10: Sine waves
D and phasors

Sine Waves

Rotating Rod
Phasors
Phasor Examples +
Phasor arithmetic
Complex Impedances
Phasor Analysis + CIVIL
Impedance and Admittance Summary

10: Sine waves and phasors

Sine Waves

10: Sine waves and phasors
\triangleright Sine Waves
Rotating Rod

Phasors

Phasor Examples +
Phasor arithmetic Complex Impedances Phasor Analysis + CIVIL
Impedance and Admittance Summary

For inductors and capacitors $i=C \frac{d v}{d t}$ and $v=L \frac{d i}{d t}$ so we need to differentiate $i(t)$ and $v(t)$ when analysing circuits containing them.

Usually differentiation changes the shape of a waveform.

For bounded waveforms there is only one exception:

$v(t)=\sin t \Rightarrow \frac{d v}{d t}=\cos t$
same shape but with a time shift.

$\sin t$ completes one full period every time t increases by 2π.

$\sin 2 \pi f t$ makes f complete repetitions every time t increases by 1 ; this gives a frequency of f cycles per second, or $f \mathrm{~Hz}$.
We often use the angular frequency, $\omega=2 \pi f$ instead.
ω is measured in radians per second. E.g. $50 \mathrm{~Hz} \simeq 314 \mathrm{rad} . \mathrm{s}^{-1}$.

Rotating Rod

10: Sine waves and

phasors

Sine Waves

\triangle Rotating Rod

Phasors

Phasor Examples +
Phasor arithmetic Complex Impedances Phasor Analysis + CIVIL
Impedance and Admittance

A useful way to think of a cosine wave is as the projection of a rotating rod onto the horizontal axis.

For a unit-length rod, the projection has length $\cos \theta$.
If the rod is rotating at a speed of f revolutions per second, then θ increases uniformly with time:
$\theta=2 \pi f t$.
The only difference between \cos and \sin is the starting position of the rod:

$$
v=\cos 2 \pi f t
$$

$$
v=\sin 2 \pi f t=\cos \left(2 \pi f t-\frac{\pi}{2}\right)
$$

$\sin 2 \pi f t$ lags $\cos 2 \pi f t$ by 90° (or $\frac{\pi}{2}$ radians) because its peaks occurs $\frac{1}{4}$ of a cycle later (equivalently cos leads \sin).

Phasors

10: Sine waves and phasors

Sine Waves

Rotating Rod

\triangleright Phasors
Phasor Examples +
Phasor arithmetic Complex Impedances Phasor Analysis + CIVIL
Impedance and Admittance Summary

If the rod has length A and starts at an angle ϕ then the projection onto the horizontal axis is

$$
\begin{aligned}
& A \cos (2 \pi f t+\phi) \\
& \quad=A \cos \phi \cos 2 \pi f t-A \sin \phi \sin 2 \pi f t \\
& \quad=X \cos 2 \pi f t-Y \sin 2 \pi f t
\end{aligned}
$$

At time $t=0$, the tip of the rod has coordinates $(X, Y)=(A \cos \phi, A \sin \phi)$.

If we think of the plane as an Argand Diagram (or complex plane), then the complex number $X+j Y$ corresponding to the tip of the rod at $t=0$ is called a phasor.
The magnitude of the phasor, $A=\sqrt{X^{2}+Y^{2}}$, gives the amplitude (peak value) of the sine wave.
The argument of the phasor, $\phi=\arctan \frac{Y}{X}$, gives the phase shift relative to $\cos 2 \pi f t$.
If $\phi>0$, it is leading and if $\phi<0$, it is lagging relative to $\cos 2 \pi f t$.

Phasor Examples

10: Sine waves and phasors

Sine Waves

Rotating Rod

Phasors

\triangleright Phasor Examples +
Phasor arithmetic Complex Impedances Phasor Analysis + CIVIL
Impedance and Admittance Summary

$$
\begin{aligned}
V & =1, f=50 \mathrm{~Hz} \\
v(t) & =\cos 2 \pi f t \\
V & =-j \\
v(t) & =\sin 2 \pi f t \\
V & =-1-0.5 j=1.12 \angle-153^{\circ} \\
v(t) & =-\cos 2 \pi f t+0.5 \sin 2 \pi f t \\
& =1.12 \cos (2 \pi f t-2.68) \\
V & =X+j Y \\
v(t) & =X \cos 2 \pi f t-Y \sin 2 \pi f t
\end{aligned}
$$

Beware minus sign.

