- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response

+

- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response +
- RCR Circuit
- Summary

11: Frequency Responses

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response +
- RCR Circuit
- Summary

If x(t) is a sine wave, then y(t) will also be a sine wave but with a different amplitude and phase shift. X is an input phasor and Y is the output phasor.

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation

+

- Plot Phase Response +
- RCR Circuit
- Summary

If x(t) is a sine wave, then y(t) will also be a sine wave but with a different amplitude and phase shift. X is an input phasor and Y is the output phasor.

The gain of the circuit is $\frac{Y}{X} = \frac{1/j\omega C}{R+1/j\omega C} = \frac{1}{j\omega RC+1}$

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation

+

- Plot Phase Response +
- RCR Circuit
- Summary

If x(t) is a sine wave, then y(t) will also be a sine wave but with a different amplitude and phase shift. X is an input phasor and Y is the output phasor.

The gain of the circuit is $\frac{Y}{X} = \frac{1/j\omega C}{R+1/j\omega C} = \frac{1}{j\omega RC+1}$

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response +
- RCR Circuit
- Summary

If x(t) is a sine wave, then y(t) will also be a sine wave but with a different amplitude and phase shift. X is an input phasor and Y is the output phasor.

The gain of the circuit is $\frac{Y}{X} = \frac{1/j\omega C}{R+1/j\omega C} = \frac{1}{j\omega RC+1}$

Magnitude:
$$\left|\frac{Y}{X}\right| = \frac{1}{|j\omega RC+1|} = \frac{1}{\sqrt{1+(\omega RC)^2}}$$

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude ResponseLow and High Frequency
- Asymptotes
- Phase Approximation

+

+

- Plot Phase Response
- RCR Circuit
- Summary

If x(t) is a sine wave, then y(t) will also be a sine wave but with a different amplitude and phase shift. X is an input phasor and Y is the output phasor.

The gain of the circuit is $\frac{Y}{X} = \frac{1/j\omega C}{R+1/j\omega C} = \frac{1}{j\omega RC+1}$

Magnitude:
$$\left|\frac{Y}{X}\right| = \frac{1}{|j\omega RC+1|} = \frac{1}{\sqrt{1+(\omega RC)^2}}$$

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line Approximations
- Plot Magnitude Response • Low and High Frequency
- Asymptotes
- Phase Approximation

+

+

- Plot Phase Response
- RCR Circuit
- Summary

If x(t) is a sine wave, then y(t) will also be a sine wave but with a different amplitude and phase shift. X is an input phasor and Y is the output phasor.

The gain of the circuit is $\frac{Y}{X} = \frac{1/j\omega C}{R+1/j\omega C} = \frac{1}{j\omega RC+1}$

Magnitude:
$$\left|\frac{Y}{X}\right| = \frac{1}{|j\omega RC+1|} = \frac{1}{\sqrt{1+(\omega RC)^2}}$$

Phase Shift: $\angle \left(\frac{Y}{X}\right) = -\angle (j\omega RC+1) = -\arctan\left(\frac{\omega R}{1}\right)$

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation

+

- Plot Phase Response +
- RCR Circuit
- Summary

If x(t) is a sine wave, then y(t) will also be a sine wave but with a different amplitude and phase shift. X is an input phasor and Y is the output phasor.

 $X \xrightarrow{R} Y$

The gain of the circuit is $\frac{Y}{X} = \frac{1/j\omega C}{R+1/j\omega C} = \frac{1}{j\omega RC+1}$

This is a complex function of ω so we plot separate graphs for:

Magnitude:
$$\left|\frac{Y}{X}\right| = \frac{1}{|j\omega RC+1|} = \frac{1}{\sqrt{1+(\omega RC)^2}}$$

Deco Shift: $\left\langle \begin{pmatrix} Y \\ Y \end{pmatrix} = -\left\langle (i_{X})PC + 1 \right\rangle = - \arctan\left(\frac{\omega R}{2}\right)$

Phase Shift: $\angle \left(\frac{Y}{X}\right) = -\angle \left(j\omega RC + 1\right) = -\arctan\left(\frac{\omega RC}{1}\right)$

Phase Response

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response

- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response +
- RCR Circuit
- Summary

$$\omega = 50 \Rightarrow \frac{Y}{X} = 0.89\angle -27^{\circ}$$

$$\omega = 100 \Rightarrow \frac{Y}{X} = 0.71\angle -45^{\circ}$$

$$\omega = 300 \Rightarrow \frac{Y}{X} = 0.32\angle -72^{\circ}$$

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response

- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response +
- RCR Circuit
- Summary

$$\omega = 50 \Rightarrow \frac{Y}{X} = 0.89\angle -27^{\circ}$$

$$\omega = 100 \Rightarrow \frac{Y}{X} = 0.71 \angle -45^\circ$$

$$\omega = 300 \Rightarrow \frac{Y}{X} = 0.32\angle - 72^{\circ}$$

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response

- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response +
- RCR Circuit
- Summary

$$\omega = 50 \Rightarrow \frac{Y}{X} = 0.89 \angle -27^{\circ}$$
$$\omega = 100 \Rightarrow \frac{Y}{X} = 0.71 \angle -45^{\circ}$$

$$\omega = 300 \Rightarrow \frac{Y}{X} = 0.32\angle - 72^{\circ}$$

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response

- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response +
- RCR Circuit
- Summary

$$\omega = 50 \Rightarrow \frac{Y}{X} = 0.89\angle - 27^{\circ}$$
$$\omega = 100 \Rightarrow \frac{Y}{X} = 0.71\angle - 45^{\circ}$$
$$\omega = 300 \Rightarrow \frac{Y}{X} = 0.32\angle - 72^{\circ}$$

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response

- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response +
- RCR Circuit
- Summary

$$\omega = 50 \Rightarrow \frac{Y}{X} = 0.89 \angle -27^{\circ}$$

$$\omega = 100 \Rightarrow \frac{Y}{X} = 0.71 \angle -45^\circ$$

$$\omega = 300 \Rightarrow \frac{Y}{X} = 0.32\angle - 72^{\circ}$$

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response

- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response +
- RCR Circuit
- Summary

$$\omega = 50 \Rightarrow \frac{Y}{X} = 0.89 \angle -27^{\circ}$$

$$\omega = 100 \Rightarrow \frac{Y}{X} = 0.71\angle -45^\circ$$

$$\omega = 300 \Rightarrow \frac{Y}{X} = 0.32\angle -72^{\circ}$$

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response

- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response +
- RCR Circuit
- Summary

$$\omega = 100 \Rightarrow \frac{Y}{X} = 0.71\angle -45^{\circ}$$
$$\omega = 300 \Rightarrow \frac{Y}{X} = 0.32\angle -72^{\circ}$$

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response

- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response +
- RCR Circuit
- Summary

$$\omega = 50 \Rightarrow \frac{Y}{X} = 0.89\angle -27^{\circ}$$

$$\omega = 100 \Rightarrow \frac{Y}{X} = 0.71 \angle -45^{\circ}$$

$$\omega = 300 \Rightarrow \frac{Y}{X} = 0.32\angle - 72^{\circ}$$

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response

- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response +
- RCR Circuit
- Summary

$$\omega = 50 \Rightarrow \frac{Y}{X} = 0.89 \angle -27^{\circ}$$

$$\omega = 100 \Rightarrow \frac{Y}{X} = 0.71 \angle -45^{\circ}$$

$$\omega = 300 \Rightarrow \frac{Y}{X} = 0.32\angle - 72^{\circ}$$

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response

- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response +
- RCR Circuit
- Summary

$$\omega = 50 \Rightarrow \frac{Y}{X} = 0.89\angle -27^{\circ}$$

$$\omega = 100 \Rightarrow \frac{Y}{X} = 0.71\angle -45^\circ$$

$$\omega = 300 \Rightarrow \frac{Y}{X} = 0.32 \angle -72^{\circ}$$

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response

+

- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response +
- RCR Circuit
- Summary

$$\omega = 50 \Rightarrow \frac{Y}{X} = 0.89 \angle -27^{\circ}$$

$$\omega = 100 \Rightarrow \frac{Y}{X} = 0.71 \angle -45^{\circ}$$

$$\omega = 300 \Rightarrow \frac{Y}{X} = 0.32 \angle -72^{\circ}$$

The output, y(t), *lags* the input, x(t), by up to 90° .

