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Summary

If x(t) is a sine wave, then y(t) will also be a sine
wave but with a different amplitude and phase
shift. X is an input phasor and Y is the output
phasor.

Y jwc 1

The gain of the circuit is 5 = Riioc = FoROT

x R Y

This is a complex function of w so we plot separate graphs for:

x| = ferer =

Phase Shift: / (%) —

Magnitude:

|Gain|
o
O
Phase (rad)

0

-0.257

0 * ! ! * ! -0.57

0 1 2 3 4 5
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Magnitude Response

—/ (jwRC + 1) = —arctan (2£<)

1
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Phase Response
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Sine Wave Response
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RC = 10ms
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The output, y(t), lags the input, z(t), by up to 90°.
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Summary

We usually use logarithmic axes for frequency and gain (but not phase)
because % differences are more significant than absolute differences.

E.g. 5kHz versus 5.005 kHz is less significant than 10 Hz versus 15 Hz even
though both differences equal 5 Hz.

Logarithmic voltage ratios are specified in decibels (dB) = 201log;, %
. x R Y
Common voltage ratios: 4 /1 !
2| 01 [ o5 ] Vo5 | 1] v2|2]10] 100 “T
dB || -20 | 6 | -3 [0| 3 |6 |20 40 =
o 0 Note that O does not
T .0 g exist on a log axis and
5 @ -0.257
& -20 £ so the starting point of
30 T ; " 0.5m : _ the axis is arbitrary.

w RC w RC

Note: P oc V2 = decibel power ratios are given by 101ogy %
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Summary

H = c(jw)" has a straight-line magnitude graph and a constant phase.

Magnitude (log-log graph):

|H| = cw” = log |H| =log|c| + rlogw
This is a straight line with a slope of r.
¢ only affects the line's vertical position.

If |H| is measured in decibels, a slope of r
is called 6 dB/octave or 20r dB/decade.

Phase (log-lin graph):

LH=/j"+Zc=rx5% (+mifc<0)

The phase is constant Vw.

If ¢ > 0, phase = 90° x magnitude slope.

Negative ¢ adds +180° to the phase.

Note: Phase angles are modulo 360°, i.e.

+180° = —180° and 450° = 90°.

H|

ZH (rad)

100
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1
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[Octaves and Decades|

An “octave” is a factor of 2 in frequency; for example, 20 Hz is one octave greater than 10 Hz. Similarly
a "“decade” is a factor of 10 in frequency; for example, 100 Hz is one decade greater than 10 Hz.

The number of decades between any two frequencies can be calculated by taking log;, of the frequency

ratio. Thus, for the example given above, log;, (110001?;) = log;y (10) = 1decade. A slightly more

25 Hz 25
that 13kHz is 2.716 decades greater than 25 Hz.

complicated example is log;, (13kHZ> = log;g (13000) = log (520) = 2.716 decades so this means

As we shall discover in this lecture, frequency response graphs can be approximated as a series of
straight lines whose gradients are easy to calculate. In particular magnitude response graphs can be
approximated as a series of straight lines with gradients that are integer multiples of 20 dB per decade
and phase response graphs can be approximated as a series of straight lines with gradients that are
integer multiples of 0.257 radians per decade. This means that if you know the magnitude or phase at
one frequency, you can calculate how much it has changed at any other frequency by multiplying the
gradient of the line by the number of decades by which the frequency has changed.

Calculating the number of octaves between any two frequencies is done in the same way except that you
- 100 H 100 Hz \ .
must take a base-2 log. Thus between 10 Hz and 100 Hz is log, ( 10 sz) = log (TI‘IZZ) ~logip2 =

3.322 logq (%) = 3.322 octaves. Thus one decade is equal to 3.322 octaves.
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ajw for |aw| > |b)

Key idea: (ajw+b)~ ¢, " aw| < [b)

Gain: H(]W) = m

Low frequencies (w < 7=): H(jw)

High frequencies (w > 5): H(jw) = jw}f{C:> |H(jw)| =

Approximate the magnitude response
as two straight lines intersecting at the

corner frequency, w. = 5.

At the corner frequency:

|Gain| (dB)

N
o
T

0.1/RC 1/RC 10/RC

w (rad/s)

(a) the gradient changes by —1 (= —6 dB/octave = —20 dB/decade).

(b) [H(jwe)| = |$‘ _ %

= —3dB (worst-case error).

A linear factor (ajw + b) has a corner frequency of w, = ‘2]
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Plot Magnitude Response
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The gain of a linear circuit is always a rational polynomial in jw and is
called the transfer function of the circuit. For example:

H(]w) = 60(jw?2+2720(jw? _ 20ju.J(jw+1.2)
(Jw)°+165(jw)“+762(jw)+600 (Jw+1)(jw+4)(jw+50)

Step 1: Factorize the polynomials of

Step 2: Sort corner freqs: 1,4,12,50 5

Step 3: For w < 1 all linear factors equal £t

their constant terms: 40¢ . . . .
|EI\Q¢2OWX12::ﬁL2aﬂ. 0.1 1 w@ﬁﬂ 100 1000

1x4x50

Step 4: For 1 < w < 4, the factor (jw + 1) =~ jw so

|H| o 20@x12 1 9,0 = +1.58dB.

wx4x50
Step 5: For 4 < w < 12, |H| ~ 20%wx12 _ 4 g,—1,

w X w x50
Step 6: For 12 < w < 50, |H| ~ 22X — (.40” = —7.96 dB.
Step 7: For w > 50, |H| ~ ﬁ”ﬁ = 20w~ 1.