$V=A \angle \phi=A e^{j \phi}$

$e^{j \phi}$

$$
v(t)=A \cos (2 \pi f t+\phi)
$$

$v(t)=A \cos (2 \pi f t+\phi)$

A phasor represents an entire waveform (encompassing all time) as a single complex number. We assume the frequency, f, is known.

A phasor is not time-varying, so we use a capital letter: V.
A waveform is time-varying, so we use a small letter: $v(t)$.
Casio: $\operatorname{Pol}(X, Y) \rightarrow A, \phi, \operatorname{Rec}(A, \phi) \rightarrow X, Y$. Saved $\rightarrow X \& Y$ mems.

[Algebraic Phasor \leftrightarrow Waveform Mapping]

A phasor is a complex number, V, that uniquely defines a waveform, $v(t)$, via the mapping $V=$ $A e^{j \phi} \longleftrightarrow v(t)=A \cos (2 \pi f t+\phi)$. It is sometimes convenient to give an algebraic formula for this.

For the direction $V \longrightarrow v(t)$ the mapping is easy:

$$
v(t)=\Re\left(V e^{j 2 \pi f t}\right)=\frac{1}{2}\left(V+V^{*}\right) \cos 2 \pi f t+\frac{1}{2} j\left(V-V^{*}\right) \sin 2 \pi f t .
$$

The reverse mapping, $V \longleftarrow v(t)$ is a bit more complicated and we use a technique that you will also use in the Maths of Fourier transforms. The mapping is given by

$$
V=2 f \int_{0}^{\frac{1}{f}} v(t) e^{-j 2 \pi f t} d t
$$

To confrm that this is true, we can substitute $v(t)=A \cos (2 \pi f t+\phi)$ and do the integration:

$$
\begin{aligned}
2 f \int_{0}^{\frac{1}{f}} v(t) e^{-j 2 \pi f t} d t & =A f \int_{0}^{\frac{1}{f}}\left(e^{j(2 \pi f t+j \phi}+e^{-j 2 \pi f t-j \phi}\right) e^{-j 2 \pi f t} d t \\
& =A f \int_{0}^{\frac{1}{f}}\left(e^{j \phi}+e^{-j 4 \pi f t-j \phi}\right) d t=A e^{j \phi}+A f e^{-j \phi} \int_{0}^{\frac{1}{f}} e^{-j 4 \pi f t} d t \\
& =A e^{j \phi}+\frac{A f e^{-j \phi}}{-j 4 \pi f}\left[e^{-j 4 \pi f t}\right]_{0}^{\frac{1}{f}}=A e^{j \phi}+\frac{A f e^{-j \phi}}{-j 4 \pi f}\left(e^{-j 4 \pi}-1\right)=A e^{j \phi}
\end{aligned}
$$

Phasor arithmetic

10: Sine waves and phasors

Phasors

$$
V=P+j Q
$$

Rotating Rod

Phasors
Phasor Examples + \downarrow Phasor arithmetic Complex Impedances Phasor Analysis + CIVIL
Impedance and Admittance Summary
$V_{1}+V_{2}$

Waveforms

$$
v(t)=P \cos \omega t-Q \sin \omega t
$$

$$
\text { where } \omega=2 \pi f
$$

$$
a V \quad a \times v(t)=a P \cos \omega t-a Q \sin \omega t
$$

Adding or scaling is the same for waveforms and phasors.

$$
\begin{aligned}
\dot{V} & =(-\omega Q)+j(\omega P) \\
& =j \omega(P+j Q) \\
& =j \omega V
\end{aligned}
$$

Differentiating waveforms corresponds to multiplying phasors by $j \omega$.

Rotate anti-clockwise 90° and scale by $\omega=2 \pi f$.