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line Approximations
- Plot Magnitude Response
- Low and High Frequency
- Asymptotes
- Phase Approximation +
- Plot Phase Response +
- RCR Circuit
- Summary

We usually use logarithmic axes for frequency and gain (but not phase) because % differences are more significant than absolute differences. E.g. 5 kHz versus 5.005 kHz is less significant than 10 Hz versus 15 Hz even though both differences equal 5 Hz.

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation

+

- Plot Phase Response +
- RCR Circuit
- Summary

We usually use logarithmic axes for frequency and gain (but not phase) because % differences are more significant than absolute differences. E.g. 5 kHz versus 5.005 kHz is less significant than 10 Hz versus 15 Hz even though both differences equal 5 Hz.

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response +
- RCR Circuit
- Summary

We usually use logarithmic axes for frequency and gain (but not phase) because % differences are more significant than absolute differences. E.g. 5 kHz versus 5.005 kHz is less significant than 10 Hz versus 15 Hz even though both differences equal 5 Hz.

E1.1 Analysis of Circuits (2018-10340)

Frequency Responses: 11 - 4 / 12

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation

+

- Plot Phase Response +
- RCR Circuit
- Summary

We usually use logarithmic axes for frequency and gain (but not phase) because % differences are more significant than absolute differences. E.g. 5 kHz versus 5.005 kHz is less significant than 10 Hz versus 15 Hz even though both differences equal 5 Hz.

Note that 0 does not exist on a log axis and so the starting point of the axis is arbitrary.

E1.1 Analysis of Circuits (2018-10340)

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response

+

- RCR Circuit
- Summary

We usually use logarithmic axes for frequency and gain (but not phase) because % differences are more significant than absolute differences. E.g. 5 kHz versus 5.005 kHz is less significant than 10 Hz versus 15 Hz even though both differences equal 5 Hz.

Logarithmic voltage ratios are specified in *decibels* (dB) = $20 \log_{10} \frac{|V_2|}{|V_1|}$.

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response

+

dB

- RCR Circuit
- Summary

We usually use logarithmic axes for frequency and gain (but not phase) because % differences are more significant than absolute differences. E.g. 5 kHz versus 5.005 kHz is less significant than 10 Hz versus 15 Hz even though both differences equal 5 Hz.

Logarithmic voltage ratios are specified in *decibels* (dB) = $20 \log_{10} \frac{|V_2|}{|V_1|}$.

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response

+

dB

- RCR Circuit
- Summary

We usually use logarithmic axes for frequency and gain (but not phase) because % differences are more significant than absolute differences. E.g. 5 kHz versus 5.005 kHz is less significant than 10 Hz versus 15 Hz even though both differences equal 5 Hz.

Logarithmic voltage ratios are specified in *decibels* (dB) = $20 \log_{10} \frac{|V_2|}{|V_1|}$.

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response

+

- RCR Circuit
- Summary

We usually use logarithmic axes for frequency and gain (but not phase) because % differences are more significant than absolute differences. E.g. 5 kHz versus 5.005 kHz is less significant than 10 Hz versus 15 Hz even though both differences equal 5 Hz.

Logarithmic voltage ratios are specified in *decibels* (dB) = $20 \log_{10} \frac{|V_2|}{|V_1|}$.

2

6

10

20

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response

+

- RCR Circuit
- Summary

We usually use logarithmic axes for frequency and gain (but not phase) because % differences are more significant than absolute differences. E.g. 5 kHz versus 5.005 kHz is less significant than 10 Hz versus 15 Hz even though both differences equal 5 Hz.

Logarithmic voltage ratios are specified in *decibels* (dB) = $20 \log_{10} \frac{|V_2|}{|V_1|}$.

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response

+

- RCR Circuit
- Summary

We usually use logarithmic axes for frequency and gain (but not phase) because % differences are more significant than absolute differences. E.g. 5 kHz versus 5.005 kHz is less significant than 10 Hz versus 15 Hz even though both differences equal 5 Hz.

Logarithmic voltage ratios are specified in *decibels* (dB) = $20 \log_{10} \frac{|V_2|}{|V_1|}$.

Note that 0 does not exist on a log axis and so the starting point of the axis is arbitrary.

Note: $P \propto V^2 \Rightarrow$ decibel <u>power</u> ratios are given by $10 \log_{10} \frac{P_2}{P_1}$

Frequency Responses: 11 – 4 / 12

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line Approximations
- Plot Magnitude Response

+

- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response +
- RCR Circuit
- Summary

Suppose we plot the magnitude and phase of $H = c \left(j \omega \right)^r$

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes

+

- Phase Approximation +
- Plot Phase Response +
- RCR Circuit
- Summary

Suppose we plot the magnitude and phase of $H = c \left(j \omega \right)^r$

Magnitude (log-log graph):

$$|H| = c\omega^r \Rightarrow \log|H| = \log|c| + r\log\omega$$

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes

+

- Phase Approximation +
- Plot Phase Response +
- RCR Circuit
- Summary

Suppose we plot the magnitude and phase of $H = c \left(j \omega \right)^r$

Magnitude (log-log graph):

$$|H| = c\omega^r \Rightarrow \log|H| = \log|c| + r\log\omega$$

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response

+

- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response +
- RCR Circuit
- Summary

Suppose we plot the magnitude and phase of $H = c \left(j \omega \right)^r$

Magnitude (log-log graph):

 $|H| = c\omega^r \Rightarrow \log |H| = \log |c| + r \log \omega$ This is a straight line with a slope of r.

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line Approximations
- Plot Magnitude ResponseLow and High Frequency
- Asymptotes
- Phase Approximation +
- Plot Phase Response +
- RCR Circuit
- Summary

Suppose we plot the magnitude and phase of $H = c \left(j \omega \right)^r$

Magnitude (log-log graph):

 $|H| = c\omega^r \Rightarrow \log |H| = \log |c| + r \log \omega$ This is a straight line with a slope of r.

Phase (log-lin graph):

 $\angle H = \angle j^r + \angle c = r \times \frac{\pi}{2}$ (+ π if c < 0)

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line Approximations
- Plot Magnitude ResponseLow and High Frequency

+

+

+

- Asymptotes
- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

Suppose we plot the magnitude and phase of $H = c \left(j \omega \right)^r$

Magnitude (log-log graph):

 $|H| = c\omega^r \Rightarrow \log |H| = \log |c| + r \log \omega$ This is a straight line with a slope of r.

Phase (log-lin graph):

 $\angle H = \angle j^r + \angle c = r \times \frac{\pi}{2}$ (+ π if c < 0)

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers

• Straight Line Approximations

- Plot Magnitude Response • Low and High Frequency
- Asymptotes
- Phase Approximation

+

+

- Plot Phase Response
- RCR Circuit
- Summary

Suppose we plot the magnitude and phase of $H = c (j\omega)^r$

Magnitude (log-log graph):

 $|H| = c\omega^r \Rightarrow \log |H| = \log |c| + r \log \omega$ This is a straight line with a slope of r.

Phase (log-lin graph): $\angle H = \angle j^r + \angle c = r \times \frac{\pi}{2}$ (+ π if c < 0)

The phase is constant $\forall \omega$.

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers

• Straight Line Approximations

- Plot Magnitude Response
- Low and High Frequency Asymptotes

+

+

- Phase Approximation
- Plot Phase Response +
- RCR Circuit
- Summary

Suppose we plot the magnitude and phase of $H = c \left(j \omega \right)^r$

Magnitude (log-log graph):

 $|H| = c\omega^r \Rightarrow \log |H| = \log |c| + r \log \omega$ This is a straight line with a slope of r.

Phase (log-lin graph): $\angle H = \angle j^r + \angle c = r \times \frac{\pi}{2}$ (+ π if c < 0)

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers

• Straight Line Approximations

- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation

+

- Plot Phase Response +
- RCR Circuit
- Summary

Suppose we plot the magnitude and phase of $H = c \left(j \omega \right)^r$

Magnitude (log-log graph):

Phase (log-lin graph):

The phase is constant $\forall \omega$.