At each corner frequency, the graph is continuous but its gradient changes
abruptly by +1 (numerator factor) or —1 (denominator factor).
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Low and
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You can find the low and high frequency asymptotes without factorizing:

N 60(jw)?+720(jw) - 20jw(jw+12)
H(jw) = 3(jw)3+165(jw)2+762(jw)+600 — (jw+1)(jw+4)(jw+50)
ol 0.57
g-ZO- E ot
T N
40 . . . . -0.57 b . . : .
0.1 1 10 100 1000 0.1 1 10 100 1000
w (rad/s) w (rad/s)
Low Frequency Asymptote:
From factors: Hyp(jw) = % = 1.2jw
Lowest power of jw on top and bottom: H (jw) ~ 722((){)“) = 1.2jw
High Frequency Asymptote:
From factors: Hyr(jw) = (jigﬁi‘%)w) = 20 (jw) "
L \2
Highest power of jw on top and bottom: H (jw) =~ % =20 (jw) "
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Phase Approximation +
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e Approximate the phase response as 0
D Approximation  +  three straight lines.
Plot Phase Response %_0 os|
+ : T
RCR Circuit By chance, they intersect close to
Summar 057t

- 0.1w, and 10w, where w, = 7.
w (rad/s)
Between 0.1w. and 10w, the phase changes by —% over two decades.

This gives a gradient = —7 radians/decade.

(ajw =+ b) in denominator
= Agradient = F% /decade at w = 10F! ]3‘

The sign of Agradient is reversed for (a) numerator factors and (b) 2 < 0.
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[Phase Approximation ++]

Like the magnitude response, the phase response can be approximated by a graph that consists of a
sequence of straight line segments that are joined at “corners’. For this to be true, we need to plot the
phase response using a linear axis for the phase but a logarithmic axis for the frequency.

The previous slide showed the phase response of a filter whose frequency response, H(z), has a single
linear factor in the denominator. On the next slide this is extended to a more complicated frequency
response.

Recall that the argument of a complex number is / (a + jb) = tan—! g and £

a+3b
Therefore if the frequency response is H(jw) = m, then the phase is given by ZH(jw)

— —tan— !

| &l

—tan—! wRC which is plotted as the blue curve. At low frequencies, this tends to zero (since tan=! 0 =

0) and at high frequencies it tends to —% (since tan™!co = 7). The magnitude response graph has

a corner frequency at w, = R_lC and at this frequency, ZH (jw:) = —tan=11 = — 7

It turns out that we can approximate this curve with three straight lines which meet at two “phase
response corner frequencies” of 0.lw. and 10w.. Since the frequency range 0.lw. to 10w, is two
decades (a factor of 100), the gradient of the central segment of the approximation must be —7%
radians/decade. This approximation is not actually the best possible approximation using 3 straight
lines but it is very close and much easier to remember that the optimum approximation.

To summarise: A linear factor of (ajw + b) in the denominator will result in two corner frequencies in
the phase response at w = 101 ’g’ and 1011 g’ . At these frequencies, the gradient of the graph will
change by —7 and + 7 radians/decade respectively. The signs of the gradient changes will be reversed

for numerator factors and reversed again if 2 is negative (which is rare and can only happen in the
numerator).

E1.1 Analysis of Circuits (2018-10340) Frequency Responses: 11 — note 1 of slide 9



Plot Phase Response +

Responses ) — 60(jw) +720(jw) __ 20jw(jwt12)

Ifre:uency Response H(]w) - 3(]w)3+165(]w)2+762(]w)+600 o (jCU—|—1)(jw—|—4)(jw+50)

Sine Wave Response

t°saritfh:ic e Step 1: Factorize the polynomials 0.5

st:.;gh_t Line Step 2: List corner fregs: £ = num/den 3

R we = {17, 47, 12,507} <

Response .

II;::vps::cHigh Sfcep 3: Gradient changes at 10$1wc.b B T
Asymptotes Sign depends on num/den and sgn (2): o (rads)

Phase Approximation 1~ 10%;.47,40%;1.2%,1207;57, 500"

> pes Phase Step 4: Put in ascending order and calculate gaps as log;, 5—? decades:
SR Circut 17 (.6) .47 (.48)1.27 (.62) 5 (.3) 10" (.6) 407" (.48) 120~ (.62) 500 .
ummary

Step 5: Find phase of LF asymptote: Z1.2jw = +3.
Step 6: At w = 0.1 gradient becomes —7 rad/decade. ¢ is still 7.
Step 7: At w =04, ¢ = 5 —0.67 = 0.357. New gradient is —7.