Complex Impedances

10: Sine waves and phasors
Sine Waves
Rotating Rod
Phasors
Phasor Examples +
Phasor arithmetic
Complex
Impedances
Phasor Analysis $\quad+$ CIVIL
Impedance and Admittance
Summary

Resistor:
$v(t)=R i(t) \Rightarrow V=R I \quad \Rightarrow \frac{V}{I}=R$

Inductor:
$v(t)=L \frac{d i}{d t} \Rightarrow V=j \omega L I \quad \Rightarrow \frac{V}{I}=j \omega L$

Capacitor:
$i(t)=C \frac{d v}{d t} \Rightarrow I=j \omega C V \quad \Rightarrow \frac{V}{I}=\frac{1}{j \omega C}$

For all three components, phasors obey Ohm's law if we use the complex impedances $j \omega L$ and $\frac{1}{j \omega C}$ as the "resistance" of an inductor or capacitor.
If all sources in a circuit are sine waves having the same frequency, we can do circuit analysis exactly as before by using complex impedances.

10: Sine waves and phasors

Sine Waves

Rotating Rod

Phasors

Phasor Examples +
Phasor arithmetic Complex Impedances \triangleright Phasor Analysis + CIVIL
Impedance and Admittance Summary

Given $v=10 \sin \omega t$ where $\omega=2 \pi \times 1000$, find $v_{C}(t)$.
(1) Find capacitor complex impedance

$$
Z=\frac{1}{j \omega C}=\frac{1}{6.28 j \times 10^{-4}}=-1592 j
$$

(2) Solve circuit with phasors

$$
\begin{aligned}
V_{C} & =V \times \frac{Z}{R+Z} \\
& =-10 j \times \frac{-1592 j}{1000-1592 j} \\
& =-4.5-7.2 j=8.47 \angle-122^{\circ} \\
v_{C} & =8.47 \cos \left(\omega t-122^{\circ}\right)
\end{aligned}
$$

(3) Draw a phasor diagram showing KVL:

$$
\begin{aligned}
& V=-10 j \\
& V_{C}=-4.5-7.2 j \\
& V_{R}=V-V_{C}=4.5-2.8 j=5.3 \angle-32^{\circ}
\end{aligned}
$$

Phasors add like vectors

[Differential Equation Analysis]

To solve the problem form the previous slide without using phasors, we define i to be the current flowing clockwise and use the capacitor equation $i=C \frac{d v_{C}}{d t}$.
From KVL, we have $v=v_{R}+v_{C}=i R+v_{C}$.
Differentiating and applying the capacitor equation gives $\frac{d v}{d t}=10 \omega \cos \omega t=R \frac{d i}{d t}+\frac{1}{C} i$.
We need to find the particular integral for the above equation. To do so, we guess that the answer will be of the form $i=A \cos \omega t+B \sin \omega t$ and substitute it into the equation (multiplied by C).

$$
\begin{aligned}
10 C \omega \cos \omega t & =R C(-A \omega \sin \omega t+B \omega \cos \omega t)+(A \cos \omega t+B \sin \omega t) \\
& =(A+R C B \omega) \cos \omega t+(B-R C A \omega) \sin \omega t
\end{aligned}
$$

which gives two siultaneous equations: $A+R C \omega B=10 C \omega$ and $-R C \omega A+B=0$. Substituting values for R, C and ω gives $A+0.628 B=0.00628$ and $-0.628 A+B=0$. Solving these simultaneous equations gives $A=4.5 \mathrm{~mA}$ and $B=2.8 \mathrm{~mA}$.

The resistor voltage is therefore $v_{R}=i R=4.5 \cos \omega t+2.8 \sin \omega t$ and therefore, from KVL, the capacitor votage is $v_{C}=v-v_{R}=-4.5 \cos \omega t+7.2 \sin \omega t$.

Thus we get the same answer as using phasors but with more work even for a simple circuit like this. For more complicated circuits the difference is much much bigger.

CIVIL

10: Sine waves and phasors

Sine Waves

Rotating Rod

Phasors

Phasor Examples
Phasor arithmetic Complex Impedances Phasor Analysis + \triangleright CIVIL
Impedance and Admittance Summary

Capacitors: $i=C \frac{d v}{d t} \quad \Rightarrow I$ leads V
Inductors: $v=L \frac{d i}{d t} \quad \Rightarrow V$ leads I
Mnemonic: CIVIL $=$ "In a capacitor I lead V but V leads I in an inductor".