 $|H| = c\omega^r \Rightarrow \log |H| = \log |c| + r \log \omega$ This is a straight line with a slope of r. c only affects the line's vertical position.

 $\angle H = \angle j^r + \angle c = r \times \frac{\pi}{2}$ (+ π if c < 0)

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation

+

- Plot Phase Response +
- RCR Circuit
- Summary

Suppose we plot the magnitude and phase of $H = c \left(j \omega \right)^r$

Magnitude (log-log graph):

 $|H| = c\omega^r \Rightarrow \log |H| = \log |c| + r \log \omega$ This is a straight line with a slope of r. c only affects the line's vertical position.

 $\angle H = \angle j^r + \angle c = r \times \frac{\pi}{2}$ (+ π if c < 0)

Phase (log-lin graph):

The phase is constant $\forall \omega$.

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers

• Straight Line Approximations

Plot Magnitude Response

+

+

+

- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

Suppose we plot the magnitude and phase of $H = c \left(j \omega \right)^r$

Magnitude (log-log graph):

Phase (log-lin graph):

The phase is constant $\forall \omega$.

 $|H| = c\omega^r \Rightarrow \log |H| = \log |c| + r \log \omega$ This is a straight line with a slope of r. c only affects the line's vertical position.

 $\angle H = \angle j^r + \angle c = r \times \frac{\pi}{2}$ (+ π if c < 0)

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers

• Straight Line Approximations

- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation

+

- Plot Phase Response +
- RCR Circuit
- Summary

Suppose we plot the magnitude and phase of $H = c \left(j \omega \right)^r$

Magnitude (log-log graph):

 $|H| = c\omega^r \Rightarrow \log |H| = \log |c| + r \log \omega$ This is a straight line with a slope of r. c only affects the line's vertical position.

Phase (log-lin graph):

 $\angle H = \angle j^r + \angle c = r \times \frac{\pi}{2} \ (+\pi \text{ if } c < 0)$

The phase is constant $\forall \omega$.

If c > 0, phase = $90^{\circ} \times$ magnitude slope.

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers

• Straight Line Approximations

- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response

+

- RCR Circuit
- Summary

Suppose we plot the magnitude and phase of $H = c \left(j \omega \right)^r$

Magnitude (log-log graph):

 $|H| = c\omega^r \Rightarrow \log |H| = \log |c| + r \log \omega$ This is a straight line with a slope of r. c only affects the line's vertical position.

If |H| is measured in decibels, a slope of r is called $6r \, d\text{B/octave}$ or $20r \, d\text{B/decade}$.

 $\angle H = \angle j^r + \angle c = r \times \frac{\pi}{2}$ (+ π if c < 0) The phase is constant $\forall \omega$.

If c > 0, phase = $90^{\circ} \times$ magnitude slope.

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers

• Straight Line Approximations

- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response

+

- RCR Circuit
- Summary

Suppose we plot the magnitude and phase of $H = c \left(j \omega \right)^r$

Magnitude (log-log graph):

 $|H| = c\omega^r \Rightarrow \log |H| = \log |c| + r \log \omega$ This is a straight line with a slope of r. c only affects the line's vertical position.

If |H| is measured in decibels, a slope of r is called $6r \, d\text{B/octave}$ or $20r \, d\text{B/decade}$.

Phase (log-lin graph):

 $\angle H = \angle j^r + \angle c = r \times \frac{\pi}{2}$ (+ π if c < 0) The phase is constant $\forall \omega$.

If c > 0, phase = $90^{\circ} \times$ magnitude slope. Negative c adds $\pm 180^{\circ}$ to the phase.

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers

• Straight Line Approximations

- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response

+

- RCR Circuit
- Summary

Suppose we plot the magnitude and phase of $H = c \left(j \omega \right)^r$

Magnitude (log-log graph):

 $|H| = c\omega^r \Rightarrow \log |H| = \log |c| + r \log \omega$ This is a straight line with a slope of r. c only affects the line's vertical position.

If |H| is measured in decibels, a slope of r is called $6r \, d\text{B/octave}$ or $20r \, d\text{B/decade}$.

Phase (log-lin graph):

 $\angle H = \angle j^r + \angle c = r \times \frac{\pi}{2}$ (+ π if c < 0) The phase is constant $\forall \omega$.

If c > 0, phase = $90^{\circ} \times$ magnitude slope. Negative c adds $\pm 180^{\circ}$ to the phase.

Note: Phase angles are modulo 360° , i.e. $+180^{\circ} \equiv -180^{\circ}$ and $450^{\circ} \equiv 90^{\circ}$.

affects the line's vertical position.

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers

• Straight Line Approximations

- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response

+

- RCR Circuit
- Summary

 $H = c (j\omega)^r$ has a straight-line magnitude graph and a constant phase.

Magnitude (log-log graph):

 $|H| = c\omega^r \Rightarrow \log |H| = \log |c| + r \log \omega$ This is a straight line with a slope of r. c only affects the line's vertical position.

If |H| is measured in decibels, a slope of r is called $6r \, d\text{B/octave}$ or $20r \, d\text{B/decade}$.

Phase (log-lin graph):

 $\angle H = \angle j^r + \angle c = r \times \frac{\pi}{2}$ (+ π if c < 0) The phase is constant $\forall \omega$.

If c > 0, phase = $90^{\circ} \times$ magnitude slope. Negative c adds $\pm 180^{\circ}$ to the phase.

Note: Phase angles are modulo 360° , i.e. $+180^{\circ} \equiv -180^{\circ}$ and $450^{\circ} \equiv 90^{\circ}$.

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers

Straight Line

- Approximations
- Plot Magnitude Response

- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response +
- RCR Circuit
- Summary

Key idea: $(aj\omega + b) \approx \begin{cases} aj\omega & \text{for } |a\omega| \gg |b| \\ b & \text{for } |a\omega| \ll |b| \end{cases}$

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response

- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response +
- RCR Circuit
- Summary

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response

- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response +
- RCR Circuit
- Summary

Key idea:
$$(aj\omega + b) \approx \begin{cases} aj\omega & \text{for } |a\omega| \gg |b| \\ b & \text{for } |a\omega| \ll |b| \end{cases}$$

Gain: $H(j\omega) = \frac{1}{j\omega RC + 1}$

Low frequencies (
$$\omega \ll \frac{1}{RC}$$
): $H(j\omega) \approx 1$

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes

+

+

- Phase Approximation
- Plot Phase Response +
- RCR Circuit
- Summary

Low frequencies ($\omega \ll \frac{1}{RC}$): $H(j\omega) \approx 1$ High frequencies ($\omega \gg \frac{1}{RC}$): $H(j\omega) \approx \frac{1}{j\omega RC}$

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line Approximations
- Plot Magnitude Response

+

+

- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response +
- RCR Circuit
- Summary

Low frequencies ($\omega \ll \frac{1}{RC}$): $H(j\omega) \approx 1$ High frequencies ($\omega \gg \frac{1}{RC}$): $H(j\omega) \approx \frac{1}{j\omega RC}$

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line Approximations
- Plot Magnitude Response

+

+

- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response +
- RCR Circuit
- Summary

Low frequencies ($\omega \ll \frac{1}{RC}$): $H(j\omega) \approx 1 \Rightarrow |H(j\omega)| \approx 1$ High frequencies ($\omega \gg \frac{1}{RC}$): $H(j\omega) \approx \frac{1}{j\omega RC}$

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line Approximations
- Plot Magnitude Response

+

+

- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response +
- RCR Circuit
- Summary

Low frequencies ($\omega \ll \frac{1}{RC}$): $H(j\omega) \approx 1 \Rightarrow |H(j\omega)| \approx 1$ High frequencies ($\omega \gg \frac{1}{RC}$): $H(j\omega) \approx \frac{1}{j\omega RC} \Rightarrow |H(j\omega)| \approx \frac{1}{RC} \omega^{-1}$

