C \frac{d v}{d t} \quad \Rightarrow I$ leads V
Inductors: $v=L \frac{d i}{d t} \quad \Rightarrow V$ leads I
Mnemonic: CIVIL = "In a capacitor I lead V but V leads I in an inductor".

COMPLEX ARITHMETIC TRICKS:
(1) $j \times j=-j \times-j=-1$
(2) $\frac{1}{j}=-j$
(3) $a+j b=r \angle \theta=r e^{j \theta}$
where $r=\sqrt{a^{2}+b^{2}}$ and $\theta=\arctan \frac{b}{a}\left(\pm 180^{\circ}\right.$ if $\left.a<0\right)$
(4) $r \angle \theta=r e^{j \theta}=(r \cos \theta)+j(r \sin \theta)$
(5) $a \angle \theta \times b \angle \phi=a b \angle(\theta+\phi)$ and $\frac{a \angle \theta}{b \angle \phi}=\frac{a}{b} \angle(\theta-\phi)$.

Multiplication and division are much easier in polar form.
(6) All scientific calculators will convert rectangular to/from polar form.

Casio fx-991 (available in all exams except Maths) will do complex arithmetic $\left(+,-, \times, \div, x^{2}, \frac{1}{x},|x|, x^{*}\right)$ in CMPLX mode.

Learn how to use this: it will save lots of time and errors.

Impedance and Admittance

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

For any network (resistors+capacitors+inductors):

Impedance and Admittance

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

For any network (resistors+capacitors+inductors):
(1) Impedance $=$ Resistance $+j \times$ Reactance

$$
Z=R+j X(\Omega)
$$

Impedance and Admittance

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

For any network (resistors+capacitors+inductors):
(1) Impedance $=$ Resistance $+j \times$ Reactance

$$
\begin{aligned}
& Z=R+j X(\Omega) \\
& |Z|^{2}=R^{2}+X^{2} \quad \angle Z=\arctan \frac{X}{R}
\end{aligned}
$$

Impedance and Admittance

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

For any network (resistors+capacitors+inductors):
(1) Impedance $=$ Resistance $+j \times$ Reactance

$$
\begin{aligned}
& Z=R+j X(\Omega) \\
& |Z|^{2}=R^{2}+X^{2} \quad \angle Z=\arctan \frac{X}{R}
\end{aligned}
$$

(2) Admittance $=\frac{1}{\text { Impedance }}=$ Conductance $+j \times$ Susceptance

$$
Y=\frac{1}{Z}=G+j B \text { Siemens }(\mathrm{S})
$$

Impedance and Admittance

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

For any network (resistors+capacitors+inductors):
(1) Impedance $=$ Resistance $+j \times$ Reactance

$$
\begin{aligned}
& Z=R+j X(\Omega) \\
& |Z|^{2}=R^{2}+X^{2}
\end{aligned} \quad \angle Z=\arctan \frac{X}{R}
$$

(2) Admittance $=\frac{1}{\text { Impedance }}=$ Conductance $+j \times$ Susceptance

$$
\begin{aligned}
& Y=\frac{1}{Z}=G+j B \text { Siemens (S) } \\
& |Y|^{2}=\frac{1}{|Z|^{2}}=G^{2}+B^{2} \quad \angle Y=-\angle Z=\arctan \frac{B}{G}
\end{aligned}
$$

Impedance and Admittance

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

For any network (resistors+capacitors+inductors):
(1) Impedance $=$ Resistance $+j \times$ Reactance

$$
\begin{aligned}
& Z=R+j X(\Omega) \\
& |Z|^{2}=R^{2}+X^{2} \quad \angle Z=\arctan \frac{X}{R}
\end{aligned}
$$

(2) Admittance $=\frac{1}{\text { Impedance }}=$ Conductance $+j \times$ Susceptance

$$
\begin{aligned}
& Y=\frac{1}{Z}=G+j B \text { Siemens (S) } \\
& |Y|^{2}=\frac{1}{|Z|^{2}}=G^{2}+B^{2} \quad \angle Y=-\angle Z=\arctan \frac{B}{G}
\end{aligned}
$$

