11: Ferevencry fesponses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers +
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation +
- Plot Phase Response
- RCR Circuit
- Summary

11: Frequency Responses

Frequency Response

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response $+$
- RCR Circuit
- Summary

If $x(t)$ is a sine wave, then $y(t)$ will also be a sine wave but with a different amplitude and phase shift. X is an input phasor and Y is the output phasor.

Frequency Response

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response $+$
- RCR Circuit
- Summary

If $x(t)$ is a sine wave, then $y(t)$ will also be a sine wave but with a different amplitude and phase shift. X is an input phasor and Y is the output phasor.

The gain of the circuit is $\frac{Y}{X}=\frac{1 / j \omega C}{R+1 / j \omega C}=\frac{1}{j \omega R C+1}$

Frequency Response

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

If $x(t)$ is a sine wave, then $y(t)$ will also be a sine wave but with a different amplitude and phase shift. X is an input phasor and Y is the output phasor.

The gain of the circuit is $\frac{Y}{X}=\frac{1 / j \omega C}{R+1 / j \omega C}=\frac{1}{j \omega R C+1}$
This is a complex function of ω so we plot separate graphs for:

Frequency Response

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

If $x(t)$ is a sine wave, then $y(t)$ will also be a sine wave but with a different amplitude and phase shift. X is an input phasor and Y is the output phasor.

The gain of the circuit is $\frac{Y}{X}=\frac{1 / j \omega C}{R+1 / j \omega C}=\frac{1}{j \omega R C+1}$
This is a complex function of ω so we plot separate graphs for:

$$
\text { Magnitude: }\left|\frac{Y}{X}\right|=\frac{1}{|j \omega R C+1|}=\frac{1}{\sqrt{1+(\omega R C)^{2}}}
$$

Frequency Response

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

If $x(t)$ is a sine wave, then $y(t)$ will also be a sine wave but with a different amplitude and phase shift. X is an input phasor and Y is the output phasor.

The gain of the circuit is $\frac{Y}{X}=\frac{1 / j \omega C}{R+1 / j \omega C}=\frac{1}{j \omega R C+1}$
This is a complex function of ω so we plot separate graphs for:

$$
\text { Magnitude: }\left|\frac{Y}{X}\right|=\frac{1}{|j \omega R C+1|}=\frac{1}{\sqrt{1+(\omega R C)^{2}}}
$$

Magnitude Response

Frequency Response

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

If $x(t)$ is a sine wave, then $y(t)$ will also be a sine wave but with a different amplitude and phase shift. X is an input phasor and Y is the output phasor.

The gain of the circuit is $\frac{Y}{X}=\frac{1 / j \omega C}{R+1 / j \omega C}=\frac{1}{j \omega R C+1}$
This is a complex function of ω so we plot separate graphs for:

$$
\begin{aligned}
& \text { Magnitude: }\left|\frac{Y}{X}\right|=\frac{1}{|j \omega R C+1|}=\frac{1}{\sqrt{1+(\omega R C)^{2}}} \\
& \text { Phase Shift: } \angle\left(\frac{Y}{X}\right)=-\angle(j \omega R C+1)=-\arctan \left(\frac{\omega R C}{1}\right)
\end{aligned}
$$

Magnitude Response

Frequency Response

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

If $x(t)$ is a sine wave, then $y(t)$ will also be a sine wave but with a different amplitude and phase shift. X is an input phasor and Y is the output phasor.

The gain of the circuit is $\frac{Y}{X}=\frac{1 / j \omega C}{R+1 / j \omega C}=\frac{1}{j \omega R C+1}$
This is a complex function of ω so we plot separate graphs for:

$$
\begin{aligned}
& \text { Magnitude: }\left|\frac{Y}{X}\right|=\frac{1}{|j \omega R C+1|}=\frac{1}{\sqrt{1+(\omega R C)^{2}}} \\
& \text { Phase Shift: } \angle\left(\frac{Y}{X}\right)=-\angle(j \omega R C+1)=-\arctan \left(\frac{\omega R C}{1}\right)
\end{aligned}
$$

Magnitude Response

Phase Response

Sine Wave Response

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response $+$
- RCR Circuit
- Summary

$$
\begin{aligned}
& R C=10 \mathrm{~ms} \\
& \frac{Y}{X}=\frac{1}{j \omega R C+1}=\frac{1}{0.01 j \omega+1}
\end{aligned}
$$

$$
\omega=50 \Rightarrow \frac{Y}{X}=0.89 \angle-27^{\circ}
$$

$$
\omega=100 \Rightarrow \frac{Y}{X}=0.71 \angle-45^{\circ}
$$

$$
\omega=300 \Rightarrow \frac{Y}{X}=0.32 \angle-72^{\circ}
$$

Sine Wave Response

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response$+$
- RCR Circuit
- Summary

$$
\begin{aligned}
& R C=10 \mathrm{~ms} \\
& \frac{Y}{X}=\frac{1}{j \omega R C+1}=\frac{1}{0.01 j \omega+1}
\end{aligned}
$$

$$
\begin{aligned}
& \omega=50 \Rightarrow \frac{Y}{X}=0.89 \angle-27^{\circ} \\
& \omega=100 \Rightarrow \frac{Y}{X}=0.71 \angle-45^{\circ}
\end{aligned}
$$

$$
\omega=300 \Rightarrow \frac{Y}{X}=0.32 \angle-72^{\circ}
$$

Sine Wave Response

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

$$
\begin{aligned}
& R C=10 \mathrm{~ms} \\
& \frac{Y}{X}=\frac{1}{j \omega R C+1}=\frac{1}{0.01 j \omega+1}
\end{aligned}
$$

$$
\omega=50 \Rightarrow \frac{Y}{X}=0.89 \angle-27^{\circ}
$$

$$
\omega=100 \Rightarrow \frac{Y}{X}=0.71 \angle-45^{\circ}
$$

$$
\omega=300 \Rightarrow \frac{Y}{X}=0.32 \angle-72^{\circ}
$$

Sine Wave Response

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

$$
\begin{aligned}
& R C=10 \mathrm{~ms} \\
& \frac{Y}{X}=\frac{1}{j \omega R C+1}=\frac{1}{0.01 j \omega+1}
\end{aligned}
$$

$$
\omega=50 \Rightarrow \frac{Y}{X}=0.89 \angle-27^{\circ}
$$

$$
\omega=100 \Rightarrow \frac{Y}{X}=0.71 \angle-45^{\circ}
$$

$$
\omega=300 \Rightarrow \frac{Y}{X}=0.32 \angle-72^{\circ}
$$

Sine Wave Response

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

$$
\begin{aligned}
& R C=10 \mathrm{~ms} \\
& \frac{Y}{X}=\frac{1}{j \omega R C+1}=\frac{1}{0.01 j \omega+1}
\end{aligned}
$$

$$
\omega=50 \Rightarrow \frac{Y}{X}=0.89 \angle-27^{\circ}
$$

$$
\omega=100 \Rightarrow \frac{Y}{X}=0.71 \angle-45^{\circ}
$$

$$
\omega=300 \Rightarrow \frac{Y}{X}=0.32 \angle-72^{\circ}
$$

Sine Wave Response

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

$$
\begin{aligned}
& R C=10 \mathrm{~ms} \\
& \frac{Y}{X}=\frac{1}{j \omega R C+1}=\frac{1}{0.01 j \omega+1}
\end{aligned}
$$

$\omega=50 \Rightarrow \frac{Y}{X}=0.89 \angle-27^{\circ}$
$\omega=100 \Rightarrow \frac{Y}{X}=0.71 \angle-45^{\circ}$

$$
\omega=300 \Rightarrow \frac{Y}{X}=0.32 \angle-72^{\circ}
$$

Sine Wave Response

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

$$
\begin{aligned}
& R C=10 \mathrm{~ms} \\
& \frac{Y}{X}=\frac{1}{j \omega R C+1}=\frac{1}{0.01 j \omega+1}
\end{aligned}
$$

$\omega=50 \Rightarrow \frac{Y}{X}=0.89 \angle-27^{\circ}$
$\omega=100 \Rightarrow \frac{Y}{X}=0.71 \angle-45^{\circ}$
$\omega=300 \Rightarrow \frac{Y}{X}=0.32 \angle-72^{\circ}$

Sine Wave Response

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

$$
\begin{aligned}
& R C=10 \mathrm{~ms} \\
& \frac{Y}{X}=\frac{1}{j \omega R C+1}=\frac{1}{0.01 j \omega+1}
\end{aligned}
$$

$\omega=50 \Rightarrow \frac{Y}{X}=0.89 \angle-27^{\circ}$
$\omega=100 \Rightarrow \frac{Y}{X}=0.71 \angle-45^{\circ}$
$\omega=300 \Rightarrow \frac{Y}{X}=0.32 \angle-72^{\circ}$

Sine Wave Response

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

$$
\begin{aligned}
& R C=10 \mathrm{~ms} \\
& \frac{Y}{X}=\frac{1}{j \omega R C+1}=\frac{1}{0.01 j \omega+1}
\end{aligned}
$$

$\omega=50 \Rightarrow \frac{Y}{X}=0.89 \angle-27^{\circ}$
$\omega=100 \Rightarrow \frac{Y}{X}=0.71 \angle-45^{\circ}$
$\omega=300 \Rightarrow \frac{Y}{X}=0.32 \angle-72^{\circ}$

Sine Wave Response

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

$$
\begin{aligned}
& R C=10 \mathrm{~ms} \\
& \frac{Y}{X}=\frac{1}{j \omega R C+1}=\frac{1}{0.01 j \omega+1}
\end{aligned}
$$

$\omega=50 \Rightarrow \frac{Y}{X}=0.89 \angle-27^{\circ}$
$\omega=100 \Rightarrow \frac{Y}{X}=0.71 \angle-45^{\circ}$
$\omega=300 \Rightarrow \frac{Y}{X}=0.32 \angle-72^{\circ}$

Sine Wave Response

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

$$
\begin{aligned}
& R C=10 \mathrm{~ms} \\
& \frac{Y}{X}=\frac{1}{j \omega R C+1}=\frac{1}{0.01 j \omega+1} \\
& \omega=50 \Rightarrow \frac{Y}{X}=0.89 \angle-27^{\circ} \\
& \omega=100 \Rightarrow \frac{Y}{X}=0.71 \angle-45^{\circ} \\
& \omega=300 \Rightarrow \frac{Y}{X}=0.32 \angle-72^{\circ}
\end{aligned}
$$

The output, $y(t)$, lags the input, $x(t)$, by up to 90°.

Logarithmic axes

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response $+$
- RCR Circuit
- Summary

We usually use logarithmic axes for frequency and gain (but not phase) because \% differences are more significant than absolute differences. E.g. 5 kHz versus 5.005 kHz is less significant than 10 Hz versus 15 Hz even though both differences equal 5 Hz .

Logarithmic axes

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response $+$
- RCR Circuit
- Summary

We usually use logarithmic axes for frequency and gain (but not phase) because \% differences are more significant than absolute differences. E.g. 5 kHz versus 5.005 kHz is less significant than 10 Hz versus 15 Hz even though both differences equal 5 Hz .