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line Approximations
- Plot Magnitude Response

+

+

- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response +
- RCR Circuit
- Summary

Low frequencies ($\omega \ll \frac{1}{RC}$): $H(j\omega) \approx 1 \Rightarrow |H(j\omega)| \approx 1$ High frequencies ($\omega \gg \frac{1}{RC}$): $H(j\omega) \approx \frac{1}{j\omega RC} \Rightarrow |H(j\omega)| \approx \frac{1}{RC} \omega^{-1}$

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line Approximations
- Plot Magnitude Response

+

- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response +
- RCR Circuit
- Summary

 $\begin{array}{ll} \text{Key idea: } (aj\omega + b) \approx \begin{cases} aj\omega & \text{for } |a\omega| \gg |b| \\ b & \text{for } |a\omega| \ll |b| \end{cases} & \underbrace{X \quad R} \\ \hline \\ \text{Gain: } H(j\omega) = \frac{1}{j\omega RC + 1} & C^{-1} \end{array}$

Low frequencies ($\omega \ll \frac{1}{RC}$): $H(j\omega) \approx 1 \Rightarrow |H(j\omega)| \approx 1$ High frequencies ($\omega \gg \frac{1}{RC}$): $H(j\omega) \approx \frac{1}{j\omega RC} \Rightarrow |H(j\omega)| \approx \frac{1}{RC} \omega^{-1}$

Approximate the magnitude response as two straight lines intersecting at the <u>corner frequency</u>, $\omega_c = \frac{1}{RC}$.

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response +
- RCR Circuit
- Summary

Low frequencies ($\omega \ll \frac{1}{RC}$): $H(j\omega) \approx 1 \Rightarrow |H(j\omega)| \approx 1$ High frequencies ($\omega \gg \frac{1}{RC}$): $H(j\omega) \approx \frac{1}{j\omega RC} \Rightarrow |H(j\omega)| \approx \frac{1}{RC} \omega^{-1}$

Approximate the magnitude response as two straight lines intersecting at the <u>corner frequency</u>, $\omega_c = \frac{1}{RC}$.

At the corner frequency:

(a) the gradient changes by -1 (= -6 dB/octave = -20 dB/decade).

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response +
- RCR Circuit
- Summary

Low frequencies ($\omega \ll \frac{1}{RC}$): $H(j\omega) \approx 1 \Rightarrow |H(j\omega)| \approx 1$ High frequencies ($\omega \gg \frac{1}{RC}$): $H(j\omega) \approx \frac{1}{j\omega RC} \Rightarrow |H(j\omega)| \approx \frac{1}{RC} \omega^{-1}$

Approximate the magnitude response as two straight lines intersecting at the <u>corner frequency</u>, $\omega_c = \frac{1}{RC}$.

At the corner frequency:

(a) the gradient changes by -1 (= -6 dB/octave = -20 dB/decade). (b) $|H(j\omega_c)| = \left|\frac{1}{1+j}\right| = \frac{1}{\sqrt{2}} = -3 \text{ dB}$ (worst-case error).

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response +
- RCR Circuit
- Summary

Low frequencies ($\omega \ll \frac{1}{RC}$): $H(j\omega) \approx 1 \Rightarrow |H(j\omega)| \approx 1$ High frequencies ($\omega \gg \frac{1}{RC}$): $H(j\omega) \approx \frac{1}{j\omega RC} \Rightarrow |H(j\omega)| \approx \frac{1}{RC} \omega^{-1}$

Approximate the magnitude response as two straight lines intersecting at the <u>corner frequency</u>, $\omega_c = \frac{1}{RC}$.

At the corner frequency:

(a) the gradient changes by -1 (= -6 dB/octave = -20 dB/decade). (b) $|H(j\omega_c)| = \left|\frac{1}{1+j}\right| = \frac{1}{\sqrt{2}} = -3 \text{ dB}$ (worst-case error).

A linear factor $(aj\omega + b)$ has a corner frequency of $\omega_c = \left|\frac{b}{a}\right|$.

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers

• Straight Line

- Approximations
- Plot Magnitude Response

+

- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response +
- RCR Circuit
- Summary

The gain of a linear circuit is always a *rational polynomial* in $j\omega$ and is called the *transfer function* of the circuit. For example:

 $H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600}$

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers

• Straight Line

- Approximations
- Plot Magnitude Response

+

- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response +
- RCR Circuit
- Summary

The gain of a linear circuit is always a *rational polynomial* in $j\omega$ and is called the *transfer function* of the circuit. For example:

$$H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)}$$

Step 1: Factorize the polynomials

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers

• Straight Line

- Approximations
- Plot Magnitude Response

+

+

- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response +
- RCR Circuit
- Summary

The gain of a linear circuit is always a *rational polynomial* in $j\omega$ and is called the *transfer function* of the circuit. For example:

$$H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)}$$

Step 1: Factorize the polynomials Step 2: Sort corner freqs: 1, 4, 12, 50

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response

+

+

+

- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

The gain of a linear circuit is always a *rational polynomial* in $j\omega$ and is called the *transfer function* of the circuit. For example:

$$H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)}$$

Step 1: Factorize the polynomials Step 2: Sort corner freqs: 1, 4, 12, 50Step 3: For $\omega < 1$ all linear factors equal their constant terms:

$$|H| \approx \frac{20\omega \times 12}{1 \times 4 \times 50} = 1.2\omega^1.$$

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response

+

- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

The gain of a linear circuit is always a *rational polynomial* in $j\omega$ and is called the *transfer function* of the circuit. For example:

$$H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)}$$

Step 1: Factorize the polynomials Step 2: Sort corner freqs: 1, 4, 12, 50 Step 3: For $\omega < 1$ all linear factors equal their constant terms: $|H| \approx \frac{20\omega \times 12}{1 \times 4 \times 50} = 1.2\omega^1.$

Step 4: For $1 < \omega < 4$, the factor $(j\omega + 1) \approx j\omega$ so $|H| \approx \frac{20\omega \times 12}{\omega \times 4 \times 50} = 1.2\omega^0$

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response

+

- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

The gain of a linear circuit is always a *rational polynomial* in $j\omega$ and is called the *transfer function* of the circuit. For example:

$$H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)}$$

Step 1: Factorize the polynomials Step 2: Sort corner freqs: 1, 4, 12, 50 Step 3: For $\omega < 1$ all linear factors equal their constant terms: $|H| \approx \frac{20\omega \times 12}{1 \times 4 \times 50} = 1.2\omega^{1}.$

Step 4: For $1 < \omega < 4$, the factor $(j\omega + 1) \approx j\omega$ so $|H| \approx \frac{20\omega \times 12}{\omega \times 4 \times 50} = 1.2\omega^0 = +1.58 \,\mathrm{dB}.$

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

The gain of a linear circuit is always a *rational polynomial* in $j\omega$ and is called the *transfer function* of the circuit. For example:

$$H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)}$$

Step 1: Factorize the polynomials Step 2: Sort corner freqs: 1, 4, 12, 50 Step 3: For $\omega < 1$ all linear factors equal their constant terms: $|H| \approx \frac{20\omega \times 12}{1 \times 4 \times 50} = 1.2\omega^{1}.$

Step 4: For $1 < \omega < 4$, the factor $(j\omega + 1) \approx j\omega$ so $|H| \approx \frac{20\omega \times 12}{\omega \times 4 \times 50} = 1.2\omega^0 = +1.58 \text{ dB}.$ Step 5: For $4 < \omega < 12$, $|H| \approx \frac{20\omega \times 12}{\omega \times \omega \times 50} = 4.8\omega^{-1}.$

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

The gain of a linear circuit is always a *rational polynomial* in $j\omega$ and is called the *transfer function* of the circuit. For example:

$$H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)}$$

Step 1: Factorize the polynomials Step 2: Sort corner freqs: 1, 4, 12, 50 Step 3: For $\omega < 1$ all linear factors equal their constant terms: $|H| \approx \frac{20\omega \times 12}{1\times 4\times 50} = 1.2\omega^{1}.$