Note:

$$
Y=G+j B=\frac{1}{Z}
$$

Impedance and Admittance

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

For any network (resistors+capacitors+inductors):
(1) Impedance $=$ Resistance $+j \times$ Reactance

$$
\begin{aligned}
& Z=R+j X(\Omega) \\
& |Z|^{2}=R^{2}+X^{2} \quad \angle Z=\arctan \frac{X}{R}
\end{aligned}
$$

(2) Admittance $=\frac{1}{\text { Impedance }}=$ Conductance $+j \times$ Susceptance

$$
\begin{aligned}
& Y=\frac{1}{Z}=G+j B \text { Siemens (S) } \\
& |Y|^{2}=\frac{1}{|Z|^{2}}=G^{2}+B^{2} \quad \angle Y=-\angle Z=\arctan \frac{B}{G}
\end{aligned}
$$

Note:

$$
Y=G+j B=\frac{1}{Z}=\frac{1}{R+j X}
$$

Impedance and Admittance

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

For any network (resistors+capacitors+inductors):
(1) Impedance $=$ Resistance $+j \times$ Reactance

$$
\begin{aligned}
& Z=R+j X(\Omega) \\
& |Z|^{2}=R^{2}+X^{2} \quad \angle Z=\arctan \frac{X}{R}
\end{aligned}
$$

(2) Admittance $=\frac{1}{\text { Impedance }}=$ Conductance $+j \times$ Susceptance

$$
\begin{aligned}
& Y=\frac{1}{Z}=G+j B \text { Siemens (S) } \\
& |Y|^{2}=\frac{1}{|Z|^{2}}=G^{2}+B^{2} \quad \angle Y=-\angle Z=\arctan \frac{B}{G}
\end{aligned}
$$

Note:

$$
Y=G+j B=\frac{1}{Z}=\frac{1}{R+j X}=\frac{R}{R^{2}+X^{2}}+j \frac{-X}{R^{2}+X^{2}}
$$

Impedance and Admittance

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

For any network (resistors+capacitors+inductors):
(1) Impedance $=$ Resistance $+j \times$ Reactance

$$
\begin{aligned}
& Z=R+j X(\Omega) \\
& |Z|^{2}=R^{2}+X^{2}
\end{aligned} \quad \angle Z=\arctan \frac{X}{R}
$$

(2) Admittance $=\frac{1}{\text { Impedance }}=$ Conductance $+j \times$ Susceptance

$$
\begin{aligned}
& Y=\frac{1}{Z}=G+j B \text { Siemens (S) } \\
& |Y|^{2}=\frac{1}{|Z|^{2}}=G^{2}+B^{2} \quad \angle Y=-\angle Z=\arctan \frac{B}{G}
\end{aligned}
$$

Note:

$$
\begin{aligned}
Y=G+j B & =\frac{1}{Z}=\frac{1}{R+j X}=\frac{R}{R^{2}+X^{2}}+j \frac{-X}{R^{2}+X^{2}} \\
\text { So } G & =\frac{R}{R^{2}+X^{2}}=\frac{R}{|Z|^{2}} \\
B & =\frac{-X}{R^{2}+X^{2}}=\frac{-X}{|Z|^{2}}
\end{aligned}
$$

Impedance and Admittance

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary

For any network (resistors+capacitors+inductors):
(1) Impedance $=$ Resistance $+j \times$ Reactance

$$
\begin{aligned}
& Z=R+j X(\Omega) \\
& |Z|^{2}=R^{2}+X^{2} \quad \angle Z=\arctan \frac{X}{R}
\end{aligned}
$$

(2) Admittance $=\frac{1}{\text { Impedance }}=$ Conductance $+j \times$ Susceptance

$$
\begin{aligned}
& Y=\frac{1}{Z}=G+j B \text { Siemens (S) } \\
& |Y|^{2}=\frac{1}{|Z|^{2}}=G^{2}+B^{2} \quad \angle Y=-\angle Z=\arctan \frac{B}{G}
\end{aligned}
$$

Note:

$$
\begin{aligned}
Y=G+j B & =\frac{1}{Z}=\frac{1}{R+j X}=\frac{R}{R^{2}+X^{2}}+j \frac{-X}{R^{2}+X^{2}} \\
\text { So } \quad G & =\frac{R}{R^{2}+X^{2}}=\frac{R}{|Z|^{2}} \\
B & =\frac{-X}{R^{2}+X^{2}}=\frac{-X}{|Z|^{2}}
\end{aligned}
$$

Beware: $G \neq \frac{1}{R}$ unless $X=0$.