COMPLEX ARITHMETIC TRICKS:

(1) $j \times j=-j \times-j=-1$
(2) $\frac{1}{j}=-j$
(3) $a+j b=r \angle \theta=r e^{j \theta}$
where $r=\sqrt{a^{2}+b^{2}}$ and $\theta=\arctan \frac{b}{a}\left(\pm 180^{\circ}\right.$ if $\left.a<0\right)$
(4) $r \angle \theta=r e^{j \theta}=(r \cos \theta)+j(r \sin \theta)$
(5) $a \angle \theta \times b \angle \phi=a b \angle(\theta+\phi)$ and $\frac{a \angle \theta}{b \angle \phi}=\frac{a}{b} \angle(\theta-\phi)$.

Multiplication and division are much easier in polar form.
(6) All scientific calculators will convert rectangular to/from polar form.

Casio fx -991 (available in all exams except Maths) will do complex arithmetic $\left(+,-, \times, \div, x^{2}, \frac{1}{x},|x|, x^{*}\right)$ in CMPLX mode.

Learn how to use this: it will save lots of time and errors.

Impedance and Admittance

10: Sine waves and phasors

Sine Waves

Rotating Rod

Phasors
Phasor Examples +
Phasor arithmetic Complex Impedances
Phasor Analysis + CIVIL

Impedance and \triangleright Admittance Summary

For any network (resistors+capacitors+inductors):
(1) Impedance $=$ Resistance $+j \times$ Reactance

$$
\begin{aligned}
& Z=R+j X(\Omega) \\
& |Z|^{2}=R^{2}+X^{2} \quad \angle Z=\arctan \frac{X}{R}
\end{aligned}
$$

(2) Admittance $=\frac{1}{\text { Impedance }}=$ Conductance $+j \times$ Susceptance

$$
Y=\frac{1}{Z}=G+j B \text { Siemens }(\mathrm{S})
$$

$$
|Y|^{2}=\frac{1}{|Z|^{2}}=G^{2}+B^{2} \quad \angle Y=-\angle Z=\arctan \frac{B}{G}
$$

Note:

$$
\begin{gathered}
Y=G+j B=\frac{1}{Z}=\frac{1}{R+j X}=\frac{R}{R^{2}+X^{2}}+j \frac{-X}{R^{2}+X^{2}} \\
\text { So } \quad G=\frac{R}{R^{2}+X^{2}}=\frac{R}{|Z|^{2}} \\
B=\frac{-X}{R^{2}+X^{2}}=\frac{-X}{|Z|^{2}}
\end{gathered}
$$

Beware: $G \neq \frac{1}{R}$ unless $X=0$.

Summary

10: Sine waves and phasors
Sine Waves
Rotating Rod

Phasors

Phasor Examples
Phasor arithmetic Complex Impedances Phasor Analysis + CIVIL
Impedance and Admittance
\triangleright Summary

- Sine waves are the only bounded signals whose shape is unchanged by differentiation.
- Think of a sine wave as the projection of a rotating rod onto the horizontal (or real) axis.
- A phasor is a complex number representing the length and position of the rod at time $t=0$.
- If $V=a+j b=r \angle \theta=r e^{j \theta}$, then

$$
v(t)=a \cos \omega t-b \sin \omega t=r \cos (\omega t+\theta)=\Re\left(V e^{j \omega t}\right)
$$

- The angular frequency $\omega=2 \pi f$ is assumed known.
- If all sources in a linear circuit are sine waves having the same frequency, we can use phasors for circuit analysis:
- Use complex impedances: $j \omega L$ and $\frac{1}{j \omega C}$
- Mnemonic: CIVIL tells you whether I leads V or vice versa ("leads" means "reaches its peak before").
- Phasors eliminate time from equations © , converts simultaneous differential equations into simultaneous linear equations © () () ().
- Needs complex numbers $\cdot+$ but worth it.

See Hayt Ch 10 or Irwin Ch 8