Step 4: For $1 < \omega < 4$, the factor $(j\omega + 1) \approx j\omega$ so $|H| \approx \frac{20\omega \times 12}{\omega \times 4 \times 50} = 1.2\omega^0 = +1.58 \text{ dB.}$ Step 5: For $4 < \omega < 12$, $|H| \approx \frac{20\omega \times 12}{\omega \times \omega \times 50} = 4.8\omega^{-1}$. Step 6: For $12 < \omega < 50$, $|H| \approx \frac{20\omega \times \omega}{\omega \times \omega \times 50} = 0.4\omega^0 = -7.96 \text{ dB.}$

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

The gain of a linear circuit is always a *rational polynomial* in $j\omega$ and is called the *transfer function* of the circuit. For example:

$$H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)}$$

Step 1: Factorize the polynomials Step 2: Sort corner freqs: 1, 4, 12, 50 Step 3: For $\omega < 1$ all linear factors equal their constant terms: $|H| \approx \frac{20\omega \times 12}{1\times 4\times 50} = 1.2\omega^1.$

Step 4: For $1 < \omega < 4$, the factor $(j\omega + 1) \approx j\omega$ so $|H| \approx \frac{20\omega \times 12}{\omega \times 4 \times 50} = 1.2\omega^0 = +1.58 \text{ dB.}$ Step 5: For $4 < \omega < 12$, $|H| \approx \frac{20\omega \times 12}{\omega \times \omega \times 50} = 4.8\omega^{-1}$. Step 6: For $12 < \omega < 50$, $|H| \approx \frac{20\omega \times \omega}{\omega \times \omega \times 50} = 0.4\omega^0 = -7.96 \text{ dB.}$ Step 7: For $\omega > 50$, $|H| \approx \frac{20\omega \times \omega}{\omega \times \omega \times \omega} = 20\omega^{-1}$.

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers

Straight Line

- Approximations
- Plot Magnitude ResponseLow and High Frequency
- Asymptotes
- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

The gain of a linear circuit is always a *rational polynomial* in $j\omega$ and is called the *transfer function* of the circuit. For example:

$$H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)}$$

Step 1: Factorize the polynomials Step 2: Sort corner freqs: 1, 4, 12, 50 Step 3: For $\omega < 1$ all linear factors equal their constant terms: $|H| \approx \frac{20\omega \times 12}{1\times 4\times 50} = 1.2\omega^{1}.$

Step 4: For $1 < \omega < 4$, the factor $(j\omega + 1) \approx j\omega$ so $|H| \approx \frac{20\omega \times 12}{\omega \times 4 \times 50} = 1.2\omega^0 = +1.58 \,\mathrm{dB}.$ Step 5: For $4 < \omega < 12$, $|H| \approx \frac{20\omega \times 12}{\omega \times \omega \times 50} = 4.8\omega^{-1}.$ Step 6: For $12 < \omega < 50$, $|H| \approx \frac{20\omega \times \omega}{\omega \times \omega \times 50} = 0.4\omega^0 = -7.96 \,\mathrm{dB}.$ Step 7: For $\omega > 50$, $|H| \approx \frac{20\omega \times \omega}{\omega \times \omega \times \omega} = 20\omega^{-1}.$

At each corner frequency, the graph is continuous but its gradient changes abruptly by +1 (numerator factor) or -1 (denominator factor).

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response

+

- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response +
- RCR Circuit
- Summary

You can find the low and high frequency asymptotes without factorizing: $H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)}$

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response

+

- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response +
- RCR Circuit
- Summary

You can find the low and high frequency asymptotes without factorizing: $H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)}$

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response

+

+

- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response
- RCR Circuit
- Summary

Low Frequency Asymptote:

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response

+

+

- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response
- RCR Circuit
- Summary

You can find the low and high frequency asymptotes without factorizing: $H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)}$

Low Frequency Asymptote: From factors: $H_{\rm LF}(j\omega) = \frac{20j\omega(12)}{(1)(4)(50)} = 1.2j\omega$

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response

+

+

- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response
- RCR Circuit
- Summary

Low Frequency Asymptote: From factors: $H_{\rm LF}(j\omega) = \frac{20j\omega(12)}{(1)(4)(50)} = 1.2j\omega$ Lowest power of $j\omega$ on top and bottom: $H(j\omega) \simeq \frac{720(j\omega)}{600} = 1.2j\omega$

Low and High Frequency Asymptotes

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response

+

+

- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response
- RCR Circuit
- Summary

Low Frequency Asymptote: From factors: $H_{\text{LF}}(j\omega) = \frac{20j\omega(12)}{(1)(4)(50)} = 1.2j\omega$ Lowest power of $j\omega$ on top and bottom: $H(j\omega) \simeq \frac{720(j\omega)}{600} = 1.2j\omega$ High Frequency Asymptote:

Low and High Frequency Asymptotes

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response

+

+

- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response
- RCR Circuit
- Summary

You can find the low and high frequency asymptotes without factorizing: $H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)}$

Low Frequency Asymptote: From factors: $H_{\text{LF}}(j\omega) = \frac{20j\omega(12)}{(1)(4)(50)} = 1.2j\omega$ Lowest power of $j\omega$ on top and bottom: $H(j\omega) \simeq \frac{720(j\omega)}{600} = 1.2j\omega$ High Frequency Asymptote:

From factors: $H_{\rm HF}(j\omega) = \frac{20j\omega(j\omega)}{(j\omega)(j\omega)(j\omega)} = 20 (j\omega)^{-1}$

Low and High Frequency Asymptotes

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response

+

+

- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response
- RCR Circuit
- Summary

You can find the low and high frequency asymptotes without factorizing: $H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)}$

Low Frequency Asymptote: From factors: $H_{\rm LF}(j\omega) = \frac{20j\omega(12)}{(1)(4)(50)} = 1.2j\omega$ Lowest power of $j\omega$ on top and bottom: $H(j\omega) \simeq \frac{720(j\omega)}{600} = 1.2j\omega$ High Frequency Asymptote: From factors: $H_{\rm HF}(j\omega) = \frac{20j\omega(j\omega)}{(j\omega)(j\omega)(j\omega)} = 20 (j\omega)^{-1}$ Highest power of $j\omega$ on top and bottom: $H(j\omega) \simeq \frac{60(j\omega)^2}{3(j\omega)^3} = 20 (j\omega)^{-1}$

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response

- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response +
- RCR Circuit
- Summary

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response

- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response +
- RCR Circuit
- Summary

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response

+

- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response +
- RCR Circuit
- Summary

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response +
- RCR Circuit
- Summary

Gain: $H(j\omega) = \frac{1}{j\omega RC + 1}$ Low frequencies ($\omega \ll \frac{1}{RC}$): $H(j\omega) \approx 1 \Rightarrow \angle 1 = 0$

High frequencies ($\omega\gg\frac{1}{RC}$): $H(j\omega)\approx\frac{1}{j\omega RC}$

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response +
- RCR Circuit
- Summary

Gain: $H(j\omega) = \frac{1}{j\omega RC + 1}$ Low frequencies ($\omega \ll \frac{1}{RC}$): $H(j\omega) \approx 1 \Rightarrow \angle 1 = 0$

High frequencies ($\omega \gg \frac{1}{RC}$): $H(j\omega) \approx \frac{1}{j\omega RC} \Rightarrow \angle j^{-1} = -\frac{\pi}{2}$

E1.1 Analysis of Circuits (2018-10340)

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response +
- RCR Circuit
- Summary

Gain: $H(j\omega) = \frac{1}{j\omega RC+1}$ Low frequencies ($\omega \ll \frac{1}{RC}$): $H(j\omega) \approx 1 \Rightarrow \angle 1 = 0$

High frequencies ($\omega \gg \frac{1}{RC}$): $H(j\omega) \approx \frac{1}{j\omega RC} \Rightarrow \angle j^{-1} = -\frac{\pi}{2}$

Approximate the phase response as three straight lines.

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response +
- RCR Circuit
- Summary

Gain: $H(j\omega) = \frac{1}{j\omega RC+1}$ Low frequencies ($\omega \ll \frac{1}{RC}$): $H(j\omega) \approx 1 \Rightarrow \angle 1 = 0$

High frequencies ($\omega \gg \frac{1}{RC}$): $H(j\omega) \approx \frac{1}{j\omega RC} \Rightarrow \angle j^{-1} = -\frac{\pi}{2}$

Approximate the phase response as three straight lines.