Summary

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL

Impedance and
Admittance

- Summary
- Sine waves are the only bounded signals whose shape is unchanged by differentiation.

Summary

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary
- Sine waves are the only bounded signals whose shape is unchanged by differentiation.
- Think of a sine wave as the projection of a rotating rod onto the horizontal (or real) axis.
- A phasor is a complex number representing the length and position of the rod at time $t=0$.

Summary

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary
- Sine waves are the only bounded signals whose shape is unchanged by differentiation.
- Think of a sine wave as the projection of a rotating rod onto the horizontal (or real) axis.
- A phasor is a complex number representing the length and position of the rod at time $t=0$.
- If $V=a+j b=r \angle \theta=r e^{j \theta}$, then

$$
v(t)=a \cos \omega t-b \sin \omega t=r \cos (\omega t+\theta)=\Re\left(V e^{j \omega t}\right)
$$

Summary

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary
- Sine waves are the only bounded signals whose shape is unchanged by differentiation.
- Think of a sine wave as the projection of a rotating rod onto the horizontal (or real) axis.
- A phasor is a complex number representing the length and position of the rod at time $t=0$.
- If $V=a+j b=r \angle \theta=r e^{j \theta}$, then

$$
v(t)=a \cos \omega t-b \sin \omega t=r \cos (\omega t+\theta)=\Re\left(V e^{j \omega t}\right)
$$

- The angular frequency $\omega=2 \pi f$ is assumed known.

Summary

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary
- Sine waves are the only bounded signals whose shape is unchanged by differentiation.
- Think of a sine wave as the projection of a rotating rod onto the horizontal (or real) axis.
- A phasor is a complex number representing the length and position of the rod at time $t=0$.
- If $V=a+j b=r \angle \theta=r e^{j \theta}$, then

$$
v(t)=a \cos \omega t-b \sin \omega t=r \cos (\omega t+\theta)=\Re\left(V e^{j \omega t}\right)
$$

- The angular frequency $\omega=2 \pi f$ is assumed known.
- If all sources in a linear circuit are sine waves having the same frequency, we can use phasors for circuit analysis:

Summary

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary
- Sine waves are the only bounded signals whose shape is unchanged by differentiation.
- Think of a sine wave as the projection of a rotating rod onto the horizontal (or real) axis.
- A phasor is a complex number representing the length and position of the rod at time $t=0$.
- If $V=a+j b=r \angle \theta=r e^{j \theta}$, then

$$
v(t)=a \cos \omega t-b \sin \omega t=r \cos (\omega t+\theta)=\Re\left(V e^{j \omega t}\right)
$$

- The angular frequency $\omega=2 \pi f$ is assumed known.
- If all sources in a linear circuit are sine waves having the same frequency, we can use phasors for circuit analysis:
- Use complex impedances: $j \omega L$ and $\frac{1}{j \omega C}$

Summary

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary
- Sine waves are the only bounded signals whose shape is unchanged by differentiation.
- Think of a sine wave as the projection of a rotating rod onto the horizontal (or real) axis.
- A phasor is a complex number representing the length and position of the rod at time $t=0$.
- If $V=a+j b=r \angle \theta=r e^{j \theta}$, then

$$
v(t)=a \cos \omega t-b \sin \omega t=r \cos (\omega t+\theta)=\Re\left(V e^{j \omega t}\right)
$$

- The angular frequency $\omega=2 \pi f$ is assumed known.
- If all sources in a linear circuit are sine waves having the same frequency, we can use phasors for circuit analysis:
- Use complex impedances: $j \omega L$ and $\frac{1}{j \omega C}$
- Mnemonic: CIVIL tells you whether I leads V or vice versa ("leads" means "reaches its peak before").