Logarithmic axes

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response $+$
- RCR Circuit
- Summary

We usually use logarithmic axes for frequency and gain (but not phase) because \% differences are more significant than absolute differences. E.g. 5 kHz versus 5.005 kHz is less significant than 10 Hz versus 15 Hz even though both differences equal 5 Hz .

Logarithmic axes

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response $+$
- RCR Circuit
- Summary

We usually use logarithmic axes for frequency and gain (but not phase) because \% differences are more significant than absolute differences. E.g. 5 kHz versus 5.005 kHz is less significant than 10 Hz versus 15 Hz even though both differences equal 5 Hz .

Note that 0 does not exist on a log axis and so the starting point of the axis is arbitrary.

Logarithmic axes

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response $+$
- RCR Circuit
- Summary

We usually use logarithmic axes for frequency and gain (but not phase) because \% differences are more significant than absolute differences. E.g. 5 kHz versus 5.005 kHz is less significant than 10 Hz versus 15 Hz even though both differences equal 5 Hz .

Logarithmic voltage ratios are specified in decibels $(\mathrm{dB})=20 \log _{10} \frac{\left|V_{2}\right|}{\left|V_{1}\right|}$.

Note that 0 does not exist on a log axis and so the starting point of the axis is arbitrary.

Logarithmic axes

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

We usually use logarithmic axes for frequency and gain (but not phase) because \% differences are more significant than absolute differences. E.g. 5 kHz versus 5.005 kHz is less significant than 10 Hz versus 15 Hz even though both differences equal 5 Hz .

Logarithmic voltage ratios are specified in decibels $(\mathrm{dB})=20 \log _{10} \frac{\left|V_{2}\right|}{\left|V_{1}\right|}$.

Common voltage ratios:

Note that 0 does not

 exist on a log axis and so the starting point of the axis is arbitrary.

Logarithmic axes

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

We usually use logarithmic axes for frequency and gain (but not phase) because \% differences are more significant than absolute differences. E.g. 5 kHz versus 5.005 kHz is less significant than 10 Hz versus 15 Hz even though both differences equal 5 Hz .

Logarithmic voltage ratios are specified in decibels $(\mathrm{dB})=20 \log _{10} \frac{\left|V_{2}\right|}{\left|V_{1}\right|}$.

Common voltage ratios:

$\frac{\left\|V_{2}\right\|}{\left\|V_{1}\right\|}$	0.1			1			10	100
dB	-20			0			20	40

Note that 0 does not exist on a log axis and so the starting point of the axis is arbitrary.

Logarithmic axes

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

We usually use logarithmic axes for frequency and gain (but not phase) because \% differences are more significant than absolute differences. E.g. 5 kHz versus 5.005 kHz is less significant than 10 Hz versus 15 Hz even though both differences equal 5 Hz .

Logarithmic voltage ratios are specified in decibels $(\mathrm{dB})=20 \log _{10} \frac{\left|V_{2}\right|}{\left|V_{1}\right|}$.

Common voltage ratios:

$\frac{\left\|V_{2}\right\|}{\left\|V_{1}\right\|}$	0.1	0.5		1		2	10	100
dB	-20	-6		0		6	20	40

Note that 0 does not exist on a log axis and so the starting point of the axis is arbitrary.

Logarithmic axes

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

We usually use logarithmic axes for frequency and gain (but not phase) because \% differences are more significant than absolute differences. E.g. 5 kHz versus 5.005 kHz is less significant than 10 Hz versus 15 Hz even though both differences equal 5 Hz .

Logarithmic voltage ratios are specified in decibels $(\mathrm{dB})=20 \log _{10} \frac{\left|V_{2}\right|}{\left|V_{1}\right|}$.

Common voltage ratios:

$\frac{\left\|V_{2}\right\|}{\left\|\left\|V_{1}\right\|\right.}$	0.1	0.5	$\sqrt{0.5}$	1	$\sqrt{2}$	2	10	100
dB	-20	-6	-3	0	3	6	20	40

Note that 0 does not exist on a log axis and so the starting point of the axis is arbitrary.

Logarithmic axes

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

We usually use logarithmic axes for frequency and gain (but not phase) because \% differences are more significant than absolute differences. E.g. 5 kHz versus 5.005 kHz is less significant than 10 Hz versus 15 Hz even though both differences equal 5 Hz .

Logarithmic voltage ratios are specified in decibels $(\mathrm{dB})=20 \log _{10} \frac{\left|V_{2}\right|}{\left|V_{1}\right|}$.

Common voltage ratios:

$\frac{\left\|V_{2}\right\|}{\left\|\left\|V_{1}\right\|\right.}$	0.1	0.5	$\sqrt{0.5}$	1	$\sqrt{2}$	2	10	100
dB	-20	-6	-3	0	3	6	20	40

Note that 0 does not exist on a log axis and so the starting point of the axis is arbitrary.

Note: $P \propto V^{2} \Rightarrow$ decibel power ratios are given by $10 \log _{10} \frac{P_{2}}{P_{1}}$

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response $+$
- RCR Circuit
- Summary

Suppose we plot the magnitude and phase of $H=c(j \omega)^{r}$

Logs of Powers

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response $+$
- RCR Circuit
- Summary

Suppose we plot the magnitude and phase of $H=c(j \omega)^{r}$
Magnitude (log-log graph):
$|H|=c \omega^{r} \Rightarrow \log |H|=\log |c|+r \log \omega$

Logs of Powers

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

Suppose we plot the magnitude and phase of $H=c(j \omega)^{r}$
Magnitude (log-log graph):
$|H|=c \omega^{r} \Rightarrow \log |H|=\log |c|+r \log \omega$

Logs of Powers

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

Suppose we plot the magnitude and phase of $H=c(j \omega)^{r}$
Magnitude (log-log graph):
$|H|=c \omega^{r} \Rightarrow \log |H|=\log |c|+r \log \omega$ This is a straight line with a slope of r.

Logs of Powers

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

Suppose we plot the magnitude and phase of $H=c(j \omega)^{r}$
Magnitude (log-log graph):
$|H|=c \omega^{r} \Rightarrow \log |H|=\log |c|+r \log \omega$ This is a straight line with a slope of r.

Phase (log-lin graph):
$\angle H=\angle j^{r}+\angle c=r \times \frac{\pi}{2}(+\pi$ if $c<0)$

Logs of Powers

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

Suppose we plot the magnitude and phase of $H=c(j \omega)^{r}$
Magnitude (log-log graph):
$|H|=c \omega^{r} \Rightarrow \log |H|=\log |c|+r \log \omega$
This is a straight line with a slope of r.

Phase (log-lin graph):
$\angle H=\angle j^{r}+\angle c=r \times \frac{\pi}{2}(+\pi$ if $c<0)$

Logs of Powers

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

Suppose we plot the magnitude and phase of $H=c(j \omega)^{r}$
Magnitude (log-log graph):
$|H|=c \omega^{r} \Rightarrow \log |H|=\log |c|+r \log \omega$
This is a straight line with a slope of r.

Phase (log-lin graph):
$\angle H=\angle j^{r}+\angle c=r \times \frac{\pi}{2}(+\pi$ if $c<0)$ The phase is constant $\forall \omega$.

Logs of Powers

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

Suppose we plot the magnitude and phase of $H=c(j \omega)^{r}$
Magnitude (log-log graph):
$|H|=c \omega^{r} \Rightarrow \log |H|=\log |c|+r \log \omega$
This is a straight line with a slope of r.

Phase (log-lin graph):
$\angle H=\angle j^{r}+\angle c=r \times \frac{\pi}{2}(+\pi$ if $c<0)$ The phase is constant $\forall \omega$.

Logs of Powers

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

Suppose we plot the magnitude and phase of $H=c(j \omega)^{r}$
Magnitude (log-log graph):
$|H|=c \omega^{r} \Rightarrow \log |H|=\log |c|+r \log \omega$
This is a straight line with a slope of r.
c only affects the line's vertical position.

Phase (log-lin graph):
$\angle H=\angle j^{r}+\angle c=r \times \frac{\pi}{2}(+\pi$ if $c<0)$ The phase is constant $\forall \omega$.

Logs of Powers

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

Suppose we plot the magnitude and phase of $H=c(j \omega)^{r}$
Magnitude (log-log graph):
$|H|=c \omega^{r} \Rightarrow \log |H|=\log |c|+r \log \omega$
This is a straight line with a slope of r.
c only affects the line's vertical position.

Phase (log-lin graph):
$\angle H=\angle j^{r}+\angle c=r \times \frac{\pi}{2}(+\pi$ if $c<0)$ The phase is constant $\forall \omega$.

Logs of Powers

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

Suppose we plot the magnitude and phase of $H=c(j \omega)^{r}$
Magnitude (log-log graph):
$|H|=c \omega^{r} \Rightarrow \log |H|=\log |c|+r \log \omega$
This is a straight line with a slope of r.
c only affects the line's vertical position.

Phase (log-lin graph):
$\angle H=\angle j^{r}+\angle c=r \times \frac{\pi}{2}(+\pi$ if $c<0)$ The phase is constant $\forall \omega$.

Logs of Powers

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

Suppose we plot the magnitude and phase of $H=c(j \omega)^{r}$
Magnitude (log-log graph):
$|H|=c \omega^{r} \Rightarrow \log |H|=\log |c|+r \log \omega$
This is a straight line with a slope of r.
c only affects the line's vertical position.

Phase (log-lin graph):
$\angle H=\angle j^{r}+\angle c=r \times \frac{\pi}{2}(+\pi$ if $c<0)$
The phase is constant $\forall \omega$.
If $c>0$, phase $=90^{\circ} \times$ magnitude slope.

Logs of Powers

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

Suppose we plot the magnitude and phase of $H=c(j \omega)^{r}$
Magnitude (log-log graph):
$|H|=c \omega^{r} \Rightarrow \log |H|=\log |c|+r \log \omega$ This is a straight line with a slope of r. c only affects the line's vertical position.

If $|H|$ is measured in decibels, a slope of r is called $6 r \mathrm{~dB} /$ octave or $20 r \mathrm{~dB} /$ decade.

Phase (log-lin graph):
$\angle H=\angle j^{r}+\angle c=r \times \frac{\pi}{2}(+\pi$ if $c<0)$
The phase is constant $\forall \omega$.
If $c>0$, phase $=90^{\circ} \times$ magnitude slope.

Logs of Powers

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

Suppose we plot the magnitude and phase of $H=c(j \omega)^{r}$
Magnitude (log-log graph):
$|H|=c \omega^{r} \Rightarrow \log |H|=\log |c|+r \log \omega$ This is a straight line with a slope of r. c only affects the line's vertical position.

If $|H|$ is measured in decibels, a slope of r is called $6 r \mathrm{~dB} /$ octave or $20 r \mathrm{~dB} /$ decade.