By chance, they intersect close to $0.1\omega_c$ and $10\omega_c$ where $\omega_c = \frac{1}{RC}$.

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response +
- RCR Circuit
- Summary

Gain: $H(j\omega) = \frac{1}{j\omega RC+1}$ Low frequencies ($\omega \ll \frac{1}{RC}$): $H(j\omega) \approx 1 \Rightarrow \angle 1 = 0$

High frequencies ($\omega \gg \frac{1}{RC}$): $H(j\omega) \approx \frac{1}{j\omega RC} \Rightarrow \angle j^{-1} = -\frac{\pi}{2}$

Approximate the phase response as three straight lines.

By chance, they intersect close to $0.1\omega_c$ and $10\omega_c$ where $\omega_c = \frac{1}{RC}$.

Between $0.1\omega_c$ and $10\omega_c$ the phase changes by $-\frac{\pi}{2}$ over two decades. This gives a gradient = $-\frac{\pi}{4}$ radians/decade.

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response +
- RCR Circuit
- Summary

Gain: $H(j\omega) = \frac{1}{j\omega RC + 1}$ Low frequencies ($\omega \ll \frac{1}{RC}$): $H(j\omega) \approx 1 \Rightarrow \angle 1 = 0$

High frequencies ($\omega \gg \frac{1}{RC}$): $H(j\omega) \approx \frac{1}{j\omega RC} \Rightarrow \angle j^{-1} = -\frac{\pi}{2}$

Approximate the phase response as three straight lines.

By chance, they intersect close to $0.1\omega_c$ and $10\omega_c$ where $\omega_c = \frac{1}{RC}$.

Between $0.1\omega_c$ and $10\omega_c$ the phase changes by $-\frac{\pi}{2}$ over two decades. This gives a gradient = $-\frac{\pi}{4}$ radians/decade.

 $(aj\omega + b)$ in denominator $\Rightarrow \Delta \text{gradient} = \mp \frac{\pi}{4}/\text{decade at } \omega = 10^{\mp 1} \left| \frac{b}{a} \right|.$

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers

Straight Line

- Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation

+

- Plot Phase Response +
- RCR Circuit
- Summary

Gain: $H(j\omega) = \frac{1}{j\omega RC + 1}$ Low frequencies ($\omega \ll \frac{1}{RC}$): $H(j\omega) \approx 1 \Rightarrow \angle 1 = 0$

High frequencies ($\omega \gg \frac{1}{RC}$): $H(j\omega) \approx \frac{1}{j\omega RC} \Rightarrow \angle j^{-1} = -\frac{\pi}{2}$

Approximate the phase response as three straight lines.

By chance, they intersect close to $0.1\omega_c$ and $10\omega_c$ where $\omega_c = \frac{1}{RC}$.

Between $0.1\omega_c$ and $10\omega_c$ the phase changes by $-\frac{\pi}{2}$ over two decades. This gives a gradient = $-\frac{\pi}{4}$ radians/decade.

 $(aj\omega + b)$ in denominator $\Rightarrow \Delta \text{gradient} = \mp \frac{\pi}{4}/\text{decade at } \omega = 10^{\mp 1} \left| \frac{b}{a} \right|.$

The sign of Δ gradient is reversed for (a) numerator factors and (b) $\frac{b}{a} < 0$.

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response

- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response +
- RCR Circuit
- Summary

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response

+

- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response +
- RCR Circuit
- Summary

Step 1: Factorize the polynomials Step 2: List corner freqs: $\pm =$ num/den $\omega_c = \{1^-, 4^-, 12^+, 50^-\}$

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response +
- RCR Circuit
- Summary

 $H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)}$

Step 1: Factorize the polynomials Step 2: List corner freqs: $\pm =$ num/den $\omega_c = \{1^-, 4^-, 12^+, 50^-\}$

Step 3: Gradient changes at $10^{\pm 1}\omega_c$. Sign depends on num/den and sgn $(\frac{b}{a})$: $.1^-, 10^+; .4^-, 40^+; 1.2^+, 120^-; 5^-, 500^+$

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response +
- RCR Circuit
- Summary

 $H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)}$

Step 3: Gradient changes at $10^{\pm 1}\omega_c$. Sign depends on num/den and sgn $(\frac{b}{a})$: .1⁻, 10⁺; .4⁻, 40⁺; 1.2⁺, 120⁻; 5⁻, 500⁺

Step 4: Put in ascending order and calculate gaps as $\log_{10} \frac{\omega_2}{\omega_1}$ decades: .1⁻ (.6) .4⁻ (.48) 1.2⁺ (.62) 5⁻ (.3) 10⁺ (.6) 40⁺ (.48) 120⁻ (.62) 500⁺.

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

 $H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)}$

Step 3: Gradient changes at $10^{\pm 1}\omega_c$. Sign depends on num/den and sgn $(\frac{b}{a})$: .1⁻, 10⁺; .4⁻, 40⁺; 1.2⁺, 120⁻; 5⁻, 500⁺

Step 4: Put in ascending order and calculate gaps as $\log_{10} \frac{\omega_2}{\omega_1}$ decades: .1⁻ (.6) .4⁻ (.48) 1.2⁺ (.62) 5⁻ (.3) 10⁺ (.6) 40⁺ (.48) 120⁻ (.62) 500⁺. Step 5: Find phase of LF asymptote: $\angle 1.2j\omega = +\frac{\pi}{2}$.

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

 $H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)}$

Step 1: Factorize the polynomials
Step 2: List corner freqs:
$$\pm =$$
 num/den
 $\omega_c = \{1^-, 4^-, 12^+, 50^-\}$

Step 3: Gradient changes at $10^{\pm 1}\omega_c$. Sign depends on num/den and sgn $(\frac{b}{a})$: .1⁻, 10⁺; .4⁻, 40⁺; 1.2⁺, 120⁻; 5⁻, 500⁺

Step 4: Put in ascending order and calculate gaps as $\log_{10} \frac{\omega_2}{\omega_1}$ decades: .1⁻ (.6) .4⁻ (.48) 1.2⁺ (.62) 5⁻ (.3) 10⁺ (.6) 40⁺ (.48) 120⁻ (.62) 500⁺. Step 5: Find phase of LF asymptote: $\angle 1.2j\omega = +\frac{\pi}{2}$.

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response +
- RCR Circuit
- Summary

 $H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)}$

Step 1: Factorize the polynomials Step 2: List corner freqs: $\pm =$ num/den $\omega_c = \{1^-, 4^-, 12^+, 50^-\}$

Step 3: Gradient changes at $10^{\pm 1}\omega_c$. Sign depends on num/den and sgn $(\frac{b}{a})$: .1⁻, 10⁺; .4⁻, 40⁺; 1.2⁺, 120⁻; 5⁻, 500⁺

Step 4: Put in ascending order and calculate gaps as $\log_{10} \frac{\omega_2}{\omega_1}$ decades: .1⁻ (.6) .4⁻ (.48) 1.2⁺ (.62) 5⁻ (.3) 10⁺ (.6) 40⁺ (.48) 120⁻ (.62) 500⁺. Step 5: Find phase of LF asymptote: $\angle 1.2j\omega = +\frac{\pi}{2}$.

Step 6: At $\omega = 0.1$ gradient becomes $-\frac{\pi}{4}$ rad/decade. ϕ is still $\frac{\pi}{2}$.

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

 $H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)}$

Step 1: Factorize the polynomials
Step 2: List corner freqs:
$$\pm =$$
 num/den
 $\omega_c = \{1^-, 4^-, 12^+, 50^-\}$

Step 3: Gradient changes at $10^{\pm 1}\omega_c$. Sign depends on num/den and sgn $(\frac{b}{a})$: .1⁻, 10⁺; .4⁻, 40⁺; 1.2⁺, 120⁻; 5⁻, 500⁺

Step 4: Put in ascending order and calculate gaps as $\log_{10} \frac{\omega_2}{\omega_1}$ decades: .1⁻(.6).4⁻(.48)1.2⁺(.62)5⁻(.3)10⁺(.6)40⁺(.48)120⁻(.62)500⁺. Step 5: Find phase of LF asymptote: $\angle 1.2j\omega = +\frac{\pi}{2}$. Step 6: At $\omega = 0.1$ gradient becomes $-\frac{\pi}{4}$ rad/decade. ϕ is still $\frac{\pi}{2}$.