Step 8: At w =1.2, ¢ = 0.35m — 0.485 = 0.11m. New gradient is —7.

Steps 9-13: Repeat for each gradient change. Final gradient is always O.

At 0.1 and 10 times each corner frequency, the graph is continuous but its
gradient changes abruptly by =% rad/decade.

E1.1 Analysis of Circuits (2018-10340) Frequency Responses: 11 — 10 / 12



[Plot Phase Response ++]

Like the magnitude response, the phase response can be approximated by a graph that consists of a
sequence of straight line segments that are joined at “corners’. For this to be true, we need to plot
the phase response using a linear axis for the phase but a logarithmic axis for the frequency. As we
saw on the previous slide, each linear factor in either the numerator or the denominator gives rise to
two corners in the phase response graph. At each of these corners, the gradient of the graph changes
abruptly by &7 radians/decade; it follows that the gradient will always be an integer multiple of 7
radians/decade.

In order to plot the phase response graph, we need to determine three things: (a) the frequencies of all
the corners, (b) the sign of the gradient change at each one and (c) the phase at low frequencies (i.e. fre-

_ . : SN 20jw(jw+12)
quencies less than the first corner). The example response on the slide, H(jw) = GoTD ot wT50)
has four linear factors: one in the numerator and three in the denominator. This means we will have a

total of eight corners (two from each linear factor). Since all the factors have g > 0 the signs of the

gradient changes will be + followed by —for the numerator factor and — followed by + for the denom-

inator factors. The two corner frequencies corresponding to a factor (ajw + b) are at w = 0.1 ’%’ and

10 ) g) So, using a superscript for the sign of the gradient change, we get corners at 1.27 and 120~ for

the numerator factor and at 0.1, 0.4, 10T, 407, 5~ and 500" from the three denominator factors.
Sorting these into ascending order of w gives corners at 0.1, 0.4—, 1.2+, 5=, 10", 40", 120~ and
500T.
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[Plot Phase Response ++]

To plot the phase response, we calculate the low frequency asymptote by taking the terms with the
lowest power of jw in numerator and denominator; this gives 1.2jw which has a phase of +7 = 1.57

radians. So we begin with a horizontal line at 1.57 radians until the first corner frequency at w = 0.1~

where the gradient becomes —7. The graph will continue with this gradient until the next corner

frequency which is at w = 0.4 where the gradient will decrease by another 7 to become — 3.
To work out the phase at the second corner frequency (w = 0.4) we calculate how much the phase has
changed between w = 0.1 and 0.4 by multiplying the gradient of the graph (—7 radians/decade) by

the separation of these two corner frequencies in decades (log, 8:—‘11 = 0.602 decades). This product
gives gives a phase change of —0.473 radians. So the phase is 1.571 radians at w = 0.1 and decreases
by —0.473 to become 1.098 radians at w = 0.4.

The next corner is at w = 1.27 which is log; (1)%421 = 0.477 decades away from w = 0.4. Since the
gradient in this segment is — 5 = —1.571 rads/decade, the phase change between these two frequencies
is —1.571 x 0.477 = —0.749 radians. So the phase at w = 1.2 is 1.098 — 0.749 = 0.349 radians.

You continue like this hopping from each corner frequency to the next. At each corner frequency, you
know the new gradient (measured in radians/decade) and so you multiply this by the distance to the next
corner frequency (measured in decades) to get the phase change between the two corner frequencies.
As a check, the gradient after the final corner frequency should be zero and the phase should match
the phase of the high frequency asymptote. In this example, the high frequency asymptote is 20 (jw)_1
which has a phase of —7%. (Remember that j” has a phase of (%)r)

E1.1 Analysis of Circuits (2018-10340) Frequency Responses: 11 — note 2 of slide 10
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Summary

Magnitude Response:

Gradient Changes: —20dB/dec at w = %2 and +20 at w = 7

Line equations: H(jw) =(a) 1, (b) 70ms, () £55& = 0.25

Phase Response:
LF asymptote: ¢ = £1 =0
Gradient changes of £% /decade at: w = 292, %‘éJr, }22'(57+, ol

Atw= %L, ¢ =0— Tlogygrsr = — 5 % 0.602 = —0.157
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> Summary

. . Y .
Frequency response: magnltude and phase of - as a function of w
o Only applies to sine waves

o Use log axes for frequency and gain but linear for phase

> Decibels = 201log;, % — 10logy, %

Linear factor (ajw + b) gives corner frequency at w = !g]

o Magnitude plot gradient changes by +20dB/decade @w = ]g!
o Phase gradient changes in two places by:

> +7%rad/decade@w = 0.1 x !g]

> F75rad/decade@w = 10 x |g]

LF/HF asymptotes: keep only the terms with the lowest/highest power
of jw in numerator and denominator polynomials

For further details see Hayt Ch 16 or Irwin Ch 12.
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