Phase (log-lin graph):
$\angle H=\angle j^{r}+\angle c=r \times \frac{\pi}{2}(+\pi$ if $c<0)$
The phase is constant $\forall \omega$.
If $c>0$, phase $=90^{\circ} \times$ magnitude slope.
Negative c adds $\pm 180^{\circ}$ to the phase.

Logs of Powers

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

Suppose we plot the magnitude and phase of $H=c(j \omega)^{r}$
Magnitude (log-log graph):
$|H|=c \omega^{r} \Rightarrow \log |H|=\log |c|+r \log \omega$ This is a straight line with a slope of r. c only affects the line's vertical position.

If $|H|$ is measured in decibels, a slope of r is called $6 r \mathrm{~dB} /$ octave or $20 r \mathrm{~dB} /$ decade.

Phase (log-lin graph):
$\angle H=\angle j^{r}+\angle c=r \times \frac{\pi}{2}(+\pi$ if $c<0)$
The phase is constant $\forall \omega$.
If $c>0$, phase $=90^{\circ} \times$ magnitude slope.
Negative c adds $\pm 180^{\circ}$ to the phase.
Note: Phase angles are modulo 360°, i.e. $+180^{\circ} \equiv-180^{\circ}$ and $450^{\circ} \equiv 90^{\circ}$.

Logs of Powers

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary
$H=c(j \omega)^{r}$ has a straight-line magnitude graph and a constant phase.
Magnitude (log-log graph):
$|H|=c \omega^{r} \Rightarrow \log |H|=\log |c|+r \log \omega$ This is a straight line with a slope of r. c only affects the line's vertical position.

If $|H|$ is measured in decibels, a slope of r is called $6 r \mathrm{~dB} /$ octave or $20 r \mathrm{~dB} /$ decade.

Phase (log-lin graph):
$\angle H=\angle j^{r}+\angle c=r \times \frac{\pi}{2}(+\pi$ if $c<0)$
The phase is constant $\forall \omega$.
If $c>0$, phase $=90^{\circ} \times$ magnitude slope.
Negative c adds $\pm 180^{\circ}$ to the phase.
Note: Phase angles are modulo 360°, i.e. $+180^{\circ} \equiv-180^{\circ}$ and $450^{\circ} \equiv 90^{\circ}$.

Straight Line Approximations

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response $+$
- RCR Circuit
- Summary

$$
\text { Key idea: }(a j \omega+b) \approx \begin{cases}a j \omega & \text { for }|a \omega| \gg|b| \\ b & \text { for }|a \omega| \ll|b|\end{cases}
$$

Straight Line Approximations

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response $+$
- RCR Circuit
- Summary

Key idea: $(a j \omega+b) \approx \begin{cases}a j \omega & \text { for }|a \omega| \gg|b| \\ b & \text { for }|a \omega| \ll|b|\end{cases}$
Gain: $H(j \omega)=\frac{1}{j \omega R C+1}$

Straight Line Approximations

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response $+$
- RCR Circuit
- Summary

Key idea: $(a j \omega+b) \approx \begin{cases}a j \omega & \text { for }|a \omega| \gg|b| \\ b & \text { for }|a \omega| \ll|b|\end{cases}$
Gain: $H(j \omega)=\frac{1}{j \omega R C+1}$
Low frequencies $\left(\omega \ll \frac{1}{R C}\right)$: $H(j \omega) \approx 1$

Straight Line Approximations

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

Key idea: $(a j \omega+b) \approx \begin{cases}a j \omega & \text { for }|a \omega| \gg|b| \\ b & \text { for }|a \omega| \ll|b|\end{cases}$
Gain: $H(j \omega)=\frac{1}{j \omega R C+1}$
Low frequencies $\left(\omega \ll \frac{1}{R C}\right)$: $H(j \omega) \approx 1$
High frequencies $\left(\omega \gg \frac{1}{R C}\right): H(j \omega) \approx \frac{1}{j \omega R C}$

Straight Line Approximations

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

Key idea: $(a j \omega+b) \approx \begin{cases}a j \omega & \text { for }|a \omega| \gg|b| \\ b & \text { for }|a \omega| \ll|b|\end{cases}$
Gain: $H(j \omega)=\frac{1}{j \omega R C+1}$

Low frequencies $\left(\omega \ll \frac{1}{R C}\right)$: $H(j \omega) \approx 1$
High frequencies $\left(\omega \gg \frac{1}{R C}\right): H(j \omega) \approx \frac{1}{j \omega R C}$
Approximate the magnitude response as two straight lines

Straight Line Approximations

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

Key idea: $(a j \omega+b) \approx \begin{cases}a j \omega & \text { for }|a \omega| \gg|b| \\ b & \text { for }|a \omega| \ll|b|\end{cases}$
Gain: $H(j \omega)=\frac{1}{j \omega R C+1}$

Low frequencies $\left(\omega \ll \frac{1}{R C}\right)$: $H(j \omega) \approx 1 \Rightarrow|H(j \omega)| \approx 1$
High frequencies $\left(\omega \gg \frac{1}{R C}\right): H(j \omega) \approx \frac{1}{j \omega R C}$
Approximate the magnitude response as two straight lines

Straight Line Approximations

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

Key idea: $(a j \omega+b) \approx \begin{cases}a j \omega & \text { for }|a \omega| \gg|b| \\ b & \text { for }|a \omega| \ll|b|\end{cases}$
Gain: $H(j \omega)=\frac{1}{j \omega R C+1}$

Low frequencies $\left(\omega \ll \frac{1}{R C}\right)$: $H(j \omega) \approx 1 \Rightarrow|H(j \omega)| \approx 1$
High frequencies $\left(\omega \gg \frac{1}{R C}\right): H(j \omega) \approx \frac{1}{j \omega R C} \Rightarrow|H(j \omega)| \approx \frac{1}{R C} \omega^{-1}$
Approximate the magnitude response as two straight lines

Straight Line Approximations

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

Key idea: $(a j \omega+b) \approx \begin{cases}a j \omega & \text { for }|a \omega| \gg|b| \\ b & \text { for }|a \omega| \ll|b|\end{cases}$
Gain: $H(j \omega)=\frac{1}{j \omega R C+1}$

Low frequencies $\left(\omega \ll \frac{1}{R C}\right)$: $H(j \omega) \approx 1 \Rightarrow|H(j \omega)| \approx 1$
High frequencies $\left(\omega \gg \frac{1}{R C}\right): H(j \omega) \approx \frac{1}{j \omega R C} \Rightarrow|H(j \omega)| \approx \frac{1}{R C} \omega^{-1}$
Approximate the magnitude response as two straight lines

Straight Line Approximations

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

Key idea: $(a j \omega+b) \approx \begin{cases}a j \omega & \text { for }|a \omega| \gg|b| \\ b & \text { for }|a \omega| \ll|b|\end{cases}$
Gain: $H(j \omega)=\frac{1}{j \omega R C+1}$

Low frequencies $\left(\omega \ll \frac{1}{R C}\right)$: $H(j \omega) \approx 1 \Rightarrow|H(j \omega)| \approx 1$
High frequencies $\left(\omega \gg \frac{1}{R C}\right): H(j \omega) \approx \frac{1}{j \omega R C} \Rightarrow|H(j \omega)| \approx \frac{1}{R C} \omega^{-1}$
Approximate the magnitude response as two straight lines intersecting at the corner frequency, $\omega_{c}=\frac{1}{R C}$.

Straight Line Approximations

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

Key idea: $(a j \omega+b) \approx \begin{cases}a j \omega & \text { for }|a \omega| \gg|b| \\ b & \text { for }|a \omega| \ll|b|\end{cases}$
Gain: $H(j \omega)=\frac{1}{j \omega R C+1}$

Low frequencies $\left(\omega \ll \frac{1}{R C}\right)$: $H(j \omega) \approx 1 \Rightarrow|H(j \omega)| \approx 1$
High frequencies $\left(\omega \gg \frac{1}{R C}\right): H(j \omega) \approx \frac{1}{j \omega R C} \Rightarrow|H(j \omega)| \approx \frac{1}{R C} \omega^{-1}$

Approximate the magnitude response as two straight lines intersecting at the corner frequency, $\omega_{c}=\frac{1}{R C}$.

At the corner frequency:

(a) the gradient changes by -1 ($=-6 \mathrm{~dB} /$ octave $=-20 \mathrm{~dB} /$ decade $)$.

Straight Line Approximations

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

Key idea: $(a j \omega+b) \approx \begin{cases}a j \omega & \text { for }|a \omega| \gg|b| \\ b & \text { for }|a \omega| \ll|b|\end{cases}$
Gain: $H(j \omega)=\frac{1}{j \omega R C+1}$

Low frequencies $\left(\omega \ll \frac{1}{R C}\right)$: $H(j \omega) \approx 1 \Rightarrow|H(j \omega)| \approx 1$
High frequencies $\left(\omega \gg \frac{1}{R C}\right): H(j \omega) \approx \frac{1}{j \omega R C} \Rightarrow|H(j \omega)| \approx \frac{1}{R C} \omega^{-1}$
Approximate the magnitude response as two straight lines intersecting at the corner frequency, $\omega_{c}=\frac{1}{R C}$.

At the corner frequency:

(a) the gradient changes by -1 ($=-6 \mathrm{~dB} /$ octave $=-20 \mathrm{~dB} /$ decade $)$.
(b) $\left|H\left(j \omega_{c}\right)\right|=\left|\frac{1}{1+j}\right|=\frac{1}{\sqrt{2}}=-3 \mathrm{~dB}$ (worst-case error).

Straight Line Approximations

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

Key idea: $(a j \omega+b) \approx \begin{cases}a j \omega & \text { for }|a \omega| \gg|b| \\ b & \text { for }|a \omega| \ll|b|\end{cases}$
Gain: $H(j \omega)=\frac{1}{j \omega R C+1}$

Low frequencies $\left(\omega \ll \frac{1}{R C}\right)$: $H(j \omega) \approx 1 \Rightarrow|H(j \omega)| \approx 1$
High frequencies $\left(\omega \gg \frac{1}{R C}\right)$: $H(j \omega) \approx \frac{1}{j \omega R C} \Rightarrow|H(j \omega)| \approx \frac{1}{R C} \omega^{-1}$
Approximate the magnitude response as two straight lines intersecting at the corner frequency, $\omega_{c}=\frac{1}{R C}$.

At the corner frequency:

(a) the gradient changes by -1 ($=-6 \mathrm{~dB} /$ octave $=-20 \mathrm{~dB} /$ decade $)$.
(b) $\left|H\left(j \omega_{c}\right)\right|=\left|\frac{1}{1+j}\right|=\frac{1}{\sqrt{2}}=-3 \mathrm{~dB}$ (worst-case error).

A linear factor $(a j \omega+b)$ has a corner frequency of $\omega_{c}=\left|\frac{b}{a}\right|$.