Step 7: At $\omega = 0.4$, $\phi = \frac{\pi}{2} - 0.6\frac{\pi}{4} = 0.35\pi$. New gradient is $-\frac{\pi}{2}$.

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

 $H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)}$

Step 1: Factorize the polynomials
Step 2: List corner freqs:
$$\pm =$$
 num/den
 $\omega_c = \{1^-, 4^-, 12^+, 50^-\}$

Step 3: Gradient changes at $10^{\pm 1}\omega_c$. Sign depends on num/den and sgn $(\frac{b}{a})$: .1⁻, 10⁺; .4⁻, 40⁺; 1.2⁺, 120⁻; 5⁻, 500⁺

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

 $H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)}$

Step 1: Factorize the polynomials
Step 2: List corner freqs:
$$\pm =$$
 num/den
 $\omega_c = \{1^-, 4^-, 12^+, 50^-\}$

Step 3: Gradient changes at $10^{\pm 1}\omega_c$. Sign depends on num/den and sgn $(\frac{b}{a})$: .1⁻, 10⁺; .4⁻, 40⁺; 1.2⁺, 120⁻; 5⁻, 500⁺

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

 $H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)}$

Step 1: Factorize the polynomials
Step 2: List corner freqs:
$$\pm =$$
 num/den
 $\omega_c = \{1^-, 4^-, 12^+, 50^-\}$

Step 3: Gradient changes at $10^{\pm 1}\omega_c$. Sign depends on num/den and sgn $(\frac{b}{a})$: .1⁻, 10⁺; .4⁻, 40⁺; 1.2⁺, 120⁻; 5⁻, 500⁺

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response +
- RCR Circuit
- Summary

 $H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)}$

Step 1: Factorize the polynomials Step 2: List corner freqs: $\pm =$ num/den $\omega_c = \{1^-, 4^-, 12^+, 50^-\}$

Step 3: Gradient changes at $10^{\pm 1}\omega_c$. Sign depends on num/den and sgn $(\frac{b}{a})$: .1⁻, 10⁺; .4⁻, 40⁺; 1.2⁺, 120⁻; 5⁻, 500⁺

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

 $H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)}$

Step 1: Factorize the polynomials
Step 2: List corner freqs:
$$\pm =$$
 num/den
 $\omega_c = \{1^-, 4^-, 12^+, 50^-\}$

Step 3: Gradient changes at $10^{\pm 1}\omega_c$. Sign depends on num/den and sgn $(\frac{b}{a})$: .1⁻, 10⁺; .4⁻, 40⁺; 1.2⁺, 120⁻; 5⁻, 500⁺

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

 $H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)}$

Step 1: Factorize the polynomials
Step 2: List corner freqs:
$$\pm =$$
 num/den
 $\omega_c = \{1^-, 4^-, 12^+, 50^-\}$

Step 3: Gradient changes at $10^{\pm 1}\omega_c$. Sign depends on num/den and sgn $(\frac{b}{a})$: .1⁻, 10⁺; .4⁻, 40⁺; 1.2⁺, 120⁻; 5⁻, 500⁺

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

 $H(j\omega) = \frac{60(j\omega)^2 + 720(j\omega)}{3(j\omega)^3 + 165(j\omega)^2 + 762(j\omega) + 600} = \frac{20j\omega(j\omega+12)}{(j\omega+1)(j\omega+4)(j\omega+50)}$

Step 1: Factorize the polynomials
Step 2: List corner freqs:
$$\pm =$$
 num/den
 $\omega_c = \{1^-, 4^-, 12^+, 50^-\}$

Step 3: Gradient changes at $10^{\pm 1}\omega_c$. Sign depends on num/den and sgn $(\frac{b}{a})$: .1⁻, 10⁺; .4⁻, 40⁺; 1.2⁺, 120⁻; 5⁻, 500⁺

Step 4: Put in ascending order and calculate gaps as $\log_{10} \frac{\omega_2}{\omega_1}$ decades: .1⁻ (.6) .4⁻ (.48) 1.2⁺ (.62) 5⁻ (.3) 10⁺ (.6) 40⁺ (.48) 120⁻ (.62) 500⁺. Step 5: Find phase of LF asymptote: $\angle 1.2j\omega = +\frac{\pi}{2}$. Step 6: At $\omega = 0.1$ gradient becomes $-\frac{\pi}{4}$ rad/decade. ϕ is still $\frac{\pi}{2}$. Step 7: At $\omega = 0.4$, $\phi = \frac{\pi}{2} - 0.6\frac{\pi}{4} = 0.35\pi$. New gradient is $-\frac{\pi}{2}$. Step 8: At $\omega = 1.2$, $\phi = 0.35\pi - 0.48\frac{\pi}{2} = 0.11\pi$. New gradient is $-\frac{\pi}{4}$. Steps 9-13: Repeat for each gradient change. Final gradient is always 0. At 0.1 and 10 times each corner frequency, the graph is continuous but its gradient changes abruptly by $\pm \frac{\pi}{4}$ rad/decade.

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response

- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response +
- RCR Circuit
- Summary

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response

- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response +
- RCR Circuit
- Summary

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response

- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response +
- RCR Circuit
- Summary

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response

- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response +
- RCR Circuit
- Summary

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response

+

- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response +
- RCR Circuit
- Summary

 $\frac{Y}{X} = \frac{R + \frac{1}{j\omega C}}{3R + R + \frac{1}{j\omega C}} = \frac{j\omega RC + 1}{4j\omega RC + 1}$

Corner freqs:
$$\frac{0.25}{RC}^{-}, \frac{1}{RC}^{+}$$
 LF Asymptote: $H(j\omega) = 1$

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response

+

- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response +
- RCR Circuit
- Summary

 $\frac{Y}{X} = \frac{R + \frac{1}{j\omega C}}{3R + R + \frac{1}{j\omega C}} = \frac{j\omega RC + 1}{4j\omega RC + 1}$

Corner freqs:
$$\frac{0.25}{RC}^{-}, \frac{1}{RC}^{+}$$
 LF Asymptote: $H(j\omega) = 1$

Magnitude Response:

0

-5

-10

Gain (dB)

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response

+

- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response +
- RCR Circuit
- Summary

 $\frac{Y}{X} = \frac{R + \frac{1}{j\omega C}}{3R + R + \frac{1}{j\omega C}} = \frac{j\omega RC + 1}{4j\omega RC + 1}$

Corner freqs:
$$\frac{0.25}{RC}^{-}, \frac{1}{RC}^{+}$$
 LF Asymptote: $H(j\omega) = 1$

10

Magnitude Response:

1

 ωRC

0.1

Gradient Changes: $-20 \, \mathrm{dB}/\mathrm{dec}$ at $\omega = \frac{0.25}{RC}$ and +20 at $\omega = \frac{1}{RC}$

E1.1 Analysis of Circuits (2018-10340)

0

-5

-10

Gain (dB)

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response

+

- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response +
- RCR Circuit
- Summary

 $4j\omega RC^{-1}$

1

 ωRC

Corner freqs:
$$\frac{0.25}{RC}^{-}, \frac{1}{RC}^{+}$$
 LF Asymptote: $H(j\omega) = 1$

10

Magnitude Response:

0.1

Gradient Changes: $-20 \, \mathrm{dB}/\mathrm{dec}$ at $\omega = \frac{0.25}{RC}$ and +20 at $\omega = \frac{1}{RC}$

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response

+

Gain (dB)

- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response +
- RCR Circuit
- Summary

Corner freqs:
$$\frac{0.25}{RC}^{-}, \frac{1}{RC}^{+}$$
 LF Asymptote: $H(j\omega) = 1$

