10: Sine waves
And phasors
Sine Waves
Rotating Rod
Phasors
Phasor Examples 🛛 🕂
Phasor arithmetic
Complex Impedances
Phasor Analysis +
CIVIL
Impedance and
Admittance
Summary

10: Sine waves and phasors

Sine Waves

10: Sine waves and phasors Sine Waves Rotating Rod Phasors Phasor Examples + Phasor arithmetic Complex Impedances Phasor Analysis + CIVIL Impedance and Admittance Summary For inductors and capacitors $i = C \frac{dv}{dt}$ and $v = L \frac{di}{dt}$ so we need to differentiate i(t) and v(t) when analysing circuits containing them.

Usually differentiation changes the shape of a waveform.

For bounded waveforms there is only one exception:

 $v(t) = \sin t \Rightarrow \frac{dv}{dt} = \cos t$ same shape but with a time shift.

 $\sin t$ completes one full period every time t increases by 2π .

 $\sin 2\pi ft$ makes f complete repetitions every time t increases by 1; this gives a *frequency* of f cycles per second, or f Hz. We often use the *angular frequency*, $\omega = 2\pi f$ instead. ω is measured in radians per second. E.g. $50 \text{ Hz} \simeq 314 \text{ rad.s}^{-1}$.

Rotating Rod

10: Sine waves and phasors Sine Waves ▷ Rotating Rod Phasors Phasor Examples + Phasor arithmetic Complex Impedances Phasor Analysis + CIVIL Impedance and Admittance Summary A useful way to think of a cosine wave is as the projection of a rotating rod onto the horizontal axis.

For a unit-length rod, the projection has length $\cos \theta$.

If the rod is rotating at a speed of f revolutions per second, then θ increases uniformly with time: $\theta = 2\pi f t$.

The only difference between \cos and \sin is the starting position of the rod:

 $v = \cos 2\pi ft \qquad \qquad v = \sin 2\pi ft = \cos \left(2\pi ft - \frac{\pi}{2}\right)$

 $\sin 2\pi ft \ lags \cos 2\pi ft$ by 90° (or $\frac{\pi}{2}$ radians) because its peaks occurs $\frac{1}{4}$ of a cycle later (equivalently $\cos \ leads \ sin$).

Phasors

10: Sine waves and phasors Sine Waves Rotating Rod ▷ Phasors Phasor Examples + Phasor arithmetic Complex Impedances Phasor Analysis + CIVIL Impedance and Admittance Summary If the rod has length A and starts at an angle ϕ then the projection onto the horizontal axis is

 $A\cos(2\pi ft + \phi)$ = $A\cos\phi\cos 2\pi ft - A\sin\phi\sin 2\pi ft$ = $X\cos 2\pi ft - Y\sin 2\pi ft$

At time t = 0, the tip of the rod has coordinates $(X, Y) = (A \cos \phi, A \sin \phi)$.

If we think of the plane as an Argand Diagram (or complex plane), then the complex number X + jY corresponding to the tip of the rod at t = 0 is called a *phasor*.

The *magnitude* of the phasor, $A = \sqrt{X^2 + Y^2}$, gives the amplitude (peak value) of the sine wave.

The *argument* of the phasor, $\phi = \arctan \frac{Y}{X}$, gives the phase shift relative to $\cos 2\pi ft$.

If $\phi > 0$, it is *leading* and if $\phi < 0$, it is *lagging* relative to $\cos 2\pi f t$.

10: Sine waves and phasors Sine Waves Rotating Rod Phasors ▷ Phasor Examples + Phasor arithmetic Complex Impedances Phasor Analysis + CIVIL Impedance and Admittance Summary

$$V = 1, f = 50 \text{ Hz}$$

 $v(t) = \cos 2\pi f t$
 $V = -i$

 $v(t) = \sin 2\pi f t$

 $V = -1 - 0.5j = 1.12\angle -153^{\circ}$ $v(t) = -\cos 2\pi ft + 0.5\sin 2\pi ft$ $= 1.12\cos (2\pi ft - 2.68)$

V = X + jY $v(t) = X \cos 2\pi ft - Y \sin 2\pi ft$ Beware minus sign.

$$V = A \angle \phi = A e^{j\phi}$$
$$v(t) = A \cos \left(2\pi f t + \phi\right)$$

A phasor represents an entire waveform (encompassing all time) as a single complex number. We assume the frequency, f, is known.

A phasor is not time-varying, so we use a capital letter: V. A waveform is time-varying, so we use a small letter: v(t).

Casio: $Pol(X, Y) \to A, \phi, Rec(A, \phi) \to X, Y$. Saved $\to X \& Y$ mems.

Phasors: 10 - 5 / 11

A phasor is a complex number, V, that uniquely defines a waveform, v(t), via the mapping $V = Ae^{j\phi} \leftrightarrow v(t) = A\cos(2\pi ft + \phi)$. It is sometimes convenient to give an algebraic formula for this.