Plot Magnitude Response

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response $+$
- RCR Circuit
- Summary

The gain of a linear circuit is always a rational polynomial in $j \omega$ and is called the transfer function of the circuit. For example:

$$
H(j \omega)=\frac{60(j \omega)^{2}+720(j \omega)}{3(j \omega)^{3}+165(j \omega)^{2}+762(j \omega)+600}
$$

Plot Magnitude Response

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response $+$
- RCR Circuit
- Summary

The gain of a linear circuit is always a rational polynomial in $j \omega$ and is called the transfer function of the circuit. For example:
$H(j \omega)=\frac{60(j \omega)^{2}+720(j \omega)}{3(j \omega)^{3}+165(j \omega)^{2}+762(j \omega)+600}=\frac{20 j \omega(j \omega+12)}{(j \omega+1)(j \omega+4)(j \omega+50)}$
Step 1: Factorize the polynomials

Plot Magnitude Response

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

The gain of a linear circuit is always a rational polynomial in $j \omega$ and is called the transfer function of the circuit. For example:
$H(j \omega)=\frac{60(j \omega)^{2}+720(j \omega)}{3(j \omega)^{3}+165(j \omega)^{2}+762(j \omega)+600}=\frac{20 j \omega(j \omega+12)}{(j \omega+1)(j \omega+4)(j \omega+50)}$
Step 1: Factorize the polynomials
Step 2: Sort corner freqs: 1, 4, 12, 50

Plot Magnitude Response

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

The gain of a linear circuit is always a rational polynomial in $j \omega$ and is called the transfer function of the circuit. For example:

$$
H(j \omega)=\frac{60(j \omega)^{2}+720(j \omega)}{3(j \omega)^{3}+165(j \omega)^{2}+762(j \omega)+600}=\frac{20 j \omega(j \omega+12)}{(j \omega+1)(j \omega+4)(j \omega+50)}
$$

Step 1: Factorize the polynomials
Step 2: Sort corner freqs: 1, 4, 12, 50
Step 3: For $\omega<1$ all linear factors equal their constant terms:

$$
|H| \approx \frac{20 \omega \times 12}{1 \times 4 \times 50}=1.2 \omega^{1}
$$

Plot Magnitude Response

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

The gain of a linear circuit is always a rational polynomial in $j \omega$ and is called the transfer function of the circuit. For example:

$$
H(j \omega)=\frac{60(j \omega)^{2}+720(j \omega)}{3(j \omega)^{3}+165(j \omega)^{2}+762(j \omega)+600}=\frac{20 j \omega(j \omega+12)}{(j \omega+1)(j \omega+4)(j \omega+50)}
$$

Step 1: Factorize the polynomials
Step 2: Sort corner freqs: 1, 4, 12, 50
Step 3: For $\omega<1$ all linear factors equal their constant terms:

$$
|H| \approx \frac{20 \omega \times 12}{1 \times 4 \times 50}=1.2 \omega^{1}
$$

Step 4: For $1<\omega<4$, the factor $(j \omega+1) \approx j \omega$ so

$$
|H| \approx \frac{20 \omega \times 12}{\omega \times 4 \times 50}=1.2 \omega^{0}
$$

Plot Magnitude Response

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

The gain of a linear circuit is always a rational polynomial in $j \omega$ and is called the transfer function of the circuit. For example:

$$
H(j \omega)=\frac{60(j \omega)^{2}+720(j \omega)}{3(j \omega)^{3}+165(j \omega)^{2}+762(j \omega)+600}=\frac{20 j \omega(j \omega+12)}{(j \omega+1)(j \omega+4)(j \omega+50)}
$$

Step 1: Factorize the polynomials
Step 2: Sort corner freqs: 1, 4, 12, 50
Step 3: For $\omega<1$ all linear factors equal their constant terms:

$$
|H| \approx \frac{20 \omega \times 12}{1 \times 4 \times 50}=1.2 \omega^{1}
$$

Step 4: For $1<\omega<4$, the factor $(j \omega+1) \approx j \omega$ so

$$
|H| \approx \frac{20 \omega \times 12}{\omega \times 4 \times 50}=1.2 \omega^{0}=+1.58 \mathrm{~dB} .
$$

Plot Magnitude Response

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

The gain of a linear circuit is always a rational polynomial in $j \omega$ and is called the transfer function of the circuit. For example:

$$
H(j \omega)=\frac{60(j \omega)^{2}+720(j \omega)}{3(j \omega)^{3}+165(j \omega)^{2}+762(j \omega)+600}=\frac{20 j \omega(j \omega+12)}{(j \omega+1)(j \omega+4)(j \omega+50)}
$$

Step 1: Factorize the polynomials
Step 2: Sort corner freqs: 1, 4, 12, 50
Step 3: For $\omega<1$ all linear factors equal their constant terms:

$$
|H| \approx \frac{20 \omega \times 12}{1 \times 4 \times 50}=1.2 \omega^{1}
$$

Step 4: For $1<\omega<4$, the factor $(j \omega+1) \approx j \omega$ so

$$
|H| \approx \frac{20 \omega \times 12}{\omega \times 4 \times 50}=1.2 \omega^{0}=+1.58 \mathrm{~dB} .
$$

Step 5: For $4<\omega<12,|H| \approx \frac{20 \omega \times 12}{\omega \times \omega \times 50}=4.8 \omega^{-1}$.

Plot Magnitude Response

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

The gain of a linear circuit is always a rational polynomial in $j \omega$ and is called the transfer function of the circuit. For example:

$$
H(j \omega)=\frac{60(j \omega)^{2}+720(j \omega)}{3(j \omega)^{3}+165(j \omega)^{2}+762(j \omega)+600}=\frac{20 j \omega(j \omega+12)}{(j \omega+1)(j \omega+4)(j \omega+50)}
$$

Step 1: Factorize the polynomials
Step 2: Sort corner freqs: 1, 4, 12, 50
Step 3: For $\omega<1$ all linear factors equal their constant terms:

$$
|H| \approx \frac{20 \omega \times 12}{1 \times 4 \times 50}=1.2 \omega^{1}
$$

Step 4: For $1<\omega<4$, the factor $(j \omega+1) \approx j \omega$ so

$$
|H| \approx \frac{20 \omega \times 12}{\omega \times 4 \times 50}=1.2 \omega^{0}=+1.58 \mathrm{~dB} .
$$

Step 5: For $4<\omega<12,|H| \approx \frac{20 \omega \times 12}{\omega \times \omega \times 50}=4.8 \omega^{-1}$.
Step 6: For $12<\omega<50,|H| \approx \frac{20 \omega \times \omega}{\omega \times \omega \times 50}=0.4 \omega^{0}=-7.96 \mathrm{~dB}$.

Plot Magnitude Response

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

The gain of a linear circuit is always a rational polynomial in $j \omega$ and is called the transfer function of the circuit. For example:

$$
H(j \omega)=\frac{60(j \omega)^{2}+720(j \omega)}{3(j \omega)^{3}+165(j \omega)^{2}+762(j \omega)+600}=\frac{20 j \omega(j \omega+12)}{(j \omega+1)(j \omega+4)(j \omega+50)}
$$

Step 1: Factorize the polynomials
Step 2: Sort corner freqs: 1, 4, 12, 50
Step 3: For $\omega<1$ all linear factors equal their constant terms:

$$
|H| \approx \frac{20 \omega \times 12}{1 \times 4 \times 50}=1.2 \omega^{1}
$$

Step 4: For $1<\omega<4$, the factor $(j \omega+1) \approx j \omega$ so

$$
|H| \approx \frac{20 \omega \times 12}{\omega \times 4 \times 50}=1.2 \omega^{0}=+1.58 \mathrm{~dB} .
$$

Step 5: For $4<\omega<12,|H| \approx \frac{20 \omega \times 12}{\omega \times \omega \times 50}=4.8 \omega^{-1}$.
Step 6: For $12<\omega<50,|H| \approx \frac{20 \omega \times \omega}{\omega \times \omega \times 50}=0.4 \omega^{0}=-7.96 \mathrm{~dB}$.
Step 7: For $\omega>50,|H| \approx \frac{20 \omega \times \omega}{\omega \times \omega \times \omega}=20 \omega^{-1}$.

Plot Magnitude Response

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

The gain of a linear circuit is always a rational polynomial in $j \omega$ and is called the transfer function of the circuit. For example:

$$
H(j \omega)=\frac{60(j \omega)^{2}+720(j \omega)}{3(j \omega)^{3}+165(j \omega)^{2}+762(j \omega)+600}=\frac{20 j \omega(j \omega+12)}{(j \omega+1)(j \omega+4)(j \omega+50)}
$$

Step 1: Factorize the polynomials
Step 2: Sort corner freqs: 1, 4, 12, 50
Step 3: For $\omega<1$ all linear factors equal their constant terms:

$$
|H| \approx \frac{20 \omega \times 12}{1 \times 4 \times 50}=1.2 \omega^{1}
$$

Step 4: For $1<\omega<4$, the factor $(j \omega+1) \approx j \omega$ so

$$
|H| \approx \frac{20 \omega \times 12}{\omega \times 4 \times 50}=1.2 \omega^{0}=+1.58 \mathrm{~dB} .
$$

Step 5: For $4<\omega<12,|H| \approx \frac{20 \omega \times 12}{\omega \times \omega \times 50}=4.8 \omega^{-1}$.
Step 6: For $12<\omega<50,|H| \approx \frac{20 \omega \times \omega}{\omega \times \omega \times 50}=0.4 \omega^{0}=-7.96 \mathrm{~dB}$.
Step 7: For $\omega>50,|H| \approx \frac{20 \omega \times \omega}{\omega \times \omega \times \omega}=20 \omega^{-1}$.
At each corner frequency, the graph is continuous but its gradient changes abruptly by +1 (numerator factor) or -1 (denominator factor).