Magnitude Response:

Gradient Changes: -20 dB/dec at $\omega = \frac{0.25}{RC}$ and $+20 \text{ at } \omega = \frac{1}{RC}$ Line equations: $H(j\omega) =$ (a) 1, (b) $\frac{1}{4j\omega RC}$, (c) $\frac{j\omega RC}{4j\omega RC} = 0.25$

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response

+

- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response +
- RCR Circuit
- Summary

Corner freqs:
$$\frac{0.25}{RC}^{-}, \frac{1}{RC}^{+}$$
 LF Asymptote: $H(j\omega) = 1$

Magnitude Response:

Gradient Changes: -20 dB/dec at $\omega = \frac{0.25}{RC}$ and $+20 \text{ at } \omega = \frac{1}{RC}$ Line equations: $H(j\omega) =$ (a) 1, (b) $\frac{1}{4j\omega RC}$, (c) $\frac{j\omega RC}{4j\omega RC} = 0.25$

Phase Response:

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response

+

- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response +
- RCR Circuit
- Summary

 $\frac{Y}{X} = \frac{R + \frac{1}{j\omega C}}{3R + R + \frac{1}{j\omega C}} = \frac{j\omega RC + 1}{4j\omega RC + 1}$

Corner freqs:
$$\frac{0.25}{RC}^{-}, \frac{1}{RC}^{+}$$
 LF Asymptote: $H(j\omega) = 1$

Magnitude Response:

Gradient Changes: -20 dB/dec at $\omega = \frac{0.25}{RC}$ and $+20 \text{ at } \omega = \frac{1}{RC}$ Line equations: $H(j\omega) =$ (a) 1, (b) $\frac{1}{4j\omega RC}$, (c) $\frac{j\omega RC}{4j\omega RC} = 0.25$

Phase Response:

LF asymptote: $\phi = \angle 1 = 0$

n

-5

Gain (dB)

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response

+

- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response +
- RCR Circuit
- Summary

 $4j\omega RC^{-1}$

1

 ωRC

Corner freqs:
$$\frac{0.25}{RC}^{-}, \frac{1}{RC}^{+}$$
 LF Asymptote: $H(j\omega) = 1$

10

Magnitude Response:

0.1

Gradient Changes: -20 dB/dec at $\omega = \frac{0.25}{RC}$ and $+20 \text{ at } \omega = \frac{1}{RC}$ Line equations: $H(j\omega) =$ (a) 1, (b) $\frac{1}{4j\omega RC}$, (c) $\frac{j\omega RC}{4j\omega RC} = 0.25$

Phase Response:

LF asymptote: $\phi = \angle 1 = 0$ Gradient changes of $\pm \frac{\pi}{4}$ /decade at: $\omega = \frac{0.025}{RC}^{-}, \frac{0.1}{RC}^{+}, \frac{2.5}{RC}^{+}, \frac{10}{RC}^{-}$.

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response

+

- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response +
- RCR Circuit
- Summary

Corner freqs:
$$\frac{0.25}{RC}^{-}, \frac{1}{RC}^{+}$$
 LF Asymptote: $H(j\omega) = 1$

Magnitude Response:

Gradient Changes: -20 dB/dec at $\omega = \frac{0.25}{RC}$ and $+20 \text{ at } \omega = \frac{1}{RC}$ Line equations: $H(j\omega) =$ (a) 1, (b) $\frac{1}{4j\omega RC}$, (c) $\frac{j\omega RC}{4j\omega RC} = 0.25$

Phase Response:

LF asymptote: $\phi = \angle 1 = 0$ Gradient changes of $\pm \frac{\pi}{4}$ /decade at: $\omega = \frac{0.025}{RC}^{-}, \frac{0.1}{RC}^{+}, \frac{2.5}{RC}^{+}, \frac{10}{RC}^{-}$. At $\omega = \frac{0.1}{RC}, \phi = 0 - \frac{\pi}{4} \log_{10} \frac{0.1}{0.025} = -\frac{\pi}{4} \times 0.602 = -0.15\pi$

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response

+

- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response +
- RCR Circuit
- Summary

• Frequency response: magnitude and phase of $\frac{Y}{X}$ as a function of ω

• Only applies to sine waves

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response

- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response +
- RCR Circuit
- Summary

- Frequency response: magnitude and phase of $\frac{Y}{X}$ as a function of ω
 - Only applies to sine waves
 - Use log axes for frequency and gain but linear for phase

▷ **Decibels** =
$$20 \log_{10} \frac{V_2}{V_1} = 10 \log_{10} \frac{P_2}{P_1}$$

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

Frequency response: magnitude and phase of ^Y/_X as a function of ω
 Only applies to sine waves

• Use log axes for frequency and gain but linear for phase

▷ **Decibels =**
$$20 \log_{10} \frac{V_2}{V_1} = 10 \log_{10} \frac{P_2}{P_1}$$

- Linear factor $(aj\omega + b)$ gives corner frequency at $\omega = \left|\frac{b}{a}\right|$.
 - Magnitude plot gradient changes by $\pm 20 \, dB/decade @ \omega = \left| \frac{b}{a} \right|.$

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

Frequency response: magnitude and phase of ^Y/_X as a function of ω
 Only applies to sine waves

• Use log axes for frequency and gain but linear for phase

▷ **Decibels =**
$$20 \log_{10} \frac{V_2}{V_1} = 10 \log_{10} \frac{P_2}{P_1}$$

- Linear factor $(aj\omega + b)$ gives corner frequency at $\omega = \left|\frac{b}{a}\right|$.
 - Magnitude plot gradient changes by $\pm 20 \text{ dB/decade } @ \omega = \left| \frac{b}{a} \right|$.
 - Phase gradient changes in two places by:
 - $\triangleright \pm \frac{\pi}{4} \text{ rad/decade } @ \omega = 0.1 \times \left| \frac{b}{a} \right|$
 - $\triangleright \quad \mp \frac{\pi}{4} \text{ rad/decade } @ \omega = 10 \times \left| \frac{b}{a} \right|$

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

Frequency response: magnitude and phase of ^Y/_X as a function of ω
 Only applies to sine waves

• Use log axes for frequency and gain but linear for phase

▷ **Decibels =**
$$20 \log_{10} \frac{V_2}{V_1} = 10 \log_{10} \frac{P_2}{P_1}$$

- Linear factor $(aj\omega + b)$ gives corner frequency at $\omega = \left|\frac{b}{a}\right|$.
 - Magnitude plot gradient changes by $\pm 20 \text{ dB/decade } @ \omega = \left| \frac{b}{a} \right|$.
 - Phase gradient changes in two places by:
 - $\triangleright \pm \frac{\pi}{4} \text{ rad/decade } @ \omega = 0.1 \times \left| \frac{b}{a} \right|$
 - $\triangleright \quad \mp \frac{\pi}{4} \text{ rad/decade } @ \omega = 10 \times \left| \frac{b}{a} \right|$
- LF/HF asymptotes: keep only the terms with the lowest/highest power of $j\omega$ in numerator and denominator polynomials

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line
- Approximations
- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

Frequency response: magnitude and phase of ^Y/_X as a function of ω
 Only applies to sine waves

• Use log axes for frequency and gain but linear for phase

▷ **Decibels =**
$$20 \log_{10} \frac{V_2}{V_1} = 10 \log_{10} \frac{P_2}{P_1}$$

- Linear factor $(aj\omega + b)$ gives corner frequency at $\omega = \left|\frac{b}{a}\right|$.
 - Magnitude plot gradient changes by $\pm 20 \, dB/decade @ \omega = \left| \frac{b}{a} \right|$.
 - Phase gradient changes in two places by:
 - $\triangleright \pm \frac{\pi}{4}$ rad/decade $@\omega = 0.1 \times \left| \frac{b}{a} \right|$
 - $\triangleright \quad \mp \frac{\pi}{4} \text{ rad/decade } @ \omega = 10 \times \left| \frac{b}{a} \right|$
- LF/HF asymptotes: keep only the terms with the lowest/highest power of $j\omega$ in numerator and denominator polynomials

For further details see Hayt Ch 16 or Irwin Ch 12.