For the direction $V \longrightarrow v(t)$ the mapping is easy:

$$v(t) = \Re \left(V e^{j2\pi ft} \right) = \frac{1}{2} \left(V + V^* \right) \cos 2\pi ft + \frac{1}{2} j \left(V - V^* \right) \sin 2\pi ft.$$

The reverse mapping, $V \leftarrow v(t)$ is a bit more complicated and we use a technique that you will also use in the Maths of Fourier transforms. The mapping is given by

$$V = 2f \int_0^{\frac{1}{f}} v(t)e^{-j2\pi ft}dt.$$

To confrm that this is true, we can substitute $v(t) = A \cos (2\pi f t + \phi)$ and do the integration:

$$2f \int_{0}^{\frac{1}{f}} v(t)e^{-j2\pi ft} dt = Af \int_{0}^{\frac{1}{f}} \left(e^{j(2\pi ft+j\phi} + e^{-j2\pi ft-j\phi} \right) e^{-j2\pi ft} dt$$
$$= Af \int_{0}^{\frac{1}{f}} \left(e^{j\phi} + e^{-j4\pi ft-j\phi} \right) dt = Ae^{j\phi} + Afe^{-j\phi} \int_{0}^{\frac{1}{f}} e^{-j4\pi ft} dt$$
$$= Ae^{j\phi} + \frac{Afe^{-j\phi}}{-j4\pi f} \left[e^{-j4\pi ft} \right]_{0}^{\frac{1}{f}} = Ae^{j\phi} + \frac{Afe^{-j\phi}}{-j4\pi f} \left(e^{-j4\pi} - 1 \right) = Ae^{j\phi}$$

E1.1 Analysis of Circuits (2017-10213)

Phasors: 10 - note 1 of slide 5

Phasor arithmetic

10: Sine waves and phasors Sine Waves Rotating Rod Phasors Phasor Examples + ▷ Phasor arithmetic Complex Impedances Phasor Analysis + CIVIL Impedance and Admittance Summary

Phasors

V = P + jQ

aV

 $V_1 + V_2$

Waveforms

$$v(t) = P \cos \omega t - Q \sin \omega t$$

where $\omega = 2\pi f$.

 $a \times v(t) = aP \cos \omega t - aQ \sin \omega t$ $v_1(t) + v_2(t)$

Adding or scaling is the same for waveforms and phasors.

 $\dot{V} = (-\omega Q) + j(\omega P)$ = $j\omega (P + jQ)$ = $j\omega V$ $\frac{dv}{dt} = -\omega P \sin \omega t - \omega Q \cos \omega t$ = $(-\omega Q) \cos \omega t - (\omega P) \sin \omega t$

Differentiating waveforms corresponds to multiplying phasors by $j\omega$.

Rotate anti-clockwise 90° and scale by $\omega = 2\pi f$.

10: Sine waves and phasors

Sine Waves

Rotating Rod Phasors

Phasor Examples + Phasor arithmetic

+

Complex

Impedances
Phasor Analysis

CIVIL

Impedance and Admittance

Summary

$$v(t) = Ri(t) \Rightarrow V = RI \quad \Rightarrow \frac{V}{I} = R$$

Inductor:

 $v(t) = L \frac{di}{dt} \Rightarrow V = j\omega LI \quad \Rightarrow \frac{V}{I} = j\omega L$

For all three components, phasors obey Ohm's law if we use the *complex impedances* $j\omega L$ and $\frac{1}{j\omega C}$ as the "resistance" of an inductor or capacitor.

If all sources in a circuit are sine waves having the same frequency, we can do circuit analysis exactly as before by using complex impedances. +

10: Sine waves and phasors

Sine Waves Rotating Rod

Phasors

Phasor Examples

Phasor arithmetic

Complex Impedances

 \triangleright Phasor Analysis +

CIVIL

Impedance and

Admittance

Summary

Given $v = 10 \sin \omega t$ where $\omega = 2\pi \times 1000$, find $v_C(t)$.

(1) Find capacitor complex impedance $Z = \frac{1}{j\omega C} = \frac{1}{6.28j \times 10^{-4}} = -1592j$

(2) Solve circuit with phasors $V_C = V \times \frac{Z}{R+Z}$ $= -10j \times \frac{-1592j}{1000-1592j}$ $= -4.5 - 7.2j = 8.47\angle -122^{\circ}$ $v_C = 8.47\cos(\omega t - 122^{\circ})$

(3) Draw a phasor diagram showing KVL: V = -10j $V_C = -4.5 - 7.2j$ $V_R = V - V_C = 4.5 - 2.8j = 5.3 \angle -32^\circ$ Phasors add like vectors

To solve the problem form the previous slide without using phasors, we define i to be the current flowing clockwise and use the capacitor equation $i = C \frac{dv_C}{dt}$.

From KVL, we have $v = v_R + v_C = iR + v_C$.

Differentiating and applying the capacitor equation gives $\frac{dv}{dt} = 10\omega\cos\omega t = R\frac{di}{dt} + \frac{1}{C}i$.