Low and High Frequency Asymptotes

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response $+$
- RCR Circuit
- Summary

You can find the low and high frequency asymptotes without factorizing: $H(j \omega)=\frac{60(j \omega)^{2}+720(j \omega)}{3(j \omega)^{3}+165(j \omega)^{2}+762(j \omega)+600}=\frac{20 j \omega(j \omega+12)}{(j \omega+1)(j \omega+4)(j \omega+50)}$

Low and High Frequency Asymptotes

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

You can find the low and high frequency asymptotes without factorizing: $H(j \omega)=\frac{60(j \omega)^{2}+720(j \omega)}{3(j \omega)^{3}+165(j \omega)^{2}+762(j \omega)+600}=\frac{20 j \omega(j \omega+12)}{(j \omega+1)(j \omega+4)(j \omega+50)}$

Low and High Frequency Asymptotes

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response $+$
- RCR Circuit
- Summary

You can find the low and high frequency asymptotes without factorizing: $H(j \omega)=\frac{60(j \omega)^{2}+720(j \omega)}{3(j \omega)^{3}+165(j \omega)^{2}+762(j \omega)+600}=\frac{20 j \omega(j \omega+12)}{(j \omega+1)(j \omega+4)(j \omega+50)}$

Low Frequency Asymptote:

Low and High Frequency Asymptotes

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

You can find the low and high frequency asymptotes without factorizing: $H(j \omega)=\frac{60(j \omega)^{2}+720(j \omega)}{3(j \omega)^{3}+165(j \omega)^{2}+762(j \omega)+600}=\frac{20 j \omega(j \omega+12)}{(j \omega+1)(j \omega+4)(j \omega+50)}$

Low Frequency Asymptote:

From factors: $H_{\mathrm{LF}}(j \omega)=\frac{20 j \omega(12)}{(1)(4)(50)}=1.2 j \omega$

Low and High Frequency Asymptotes

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

You can find the low and high frequency asymptotes without factorizing: $H(j \omega)=\frac{60(j \omega)^{2}+720(j \omega)}{3(j \omega)^{3}+165(j \omega)^{2}+762(j \omega)+600}=\frac{20 j \omega(j \omega+12)}{(j \omega+1)(j \omega+4)(j \omega+50)}$

Low Frequency Asymptote:

From factors: $H_{\mathrm{LF}}(j \omega)=\frac{20 j \omega(12)}{(1)(4)(50)}=1.2 j \omega$
Lowest power of $j \omega$ on top and bottom: $H(j \omega) \simeq \frac{720(j \omega)}{600}=1.2 j \omega$

Low and High Frequency Asymptotes

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

You can find the low and high frequency asymptotes without factorizing: $H(j \omega)=\frac{60(j \omega)^{2}+720(j \omega)}{3(j \omega)^{3}+165(j \omega)^{2}+762(j \omega)+600}=\frac{20 j \omega(j \omega+12)}{(j \omega+1)(j \omega+4)(j \omega+50)}$

Low Frequency Asymptote:

From factors: $H_{\mathrm{LF}}(j \omega)=\frac{20 j \omega(12)}{(1)(4)(50)}=1.2 j \omega$
Lowest power of $j \omega$ on top and bottom: $H(j \omega) \simeq \frac{720(j \omega)}{600}=1.2 j \omega$
High Frequency Asymptote:

Low and High Frequency Asymptotes

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

You can find the low and high frequency asymptotes without factorizing: $H(j \omega)=\frac{60(j \omega)^{2}+720(j \omega)}{3(j \omega)^{3}+165(j \omega)^{2}+762(j \omega)+600}=\frac{20 j \omega(j \omega+12)}{(j \omega+1)(j \omega+4)(j \omega+50)}$

Low Frequency Asymptote:
From factors: $H_{\mathrm{LF}}(j \omega)=\frac{20 j \omega(12)}{(1)(4)(50)}=1.2 j \omega$
Lowest power of $j \omega$ on top and bottom: $H(j \omega) \simeq \frac{720(j \omega)}{600}=1.2 j \omega$
High Frequency Asymptote:
From factors: $H_{\mathrm{HF}}(j \omega)=\frac{20 j \omega(j \omega)}{(j \omega)(j \omega)(j \omega)}=20(j \omega)^{-1}$

Low and High Frequency Asymptotes

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

You can find the low and high frequency asymptotes without factorizing: $H(j \omega)=\frac{60(j \omega)^{2}+720(j \omega)}{3(j \omega)^{3}+165(j \omega)^{2}+762(j \omega)+600}=\frac{20 j \omega(j \omega+12)}{(j \omega+1)(j \omega+4)(j \omega+50)}$

Low Frequency Asymptote:
From factors: $H_{\mathrm{LF}}(j \omega)=\frac{20 j \omega(12)}{(1)(4)(50)}=1.2 j \omega$
Lowest power of $j \omega$ on top and bottom: $H(j \omega) \simeq \frac{720(j \omega)}{600}=1.2 j \omega$
High Frequency Asymptote:
From factors: $H_{\mathrm{HF}}(j \omega)=\frac{20 j \omega(j \omega)}{(j \omega)(j \omega)(j \omega)}=20(j \omega)^{-1}$
Highest power of $j \omega$ on top and bottom: $H(j \omega) \simeq \frac{60(j \omega)^{2}}{3(j \omega)^{3}}=20(j \omega)^{-1}$

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response $+$
- RCR Circuit
- Summary

Gain: $H(j \omega)=\frac{1}{j \omega R C+1}$

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response $+$
- RCR Circuit
- Summary

Gain: $H(j \omega)=\frac{1}{j \omega R C+1}$
Low frequencies $\left(\omega \ll \frac{1}{R C}\right)$:

$$
H(j \omega) \approx 1
$$

Phase Approximation

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response $+$
- RCR Circuit
- Summary

Gain: $H(j \omega)=\frac{1}{j \omega R C+1}$
Low frequencies $\left(\omega \ll \frac{1}{R C}\right)$:

$$
H(j \omega) \approx 1 \Rightarrow \angle 1=0
$$

Phase Approximation

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response $+$
- RCR Circuit
- Summary

Gain: $H(j \omega)=\frac{1}{j \omega R C+1}$
Low frequencies ($\omega \ll \frac{1}{R C}$):

$$
H(j \omega) \approx 1 \Rightarrow \angle 1=0
$$

High frequencies $\left(\omega \gg \frac{1}{R C}\right): H(j \omega) \approx \frac{1}{j \omega R C}$

Phase Approximation

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response $+$
- RCR Circuit
- Summary

Gain: $H(j \omega)=\frac{1}{j \omega R C+1}$
Low frequencies $\left(\omega \ll \frac{1}{R C}\right)$:

$$
H(j \omega) \approx 1 \Rightarrow \angle 1=0
$$

High frequencies $\left(\omega \gg \frac{1}{R C}\right): H(j \omega) \approx \frac{1}{j \omega R C} \Rightarrow \angle j^{-1}=-\frac{\pi}{2}$

Phase Approximation

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response $+$
- RCR Circuit
- Summary

Gain: $H(j \omega)=\frac{1}{j \omega R C+1}$
Low frequencies $\left(\omega \ll \frac{1}{R C}\right)$:

$$
H(j \omega) \approx 1 \Rightarrow \angle 1=0
$$

High frequencies $\left(\omega \gg \frac{1}{R C}\right): H(j \omega) \approx \frac{1}{j \omega R C} \Rightarrow \angle j^{-1}=-\frac{\pi}{2}$
Approximate the phase response as three straight lines.

Phase Approximation

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response $+$
- RCR Circuit
- Summary

Gain: $H(j \omega)=\frac{1}{j \omega R C+1}$
Low frequencies $\left(\omega \ll \frac{1}{R C}\right)$:

$$
H(j \omega) \approx 1 \Rightarrow \angle 1=0
$$

High frequencies $\left(\omega \gg \frac{1}{R C}\right): H(j \omega) \approx \frac{1}{j \omega R C} \Rightarrow \angle j^{-1}=-\frac{\pi}{2}$
Approximate the phase response as three straight lines.

By chance, they intersect close to $0.1 \omega_{c}$ and $10 \omega_{c}$ where $\omega_{c}=\frac{1}{R C}$.

Phase Approximation

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

Gain: $H(j \omega)=\frac{1}{j \omega R C+1}$
Low frequencies ($\omega \ll \frac{1}{R C}$):

$$
H(j \omega) \approx 1 \Rightarrow \angle 1=0
$$

High frequencies $\left(\omega \gg \frac{1}{R C}\right): H(j \omega) \approx \frac{1}{j \omega R C} \Rightarrow \angle j^{-1}=-\frac{\pi}{2}$

Approximate the phase response as three straight lines.

By chance, they intersect close to $0.1 \omega_{c}$ and $10 \omega_{c}$ where $\omega_{c}=\frac{1}{R C}$.

Between $0.1 \omega_{c}$ and $10 \omega_{c}$ the phase changes by $-\frac{\pi}{2}$ over two decades. This gives a gradient $=-\frac{\pi}{4}$ radians/decade.

Phase Approximation

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

Gain: $H(j \omega)=\frac{1}{j \omega R C+1}$
Low frequencies ($\omega \ll \frac{1}{R C}$):

$$
H(j \omega) \approx 1 \Rightarrow \angle 1=0
$$

High frequencies $\left(\omega \gg \frac{1}{R C}\right): H(j \omega) \approx \frac{1}{j \omega R C} \Rightarrow \angle j^{-1}=-\frac{\pi}{2}$

Approximate the phase response as three straight lines.

By chance, they intersect close to $0.1 \omega_{c}$ and $10 \omega_{c}$ where $\omega_{c}=\frac{1}{R C}$.

Between $0.1 \omega_{c}$ and $10 \omega_{c}$ the phase changes by $-\frac{\pi}{2}$ over two decades. This gives a gradient $=-\frac{\pi}{4}$ radians/decade.

$$
\begin{aligned}
& (a j \omega+b) \text { in denominator } \\
& \quad \Rightarrow \Delta \text { gradient }=\mp \frac{\pi}{4} / \text { decade at } \omega=10^{\mp 1}\left|\frac{b}{a}\right| .
\end{aligned}
$$

Phase Approximation

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

Gain: $H(j \omega)=\frac{1}{j \omega R C+1}$
Low frequencies ($\omega \ll \frac{1}{R C}$):

$$
H(j \omega) \approx 1 \Rightarrow \angle 1=0
$$

High frequencies $\left(\omega \gg \frac{1}{R C}\right): H(j \omega) \approx \frac{1}{j \omega R C} \Rightarrow \angle j^{-1}=-\frac{\pi}{2}$
Approximate the phase response as three straight lines.

By chance, they intersect close to $0.1 \omega_{c}$ and $10 \omega_{c}$ where $\omega_{c}=\frac{1}{R C}$.

Between $0.1 \omega_{c}$ and $10 \omega_{c}$ the phase changes by $-\frac{\pi}{2}$ over two decades. This gives a gradient $=-\frac{\pi}{4}$ radians/decade.

$$
\begin{aligned}
& (a j \omega+b) \text { in denominator } \\
& \quad \Rightarrow \Delta \text { gradient }=\mp \frac{\pi}{4} / \text { decade at } \omega=10^{\mp 1}\left|\frac{b}{a}\right| .
\end{aligned}
$$

The sign of Δ gradient is reversed for (a) numerator factors and (b) $\frac{b}{a}<0$.