Summary

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary
- Sine waves are the only bounded signals whose shape is unchanged by differentiation.
- Think of a sine wave as the projection of a rotating rod onto the horizontal (or real) axis.
- A phasor is a complex number representing the length and position of the rod at time $t=0$.
- If $V=a+j b=r \angle \theta=r e^{j \theta}$, then

$$
v(t)=a \cos \omega t-b \sin \omega t=r \cos (\omega t+\theta)=\Re\left(V e^{j \omega t}\right)
$$

- The angular frequency $\omega=2 \pi f$ is assumed known.
- If all sources in a linear circuit are sine waves having the same frequency, we can use phasors for circuit analysis:
- Use complex impedances: $j \omega L$ and $\frac{1}{j \omega C}$
- Mnemonic: CIVIL tells you whether I leads V or vice versa ("leads" means "reaches its peak before").
- Phasors eliminate time from equations ©

Summary

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary
- Sine waves are the only bounded signals whose shape is unchanged by differentiation.
- Think of a sine wave as the projection of a rotating rod onto the horizontal (or real) axis.
- A phasor is a complex number representing the length and position of the rod at time $t=0$.
- If $V=a+j b=r \angle \theta=r e^{j \theta}$, then

$$
v(t)=a \cos \omega t-b \sin \omega t=r \cos (\omega t+\theta)=\Re\left(V e^{j \omega t}\right)
$$

- The angular frequency $\omega=2 \pi f$ is assumed known.
- If all sources in a linear circuit are sine waves having the same frequency, we can use phasors for circuit analysis:
- Use complex impedances: $j \omega L$ and $\frac{1}{j \omega C}$
- Mnemonic: CIVIL tells you whether I leads V or vice versa ("leads" means "reaches its peak before").
- Phasors eliminate time from equations © , converts simultaneous differential equations into simultaneous linear equations ()$\cdot() \cdot()$.

Summary

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary
- Sine waves are the only bounded signals whose shape is unchanged by differentiation.
- Think of a sine wave as the projection of a rotating rod onto the horizontal (or real) axis.
- A phasor is a complex number representing the length and position of the rod at time $t=0$.
- If $V=a+j b=r \angle \theta=r e^{j \theta}$, then

$$
v(t)=a \cos \omega t-b \sin \omega t=r \cos (\omega t+\theta)=\Re\left(V e^{j \omega t}\right)
$$

- The angular frequency $\omega=2 \pi f$ is assumed known.
- If all sources in a linear circuit are sine waves having the same frequency, we can use phasors for circuit analysis:
- Use complex impedances: $j \omega L$ and $\frac{1}{j \omega C}$
- Mnemonic: CIVIL tells you whether I leads V or vice versa ("leads" means "reaches its peak before").
- Phasors eliminate time from equations © , converts simultaneous differential equations into simultaneous linear equations ()$\cdot() \cdot()$.
- Needs complex numbers $: \cdot$ but worth it.

Summary

10: Sine waves and phasors

- Sine Waves
- Rotating Rod
- Phasors
- Phasor Examples
- Phasor arithmetic
- Complex Impedances
- Phasor Analysis
- CIVIL
- Impedance and

Admittance

- Summary
- Sine waves are the only bounded signals whose shape is unchanged by differentiation.
- Think of a sine wave as the projection of a rotating rod onto the horizontal (or real) axis.
- A phasor is a complex number representing the length and position of the rod at time $t=0$.
- If $V=a+j b=r \angle \theta=r e^{j \theta}$, then

$$
v(t)=a \cos \omega t-b \sin \omega t=r \cos (\omega t+\theta)=\Re\left(V e^{j \omega t}\right)
$$

- The angular frequency $\omega=2 \pi f$ is assumed known.
- If all sources in a linear circuit are sine waves having the same frequency, we can use phasors for circuit analysis:
- Use complex impedances: $j \omega L$ and $\frac{1}{j \omega C}$
- Mnemonic: CIVIL tells you whether I leads V or vice versa ("leads" means "reaches its peak before").
- Phasors eliminate time from equations © , converts simultaneous differential equations into simultaneous linear equations ()$\cdot() \cdot()$.
- Needs complex numbers :) but worth it.

See Hayt Ch 10 or Irwin Ch 8