We need to find the particular integral for the above equation. To do so, we guess that the answer will be of the form $i = A \cos \omega t + B \sin \omega t$ and substitute it into the equation (multiplied by C).

$$10C\omega\cos\omega t = RC(-A\omega\sin\omega t + B\omega\cos\omega t) + (A\cos\omega t + B\sin\omega t)$$
$$= (A + RCB\omega)\cos\omega t + (B - RCA\omega)\sin\omega t$$

which gives two siultaneous equations: $A + RC\omega B = 10C\omega$ and $-RC\omega A + B = 0$. Substituting values for R, C and ω gives A + 0.628B = 0.00628 and -0.628A + B = 0. Solving these simultaneous equations gives A = 4.5 mA and B = 2.8 mA.

The resistor voltage is therefore $v_R = iR = 4.5 \cos \omega t + 2.8 \sin \omega t$ and therefore, from KVL, the capacitor votage is $v_C = v - v_R = -4.5 \cos \omega t + 7.2 \sin \omega t$.

Thus we get the same answer as using phasors but with more work even for a simple circuit like this. For more complicated circuits the difference is much much bigger. 10: Sine waves and phasors Sine Waves Rotating Rod Phasors Phasor Examples + Phasor arithmetic Complex Impedances Phasor Analysis + ▷ CIVIL Impedance and Admittance Summary Capacitors: $i = C \frac{dv}{dt} \implies I$ leads VInductors: $v = L \frac{di}{dt} \implies V$ leads I

Mnemonic: CIVIL = "In a capacitor I lead V but V leads I in an inductor".

COMPLEX ARITHMETIC TRICKS:

(1) j × j = -j × -j = -1
(2) ¹/_j = -j
(3) a + jb = r∠θ = re^{jθ} where r = √a² + b² and θ = arctan ^b/_a (±180° if a < 0)
(4) r∠θ = re^{jθ} = (r cos θ) + j (r sin θ)
(5) a∠θ × b∠φ = ab∠ (θ + φ) and ^{a∠θ}/_{b∠φ} = ^a/_b∠ (θ - φ). Multiplication and division are much easier in polar form.
(6) All scientific calculators will convert rectangular to/from polar form.
Casio fx-991 (available in all exams except Maths) will do complex arithmetic (+, -, ×, ÷, x², ¹/_x, |x|, x*) in CMPLX mode.
Learn how to use this: it will save lots of time and errors.

E1.1 Analysis of Circuits (2017-10213)

10: Sine waves and phasors Sine Waves Rotating Rod Phasors Phasor Examples + Phasor arithmetic Complex Impedances Phasor Analysis + CIVIL Impedance and ▷ Admittance

Summary

For any network (resistors+capacitors+inductors):

(1) Impedance = Resistance + $j \times$ Reactance $Z = R + jX (\Omega)$ $|Z|^2 = R^2 + X^2$ $\angle Z = \arctan \frac{X}{R}$ (2) Admittance = $\frac{1}{\text{Impedance}}$ = Conductance + $j \times$ Susceptance $Y = \frac{1}{Z} = G + jB$ Siemens (S) $|Y|^2 = \frac{1}{|Z|^2} = G^2 + B^2$ $\angle Y = -\angle Z = \arctan \frac{B}{G}$

Note:

$$Y = G + jB = \frac{1}{Z} = \frac{1}{R + jX} = \frac{R}{R^2 + X^2} + j\frac{-X}{R^2 + X^2}$$

So $G = \frac{R}{R^2 + X^2} = \frac{R}{|Z|^2}$
 $B = \frac{-X}{R^2 + X^2} = \frac{-X}{|Z|^2}$

<u>Beware:</u> $G \neq \frac{1}{R}$ unless X = 0.

Summary

+

10: Sine waves and phasors

Sine Waves

Rotating Rod

Phasors

Phasor Examples

Phasor arithmetic

- Complex Impedances
- Phasor Analysis +

CIVIL

- Impedance and
- Admittance
- \triangleright Summary

- Sine waves are the only bounded signals whose shape is unchanged by differentiation.
- Think of a sine wave as the projection of a rotating rod onto the horizontal (or real) axis.
 - A *phasor* is a complex number representing the length and position of the rod at time t = 0.

$$\circ \quad \text{If } V = a + jb = r \angle \theta = r e^{j\theta} \text{, then}$$

- $v(t) = a\cos\omega t b\sin\omega t = r\cos\left(\omega t + \theta\right) = \Re\left(Ve^{j\omega t}\right)$
- The angular frequency $\omega = 2\pi f$ is assumed known.
- If all sources in a linear circuit are sine waves having the same frequency, we can use phasors for circuit analysis:
 - Use complex impedances: $j\omega L$ and $\frac{1}{j\omega C}$
 - Mnemonic: CIVIL tells you whether I leads V or vice versa ("leads" means "reaches its peak before").
 - Phasors eliminate time from equations ©, converts simultaneous differential equations into simultaneous linear equations ©©©.
 - Needs complex numbers 🙂 but worth it.

See Hayt Ch 10 or Irwin Ch 8