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response $+$
- RCR Circuit
- Summary

Plot Phase Response

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response $+$
- RCR Circuit
- Summary

$$
H(j \omega)=\frac{60(j \omega)^{2}+720(j \omega)}{3(j \omega)^{3}+165(j \omega)^{2}+762(j \omega)+600}=\frac{20 j \omega(j \omega+12)}{(j \omega+1)(j \omega+4)(j \omega+50)}
$$

Step 1: Factorize the polynomials Step 2: List corner freqs: $\pm=$ num/den

$$
\omega_{c}=\left\{1^{-}, 4^{-}, 12^{+}, 50^{-}\right\}
$$

Plot Phase Response

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary
$H(j \omega)=\frac{60(j \omega)^{2}+720(j \omega)}{3(j \omega)^{3}+165(j \omega)^{2}+762(j \omega)+600}=\frac{20 j \omega(j \omega+12)}{(j \omega+1)(j \omega+4)(j \omega+50)}$
Step 1: Factorize the polynomials
Step 2: List corner freqs: $\pm=$ num/den

$$
\omega_{c}=\left\{1^{-}, 4^{-}, 12^{+}, 50^{-}\right\}
$$

Step 3: Gradient changes at $10^{\mp 1} \omega_{c}$.
Sign depends on num/den and sgn $\left(\frac{b}{a}\right)$:

Plot Phase Response

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary
$H(j \omega)=\frac{60(j \omega)^{2}+720(j \omega)}{3(j \omega)^{3}+165(j \omega)^{2}+762(j \omega)+600}=\frac{20 j \omega(j \omega+12)}{(j \omega+1)(j \omega+4)(j \omega+50)}$
Step 1: Factorize the polynomials
Step 2: List corner freqs: $\pm=$ num/den

$$
\omega_{c}=\left\{1^{-}, 4^{-}, 12^{+}, 50^{-}\right\}
$$

Step 3: Gradient changes at $10^{\mp 1} \omega_{c}$.
Sign depends on num/den and sgn $\left(\frac{b}{a}\right)$:

$.1^{-}, 10^{+} ; .4^{-}, 40^{+} ; 1.2^{+}, 120^{-} ; 5^{-}, 500^{+}$
Step 4: Put in ascending order and calculate gaps as $\log _{10} \frac{\omega_{2}}{\omega_{1}}$ decades:

$$
.1^{-}(.6) .4^{-}(.48) 1.2^{+}(.62) 5^{-}(.3) 10^{+}(.6) 40^{+}(.48) 120^{-}(.62) 500^{+} .
$$

Plot Phase Response

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

$$
H(j \omega)=\frac{60(j \omega)^{2}+720(j \omega)}{3(j \omega)^{3}+165(j \omega)^{2}+762(j \omega)+600}=\frac{20 j \omega(j \omega+12)}{(j \omega+1)(j \omega+4)(j \omega+50)}
$$

Step 1: Factorize the polynomials
Step 2: List corner freqs: $\pm=$ num/den

$$
\omega_{c}=\left\{1^{-}, 4^{-}, 12^{+}, 50^{-}\right\}
$$

Step 3: Gradient changes at $10^{\mp 1} \omega_{c}$.
Sign depends on num/den and sgn $\left(\frac{b}{a}\right)$:

$.1^{-}, 10^{+} ; .4^{-}, 40^{+} ; 1.2^{+}, 120^{-} ; 5^{-}, 500^{+}$
Step 4: Put in ascending order and calculate gaps as $\log _{10} \frac{\omega_{2}}{\omega_{1}}$ decades:
$.1^{-}(.6) .4^{-}(.48) 1.2^{+}(.62) 5^{-}(.3) 10^{+}(.6) 40^{+}(.48) 120^{-}(.62) 500^{+}$.
Step 5: Find phase of LF asymptote: $\angle 1.2 j \omega=+\frac{\pi}{2}$.

Plot Phase Response

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

$$
H(j \omega)=\frac{60(j \omega)^{2}+720(j \omega)}{3(j \omega)^{3}+165(j \omega)^{2}+762(j \omega)+600}=\frac{20 j \omega(j \omega+12)}{(j \omega+1)(j \omega+4)(j \omega+50)}
$$

Step 1: Factorize the polynomials
Step 2: List corner freqs: $\pm=$ num/den

$$
\omega_{c}=\left\{1^{-}, 4^{-}, 12^{+}, 50^{-}\right\}
$$

Step 3: Gradient changes at $10^{\mp 1} \omega_{c}$.
Sign depends on num/den and sgn $\left(\frac{b}{a}\right)$:

$.1^{-}, 10^{+} ; .4^{-}, 40^{+} ; 1.2^{+}, 120^{-} ; 5^{-}, 500^{+}$
Step 4: Put in ascending order and calculate gaps as $\log _{10} \frac{\omega_{2}}{\omega_{1}}$ decades:
$.1^{-}(.6) .4^{-}(.48) 1.2^{+}(.62) 5^{-}(.3) 10^{+}(.6) 40^{+}(.48) 120^{-}(.62) 500^{+}$.
Step 5: Find phase of LF asymptote: $\angle 1.2 j \omega=+\frac{\pi}{2}$.

Plot Phase Response

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

$$
H(j \omega)=\frac{60(j \omega)^{2}+720(j \omega)}{3(j \omega)^{3}+165(j \omega)^{2}+762(j \omega)+600}=\frac{20 j \omega(j \omega+12)}{(j \omega+1)(j \omega+4)(j \omega+50)}
$$

Step 1: Factorize the polynomials
Step 2: List corner freqs: $\pm=$ num/den

$$
\omega_{c}=\left\{1^{-}, 4^{-}, 12^{+}, 50^{-}\right\}
$$

Step 3: Gradient changes at $10^{\mp 1} \omega_{c}$.
Sign depends on num/den and sgn $\left(\frac{b}{a}\right)$:

$.1^{-}, 10^{+} ; .4^{-}, 40^{+} ; 1.2^{+}, 120^{-} ; 5^{-}, 500^{+}$
Step 4: Put in ascending order and calculate gaps as $\log _{10} \frac{\omega_{2}}{\omega_{1}}$ decades:
$.1^{-}(.6) .4^{-}(.48) 1.2^{+}(.62) 5^{-}(.3) 10^{+}(.6) 40^{+}(.48) 120^{-}(.62) 500^{+}$.
Step 5: Find phase of LF asymptote: $\angle 1.2 j \omega=+\frac{\pi}{2}$.
Step 6: At $\omega=0.1$ gradient becomes $-\frac{\pi}{4} \mathrm{rad} /$ decade. ϕ is still $\frac{\pi}{2}$.

Plot Phase Response

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

$$
H(j \omega)=\frac{60(j \omega)^{2}+720(j \omega)}{3(j \omega)^{3}+165(j \omega)^{2}+762(j \omega)+600}=\frac{20 j \omega(j \omega+12)}{(j \omega+1)(j \omega+4)(j \omega+50)}
$$

Step 1: Factorize the polynomials
Step 2: List corner freqs: $\pm=$ num/den

$$
\omega_{c}=\left\{1^{-}, 4^{-}, 12^{+}, 50^{-}\right\}
$$

Step 3: Gradient changes at $10^{\mp 1} \omega_{c}$.
Sign depends on num/den and sgn $\left(\frac{b}{a}\right)$:

$.1^{-}, 10^{+} ; .4^{-}, 40^{+} ; 1.2^{+}, 120^{-} ; 5^{-}, 500^{+}$
Step 4: Put in ascending order and calculate gaps as $\log _{10} \frac{\omega_{2}}{\omega_{1}}$ decades:
$.1^{-}(.6) .4^{-}(.48) 1.2^{+}(.62) 5^{-}(.3) 10^{+}(.6) 40^{+}(.48) 120^{-}(.62) 500^{+}$.
Step 5: Find phase of LF asymptote: $\angle 1.2 j \omega=+\frac{\pi}{2}$.
Step 6: At $\omega=0.1$ gradient becomes $-\frac{\pi}{4} \mathrm{rad} /$ decade. ϕ is still $\frac{\pi}{2}$.
Step 7: At $\omega=0.4, \phi=\frac{\pi}{2}-0.6 \frac{\pi}{4}=0.35 \pi$. New gradient is $-\frac{\pi}{2}$.

Plot Phase Response

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

$$
H(j \omega)=\frac{60(j \omega)^{2}+720(j \omega)}{3(j \omega)^{3}+165(j \omega)^{2}+762(j \omega)+600}=\frac{20 j \omega(j \omega+12)}{(j \omega+1)(j \omega+4)(j \omega+50)}
$$

Step 1: Factorize the polynomials
Step 2: List corner freqs: $\pm=$ num/den

$$
\omega_{c}=\left\{1^{-}, 4^{-}, 12^{+}, 50^{-}\right\}
$$

Step 3: Gradient changes at $10^{\mp 1} \omega_{c}$.
Sign depends on num/den and sgn $\left(\frac{b}{a}\right)$:

$.1^{-}, 10^{+} ; .4^{-}, 40^{+} ; 1.2^{+}, 120^{-} ; 5^{-}, 500^{+}$
Step 4: Put in ascending order and calculate gaps as $\log _{10} \frac{\omega_{2}}{\omega_{1}}$ decades:
$.1^{-}(.6) .4^{-}(.48) 1.2^{+}(.62) 5^{-}(.3) 10^{+}(.6) 40^{+}(.48) 120^{-}(.62) 500^{+}$.
Step 5: Find phase of LF asymptote: $\angle 1.2 j \omega=+\frac{\pi}{2}$.
Step 6: At $\omega=0.1$ gradient becomes $-\frac{\pi}{4} \mathrm{rad} /$ decade. ϕ is still $\frac{\pi}{2}$.
Step 7: At $\omega=0.4, \phi=\frac{\pi}{2}-0.6 \frac{\pi}{4}=0.35 \pi$. New gradient is $-\frac{\pi}{2}$.
Step 8: At $\omega=1.2, \phi=0.35 \pi-0.48 \frac{\pi}{2}=0.11 \pi$. New gradient is $-\frac{\pi}{4}$.

Plot Phase Response

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

$$
H(j \omega)=\frac{60(j \omega)^{2}+720(j \omega)}{3(j \omega)^{3}+165(j \omega)^{2}+762(j \omega)+600}=\frac{20 j \omega(j \omega+12)}{(j \omega+1)(j \omega+4)(j \omega+50)}
$$

Step 1: Factorize the polynomials
Step 2: List corner freqs: $\pm=$ num/den

$$
\omega_{c}=\left\{1^{-}, 4^{-}, 12^{+}, 50^{-}\right\}
$$

Step 3: Gradient changes at $10^{\mp 1} \omega_{c}$.
Sign depends on num/den and sgn $\left(\frac{b}{a}\right)$:

$.1^{-}, 10^{+} ; .4^{-}, 40^{+} ; 1.2^{+}, 120^{-} ; 5^{-}, 500^{+}$
Step 4: Put in ascending order and calculate gaps as $\log _{10} \frac{\omega_{2}}{\omega_{1}}$ decades:
$.1^{-}(.6) .4^{-}(.48) 1.2^{+}(.62) 5^{-}(.3) 10^{+}(.6) 40^{+}(.48) 120^{-}(.62) 500^{+}$.
Step 5: Find phase of LF asymptote: $\angle 1.2 j \omega=+\frac{\pi}{2}$.
Step 6: At $\omega=0.1$ gradient becomes $-\frac{\pi}{4} \mathrm{rad} /$ decade. ϕ is still $\frac{\pi}{2}$.
Step 7: At $\omega=0.4, \phi=\frac{\pi}{2}-0.6 \frac{\pi}{4}=0.35 \pi$. New gradient is $-\frac{\pi}{2}$.
Step 8: At $\omega=1.2, \phi=0.35 \pi-0.48 \frac{\pi}{2}=0.11 \pi$. New gradient is $-\frac{\pi}{4}$.
Steps 9-13: Repeat for each gradient change.

Plot Phase Response

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

$$
H(j \omega)=\frac{60(j \omega)^{2}+720(j \omega)}{3(j \omega)^{3}+165(j \omega)^{2}+762(j \omega)+600}=\frac{20 j \omega(j \omega+12)}{(j \omega+1)(j \omega+4)(j \omega+50)}
$$

Step 1: Factorize the polynomials
Step 2: List corner freqs: $\pm=$ num/den

$$
\omega_{c}=\left\{1^{-}, 4^{-}, 12^{+}, 50^{-}\right\}
$$

Step 3: Gradient changes at $10^{\mp 1} \omega_{c}$.
Sign depends on num/den and sgn $\left(\frac{b}{a}\right)$:

$.1^{-}, 10^{+} ; .4^{-}, 40^{+} ; 1.2^{+}, 120^{-} ; 5^{-}, 500^{+}$
Step 4: Put in ascending order and calculate gaps as $\log _{10} \frac{\omega_{2}}{\omega_{1}}$ decades:
$.1^{-}(.6) .4^{-}(.48) 1.2^{+}(.62) 5^{-}(.3) 10^{+}(.6) 40^{+}(.48) 120^{-}(.62) 500^{+}$.
Step 5: Find phase of LF asymptote: $\angle 1.2 j \omega=+\frac{\pi}{2}$.
Step 6: At $\omega=0.1$ gradient becomes $-\frac{\pi}{4} \mathrm{rad} /$ decade. ϕ is still $\frac{\pi}{2}$.
Step 7: At $\omega=0.4, \phi=\frac{\pi}{2}-0.6 \frac{\pi}{4}=0.35 \pi$. New gradient is $-\frac{\pi}{2}$.
Step 8: At $\omega=1.2, \phi=0.35 \pi-0.48 \frac{\pi}{2}=0.11 \pi$. New gradient is $-\frac{\pi}{4}$.
Steps 9-13: Repeat for each gradient change.

Plot Phase Response

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

$$
H(j \omega)=\frac{60(j \omega)^{2}+720(j \omega)}{3(j \omega)^{3}+165(j \omega)^{2}+762(j \omega)+600}=\frac{20 j \omega(j \omega+12)}{(j \omega+1)(j \omega+4)(j \omega+50)}
$$

Step 1: Factorize the polynomials
Step 2: List corner freqs: $\pm=$ num/den

$$
\omega_{c}=\left\{1^{-}, 4^{-}, 12^{+}, 50^{-}\right\}
$$

Step 3: Gradient changes at $10^{\mp 1} \omega_{c}$.
Sign depends on num/den and sgn $\left(\frac{b}{a}\right)$:

$.1^{-}, 10^{+} ; .4^{-}, 40^{+} ; 1.2^{+}, 120^{-} ; 5^{-}, 500^{+}$
Step 4: Put in ascending order and calculate gaps as $\log _{10} \frac{\omega_{2}}{\omega_{1}}$ decades:
$.1^{-}(.6) .4^{-}(.48) 1.2^{+}(.62) 5^{-}(.3) 10^{+}(.6) 40^{+}(.48) 120^{-}(.62) 500^{+}$.
Step 5: Find phase of LF asymptote: $\angle 1.2 j \omega=+\frac{\pi}{2}$.
Step 6: At $\omega=0.1$ gradient becomes $-\frac{\pi}{4} \mathrm{rad} /$ decade. ϕ is still $\frac{\pi}{2}$.
Step 7: At $\omega=0.4, \phi=\frac{\pi}{2}-0.6 \frac{\pi}{4}=0.35 \pi$. New gradient is $-\frac{\pi}{2}$.
Step 8: At $\omega=1.2, \phi=0.35 \pi-0.48 \frac{\pi}{2}=0.11 \pi$. New gradient is $-\frac{\pi}{4}$.
Steps 9-13: Repeat for each gradient change.

Plot Phase Response

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

$$
H(j \omega)=\frac{60(j \omega)^{2}+720(j \omega)}{3(j \omega)^{3}+165(j \omega)^{2}+762(j \omega)+600}=\frac{20 j \omega(j \omega+12)}{(j \omega+1)(j \omega+4)(j \omega+50)}
$$

Step 1: Factorize the polynomials
Step 2: List corner freqs: $\pm=$ num/den

$$
\omega_{c}=\left\{1^{-}, 4^{-}, 12^{+}, 50^{-}\right\}
$$

Step 3: Gradient changes at $10^{\mp 1} \omega_{c}$.
Sign depends on num/den and sgn $\left(\frac{b}{a}\right)$:

$.1^{-}, 10^{+} ; .4^{-}, 40^{+} ; 1.2^{+}, 120^{-} ; 5^{-}, 500^{+}$
Step 4: Put in ascending order and calculate gaps as $\log _{10} \frac{\omega_{2}}{\omega_{1}}$ decades:
$.1^{-}(.6) .4^{-}(.48) 1.2^{+}(.62) 5^{-}(.3) 10^{+}(.6) 40^{+}(.48) 120^{-}(.62) 500^{+}$.
Step 5: Find phase of LF asymptote: $\angle 1.2 j \omega=+\frac{\pi}{2}$.
Step 6: At $\omega=0.1$ gradient becomes $-\frac{\pi}{4} \mathrm{rad} /$ decade. ϕ is still $\frac{\pi}{2}$.
Step 7: At $\omega=0.4, \phi=\frac{\pi}{2}-0.6 \frac{\pi}{4}=0.35 \pi$. New gradient is $-\frac{\pi}{2}$.
Step 8: At $\omega=1.2, \phi=0.35 \pi-0.48 \frac{\pi}{2}=0.11 \pi$. New gradient is $-\frac{\pi}{4}$.
Steps 9-13: Repeat for each gradient change.

Plot Phase Response

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

$$
H(j \omega)=\frac{60(j \omega)^{2}+720(j \omega)}{3(j \omega)^{3}+165(j \omega)^{2}+762(j \omega)+600}=\frac{20 j \omega(j \omega+12)}{(j \omega+1)(j \omega+4)(j \omega+50)}
$$

Step 1: Factorize the polynomials
Step 2: List corner freqs: $\pm=$ num/den

$$
\omega_{c}=\left\{1^{-}, 4^{-}, 12^{+}, 50^{-}\right\}
$$

Step 3: Gradient changes at $10^{\mp 1} \omega_{c}$.
Sign depends on num/den and sgn $\left(\frac{b}{a}\right)$:

$.1^{-}, 10^{+} ; .4^{-}, 40^{+} ; 1.2^{+}, 120^{-} ; 5^{-}, 500^{+}$
Step 4: Put in ascending order and calculate gaps as $\log _{10} \frac{\omega_{2}}{\omega_{1}}$ decades:
$.1^{-}(.6) .4^{-}(.48) 1.2^{+}(.62) 5^{-}(.3) 10^{+}(.6) 40^{+}(.48) 120^{-}(.62) 500^{+}$.
Step 5: Find phase of LF asymptote: $\angle 1.2 j \omega=+\frac{\pi}{2}$.
Step 6: At $\omega=0.1$ gradient becomes $-\frac{\pi}{4} \mathrm{rad} /$ decade. ϕ is still $\frac{\pi}{2}$.
Step 7: At $\omega=0.4, \phi=\frac{\pi}{2}-0.6 \frac{\pi}{4}=0.35 \pi$. New gradient is $-\frac{\pi}{2}$.
Step 8: At $\omega=1.2, \phi=0.35 \pi-0.48 \frac{\pi}{2}=0.11 \pi$. New gradient is $-\frac{\pi}{4}$.
Steps 9-13: Repeat for each gradient change. Final gradient is always 0 .

Plot Phase Response

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

$$
H(j \omega)=\frac{60(j \omega)^{2}+720(j \omega)}{3(j \omega)^{3}+165(j \omega)^{2}+762(j \omega)+600}=\frac{20 j \omega(j \omega+12)}{(j \omega+1)(j \omega+4)(j \omega+50)}
$$

Step 1: Factorize the polynomials
Step 2: List corner freqs: $\pm=$ num/den

$$
\omega_{c}=\left\{1^{-}, 4^{-}, 12^{+}, 50^{-}\right\}
$$

Step 3: Gradient changes at $10^{\mp 1} \omega_{c}$.
Sign depends on num/den and sgn $\left(\frac{b}{a}\right)$:

$.1^{-}, 10^{+} ; .4^{-}, 40^{+} ; 1.2^{+}, 120^{-} ; 5^{-}, 500^{+}$
Step 4: Put in ascending order and calculate gaps as $\log _{10} \frac{\omega_{2}}{\omega_{1}}$ decades: $.1^{-}(.6) .4^{-}(.48) 1.2^{+}(.62) 5^{-}(.3) 10^{+}(.6) 40^{+}(.48) 120^{-}(.62) 500^{+}$.
Step 5: Find phase of LF asymptote: $\angle 1.2 j \omega=+\frac{\pi}{2}$.
Step 6: At $\omega=0.1$ gradient becomes $-\frac{\pi}{4} \mathrm{rad} /$ decade. ϕ is still $\frac{\pi}{2}$.
Step 7: At $\omega=0.4, \phi=\frac{\pi}{2}-0.6 \frac{\pi}{4}=0.35 \pi$. New gradient is $-\frac{\pi}{2}$.
Step 8: At $\omega=1.2, \phi=0.35 \pi-0.48 \frac{\pi}{2}=0.11 \pi$. New gradient is $-\frac{\pi}{4}$.
Steps 9-13: Repeat for each gradient change. Final gradient is always 0 .
At 0.1 and 10 times each corner frequency, the graph is continuous but its gradient changes abruptly by $\pm \frac{\pi}{4}$ rad/decade.

RCR Circuit

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency Asymptotes
- Phase Approximation +
- Plot Phase Response +
- RCR Circuit
- Summary

RCR Circuit

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response $+$
- RCR Circuit
- Summary

$$
\frac{Y}{X}=\frac{R+\frac{1}{j \omega C}}{3 R+R+\frac{1}{j \omega C}}
$$

RCR Circuit

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation +
- Plot Phase Response $+$
- RCR Circuit
- Summary

RCR Circuit

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response $+$
- RCR Circuit
- Summary

$$
\frac{Y}{X}=\frac{R+\frac{1}{j \omega C}}{3 R+R+\frac{1}{j \omega C}}=\frac{j \omega R C+1}{4 j \omega R C+1}
$$

Corner freqs: $\frac{0.25}{R C}^{-}, \frac{1}{R C}^{+}$

RCR Circuit

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response $+$
- RCR Circuit
- Summary

$$
\frac{Y}{X}=\frac{R+\frac{1}{j \omega C}}{3 R+R+\frac{1}{j \omega C}}=\frac{j \omega R C+1}{4 j \omega R C+1}
$$

Corner freqs: $\frac{0.25}{}^{-}, \frac{1}{R C}^{+}$
LF Asymptote: $H(j \omega)=1$

RCR Circuit

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response $+$
- RCR Circuit
- Summary

$$
\frac{Y}{X}=\frac{R+\frac{1}{j \omega C}}{3 R+R+\frac{1}{j \omega C}}=\frac{j \omega R C+1}{4 j \omega R C+1}
$$

Corner freqs: $\frac{0.25}{}^{-}, \frac{1}{R C}^{+}$
LF Asymptote: $H(j \omega)=1$

Magnitude Response:

RCR Circuit

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response $+$
- RCR Circuit
- Summary

$$
\frac{Y}{X}=\frac{R+\frac{1}{j \omega C}}{3 R+R+\frac{1}{j \omega C}}=\frac{j \omega R C+1}{4 j \omega R C+1}
$$

Corner freqs: $\frac{0.25}{R C}^{-}, \frac{1}{R C}^{+}$
LF Asymptote: $H(j \omega)=1$

Magnitude Response:
Gradient Changes: $-20 \mathrm{~dB} /$ dec at $\omega=\frac{0.25}{R C}$ and +20 at $\omega=\frac{1}{R C}$

RCR Circuit

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response $+$ $+$
- RCR Circuit
- Summary

$$
\frac{Y}{X}=\frac{R+\frac{1}{j \omega C}}{3 R+R+\frac{1}{j \omega C}}=\frac{j \omega R C+1}{4 j \omega R C+1}
$$

Corner freqs: $\frac{0.25}{}^{-}, \frac{1}{R C}^{+}$
LF Asymptote: $H(j \omega)=1$

Magnitude Response:
Gradient Changes: $-20 \mathrm{~dB} /$ dec at $\omega=\frac{0.25}{R C}$ and +20 at $\omega=\frac{1}{R C}$

RCR Circuit

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response $+$
- RCR Circuit
- Summary

$$
\frac{Y}{X}=\frac{R+\frac{1}{j \omega C}}{3 R+R+\frac{1}{j \omega C}}=\frac{j \omega R C+1}{4 j \omega R C+1}
$$

Corner freqs: $\frac{0.25^{-}}{R C}, \frac{1}{R C}^{+}$
LF Asymptote: $H(j \omega)=1$

Magnitude Response:

Gradient Changes: $-20 \mathrm{~dB} / \mathrm{dec}$ at $\omega=\frac{0.25}{R C}$ and +20 at $\omega=\frac{1}{R C}$
Line equations: $H(j \omega)=$ (a) $1, \quad$ (b) $\frac{1}{4 j \omega R C}, \quad$ (c) $\frac{j \omega R C}{4 j \omega R C}=0.25$

RCR Circuit

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response $+$
- RCR Circuit
- Summary

$$
\frac{Y}{X}=\frac{R+\frac{1}{j \omega C}}{3 R+R+\frac{1}{j \omega C}}=\frac{j \omega R C+1}{4 j \omega R C+1}
$$

Corner freqs: $\frac{0.25^{-}}{R C}, \frac{1}{R C}^{+}$
LF Asymptote: $H(j \omega)=1$

Magnitude Response:

Gradient Changes: $-20 \mathrm{~dB} / \mathrm{dec}$ at $\omega=\frac{0.25}{R C}$ and +20 at $\omega=\frac{1}{R C}$
Line equations: $H(j \omega)=$ (a) 1 ,
(b) $\frac{1}{4 j \omega R C}$,
(c) $\frac{j \omega R C}{4 j \omega R C}=0.25$

Phase Response:

RCR Circuit

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response $+$
- RCR Circuit
- Summary

$$
\frac{Y}{X}=\frac{R+\frac{1}{j \omega C}}{3 R+R+\frac{1}{j \omega C}}=\frac{j \omega R C+1}{4 j \omega R C+1}
$$

Corner freqs: $\frac{0.25^{-}}{R C}, \frac{1}{R C}^{+}$
LF Asymptote: $H(j \omega)=1$

Magnitude Response:

Gradient Changes: $-20 \mathrm{~dB} / \mathrm{dec}$ at $\omega=\frac{0.25}{R C}$ and +20 at $\omega=\frac{1}{R C}$
Line equations: $H(j \omega)=$ (a) 1 ,
(b) $\frac{1}{4 j \omega R C}$,
(c) $\frac{j \omega R C}{4 j \omega R C}=0.25$

Phase Response:
LF asymptote: $\phi=\angle 1=0$

RCR Circuit

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

$$
\frac{Y}{X}=\frac{R+\frac{1}{j \omega C}}{3 R+R+\frac{1}{j \omega C}}=\frac{j \omega R C+1}{4 j \omega R C+1}
$$

Corner freqs: $\frac{0.25^{-}}{R C}, \frac{1}{R C}^{+}$
LF Asymptote: $H(j \omega)=1$

Magnitude Response:

Gradient Changes: $-20 \mathrm{~dB} / \mathrm{dec}$ at $\omega=\frac{0.25}{R C}$ and +20 at $\omega=\frac{1}{R C}$
Line equations: $H(j \omega)=$ (a) 1 ,
(b) $\frac{1}{4 j \omega R C}$,
(c) $\frac{j \omega R C}{4 j \omega R C}=0.25$

Phase Response:

LF asymptote: $\phi=\angle 1=0$
Gradient changes of $\pm \frac{\pi}{4} /$ decade at: $\omega=\frac{0.025^{-}}{R C}, \frac{0.1^{+}}{R C}, \frac{2.5}{R C}{ }^{+}, \frac{10}{R C}^{-}$.

RCR Circuit

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary

$$
\frac{Y}{X}=\frac{R+\frac{1}{j \omega C}}{3 R+R+\frac{1}{j \omega C}}=\frac{j \omega R C+1}{4 j \omega R C+1}
$$

Corner freqs: $\frac{0.25^{-}}{R C}, \frac{1}{R C}^{+}$
LF Asymptote: $H(j \omega)=1$

Magnitude Response:

Gradient Changes: $-20 \mathrm{~dB} / \mathrm{dec}$ at $\omega=\frac{0.25}{R C}$ and +20 at $\omega=\frac{1}{R C}$
Line equations: $H(j \omega)=$ (a) 1 ,
(b) $\frac{1}{4 j \omega R C}$,
(c) $\frac{j \omega R C}{4 j \omega R C}=0.25$

Phase Response:

LF asymptote: $\phi=\angle 1=0$
Gradient changes of $\pm \frac{\pi}{4} /$ decade at: $\omega=\frac{0.025}{R C}{ }^{-}, \frac{0.1}{R C}+\frac{2.5}{R C}^{+}, \frac{10}{R C}^{-}$ At $\omega=\frac{0.1}{R C}, \phi=0-\frac{\pi}{4} \log _{10} \frac{0.1}{0.025}=-\frac{\pi}{4} \times 0.602=-0.15 \pi$

Summary

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response $+$
- RCR Circuit
- Summary
- Frequency response: magnitude and phase of $\frac{Y}{X}$ as a function of ω
- Only applies to sine waves

Summary

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response $+$
- RCR Circuit
- Summary
- Frequency response: magnitude and phase of $\frac{Y}{X}$ as a function of ω
- Only applies to sine waves
- Use log axes for frequency and gain but linear for phase
\triangleright Decibels $=20 \log _{10} \frac{V_{2}}{V_{1}}=10 \log _{10} \frac{P_{2}}{P_{1}}$

Summary

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response $+$
- RCR Circuit
- Summary
- Frequency response: magnitude and phase of $\frac{Y}{X}$ as a function of ω
- Only applies to sine waves
- Use log axes for frequency and gain but linear for phase
\triangleright Decibels $=20 \log _{10} \frac{V_{2}}{V_{1}}=10 \log _{10} \frac{P_{2}}{P_{1}}$
- Linear factor $(a j \omega+b)$ gives corner frequency at $\omega=\left|\frac{b}{a}\right|$.
- Magnitude plot gradient changes by $\pm 20 \mathrm{~dB} /$ decade $@ \omega=\left|\frac{b}{a}\right|$.

Summary

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary
- Frequency response: magnitude and phase of $\frac{Y}{X}$ as a function of ω
- Only applies to sine waves
- Use log axes for frequency and gain but linear for phase
\triangleright Decibels $=20 \log _{10} \frac{V_{2}}{V_{1}}=10 \log _{10} \frac{P_{2}}{P_{1}}$
- Linear factor $(a j \omega+b)$ gives corner frequency at $\omega=\left|\frac{b}{a}\right|$.
- Magnitude plot gradient changes by $\pm 20 \mathrm{~dB} /$ decade $@ \omega=\left|\frac{b}{a}\right|$.
- Phase gradient changes in two places by:
$\triangleright \pm \frac{\pi}{4} \mathrm{rad} /$ decade $@ \omega=0.1 \times\left|\frac{b}{a}\right|$
$\triangleright \mp \frac{\pi}{4} \mathrm{rad} /$ decade $@ \omega=10 \times\left|\frac{b}{a}\right|$

Summary

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary
- Frequency response: magnitude and phase of $\frac{Y}{X}$ as a function of ω
- Only applies to sine waves
- Use log axes for frequency and gain but linear for phase
\triangleright Decibels $=20 \log _{10} \frac{V_{2}}{V_{1}}=10 \log _{10} \frac{P_{2}}{P_{1}}$
- Linear factor $(a j \omega+b)$ gives corner frequency at $\omega=\left|\frac{b}{a}\right|$.
- Magnitude plot gradient changes by $\pm 20 \mathrm{~dB} /$ decade $@ \omega=\left|\frac{b}{a}\right|$.
- Phase gradient changes in two places by:
$\triangleright \pm \frac{\pi}{4} \mathrm{rad} /$ decade $@ \omega=0.1 \times\left|\frac{b}{a}\right|$
$\triangleright \mp \frac{\pi}{4} \mathrm{rad} /$ decade $@ \omega=10 \times\left|\frac{b}{a}\right|$
- LF/HF asymptotes: keep only the terms with the lowest/highest power of $j \omega$ in numerator and denominator polynomials

Summary

11: Frequency Responses

- Frequency Response
- Sine Wave Response
- Logarithmic axes
- Logs of Powers
- Straight Line

Approximations

- Plot Magnitude Response
- Low and High Frequency

Asymptotes

- Phase Approximation
- Plot Phase Response
- RCR Circuit
- Summary
- Frequency response: magnitude and phase of $\frac{Y}{X}$ as a function of ω
- Only applies to sine waves
- Use log axes for frequency and gain but linear for phase
\triangleright Decibels $=20 \log _{10} \frac{V_{2}}{V_{1}}=10 \log _{10} \frac{P_{2}}{P_{1}}$
- Linear factor $(a j \omega+b)$ gives corner frequency at $\omega=\left|\frac{b}{a}\right|$.
- Magnitude plot gradient changes by $\pm 20 \mathrm{~dB} /$ decade $@ \omega=\left|\frac{b}{a}\right|$.
- Phase gradient changes in two places by:
$\triangleright \pm \frac{\pi}{4} \mathrm{rad} /$ decade $@ \omega=0.1 \times\left|\frac{b}{a}\right|$
$\triangleright \quad \mp \frac{\pi}{4} \mathrm{rad} /$ decade $@ \omega=10 \times\left|\frac{b}{a}\right|$
- LF/HF asymptotes: keep only the terms with the lowest/highest power of $j \omega$ in numerator and denominator polynomials

For further details see Hayt Ch 16 or Irwin Ch 12.

