

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

12: Resonance

Quadratic Factors

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

A quadratic factor in a transfer function is: $F(j \omega)=a(j \omega)^{2}+b(j \omega)+c$.

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

A quadratic factor in a transfer function is: $F(j \omega)=a(j \omega)^{2}+b(j \omega)+c$.
Case 1: If $b^{2} \geq 4 a c$ then we can factorize it:

$$
F(j \omega)=a\left(j \omega-p_{1}\right)\left(j \omega-p_{2}\right)
$$

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at

Resonance

- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

A quadratic factor in a transfer function is: $F(j \omega)=a(j \omega)^{2}+b(j \omega)+c$.
Case 1: If $b^{2} \geq 4 a c$ then we can factorize it:

$$
F(j \omega)=a\left(j \omega-p_{1}\right)\left(j \omega-p_{2}\right)
$$

$$
\text { where } p_{i}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} .
$$

Quadratic Factors

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at

Resonance

- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

A quadratic factor in a transfer function is: $F(j \omega)=a(j \omega)^{2}+b(j \omega)+c$.
Case 1: If $b^{2} \geq 4 a c$ then we can factorize it:

$$
\begin{aligned}
& F(j \omega)=a\left(j \omega-p_{1}\right)\left(j \omega-p_{2}\right) \\
& \text { where } p_{i}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

$$
\frac{Y}{X}(j \omega)=\frac{1}{6 R^{2} C^{2}(j \omega)^{2}+7 R C j \omega+1}
$$

Quadratic Factors

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

A quadratic factor in a transfer function is: $F(j \omega)=a(j \omega)^{2}+b(j \omega)+c$.
Case 1: If $b^{2} \geq 4 a c$ then we can factorize it:

$$
\begin{aligned}
& F(j \omega)=a\left(j \omega-p_{1}\right)\left(j \omega-p_{2}\right) \\
& \text { where } p_{i}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} .
\end{aligned}
$$

$$
\begin{aligned}
\frac{Y}{X}(j \omega) & =\frac{1}{6 R^{2} C^{2}(j \omega)^{2}+7 R C j \omega+1} \\
& =\frac{1}{(6 j \omega R C+1)(j \omega R C+1)}
\end{aligned}
$$

Quadratic Factors

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

A quadratic factor in a transfer function is: $F(j \omega)=a(j \omega)^{2}+b(j \omega)+c$.
Case 1: If $b^{2} \geq 4 a c$ then we can factorize it:

$$
\begin{aligned}
& F(j \omega)=a\left(j \omega-p_{1}\right)\left(j \omega-p_{2}\right) \\
& \text { where } p_{i}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} .
\end{aligned}
$$

$$
\begin{aligned}
\frac{Y}{X}(j \omega) & =\frac{1}{6 R^{2} C^{2}(j \omega)^{2}+7 R C j \omega+1} \\
& =\frac{1}{(6 j \omega R C+1)(j \omega R C+1)} \\
& \omega_{c}=\frac{0.17}{R C}, \frac{1}{R C}
\end{aligned}
$$

Quadratic Factors

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

Case 1: If $b^{2} \geq 4 a c$ then we can factorize it:

$$
\begin{aligned}
& F(j \omega)=a\left(j \omega-p_{1}\right)\left(j \omega-p_{2}\right) \\
& \text { where } p_{i}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} .
\end{aligned}
$$

A quadratic factor in a transfer function is: $F(j \omega)=a(j \omega)^{2}+b(j \omega)+c$.

$$
\begin{aligned}
\frac{Y}{X}(j \omega) & =\frac{1}{6 R^{2} C^{2}(j \omega)^{2}+7 R C j \omega+1} \\
& =\frac{1}{(6 j \omega R C+1)(j \omega R C+1)} \\
& \omega_{c}=\frac{0.17}{R C}, \frac{1}{R C}
\end{aligned}
$$

Quadratic Factors

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

A quadratic factor in a transfer function is: $F(j \omega)=a(j \omega)^{2}+b(j \omega)+c$.
Case 1: If $b^{2} \geq 4 a c$ then we can factorize it:

$$
\begin{aligned}
& F(j \omega)=a\left(j \omega-p_{1}\right)\left(j \omega-p_{2}\right) \\
& \text { where } p_{i}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} .
\end{aligned}
$$

$$
\begin{aligned}
\frac{Y}{X}(j \omega) & =\frac{1}{6 R^{2} C^{2}(j \omega)^{2}+7 R C j \omega+1} \\
& =\frac{1}{(6 j \omega R C+1)(j \omega R C+1)} \\
& \omega_{c}=\frac{0.17}{R C}, \frac{1}{R C}=\left|p_{1}\right|,\left|p_{2}\right|
\end{aligned}
$$

Quadratic Factors

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

A quadratic factor in a transfer function is: $F(j \omega)=a(j \omega)^{2}+b(j \omega)+c$.
Case 1: If $b^{2} \geq 4 a c$ then we can factorize it:

$$
\begin{aligned}
& F(j \omega)=a\left(j \omega-p_{1}\right)\left(j \omega-p_{2}\right) \\
& \text { where } p_{i}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} .
\end{aligned}
$$

$$
\begin{aligned}
\frac{Y}{X}(j \omega) & =\frac{1}{6 R^{2} C^{2}(j \omega)^{2}+7 R C j \omega+1} \\
& =\frac{1}{(6 j \omega R C+1)(j \omega R C+1)} \\
& \omega_{c}=\frac{0.17}{R C}, \frac{1}{R C}=\left|p_{1}\right|,\left|D_{2}\right|
\end{aligned}
$$

Case 2: If $b^{2}<4 a c$, we cannot factorize with real coefficients so we leave it as a quadratic.

Quadratic Factors

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

A quadratic factor in a transfer function is: $F(j \omega)=a(j \omega)^{2}+b(j \omega)+c$.
Case 1: If $b^{2} \geq 4 a c$ then we can factorize it:

$$
\begin{aligned}
& F(j \omega)=a\left(j \omega-p_{1}\right)\left(j \omega-p_{2}\right) \\
& \text { where } p_{i}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} .
\end{aligned}
$$

$$
\begin{aligned}
\frac{Y}{X}(j \omega) & =\frac{1}{6 R^{2} C^{2}(j \omega)^{2}+7 R C j \omega+1} \\
& =\frac{1}{(6 j \omega R C+1)(j \omega R C+1)} \\
& \omega_{c}=\frac{0.17}{R C}, \frac{1}{R C}=\left|p_{1}\right|,\left|p_{2}\right|
\end{aligned}
$$

Case 2: If $b^{2}<4 a c$, we cannot factorize with real coefficients so we leave it as a quadratic. Sometimes called a quadratic resonance.

Quadratic Factors

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

A quadratic factor in a transfer function is: $F(j \omega)=a(j \omega)^{2}+b(j \omega)+c$.
Case 1: If $b^{2} \geq 4 a c$ then we can factorize it:

$$
\begin{aligned}
& F(j \omega)=a\left(j \omega-p_{1}\right)\left(j \omega-p_{2}\right) \\
& \text { where } p_{i}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} .
\end{aligned}
$$

$$
\begin{aligned}
\frac{Y}{X}(j \omega) & =\frac{1}{6 R^{2} C^{2}(j \omega)^{2}+7 R C j \omega+1} \\
& =\frac{1}{(6 j \omega R C+1)(j \omega R C+1)} \\
& \omega_{c}=\frac{0.17}{R C}, \frac{1}{R C}=\left|p_{1}\right|,\left|p_{2}\right|
\end{aligned}
$$

Case 2: If $b^{2}<4 a c$, we cannot factorize with real coefficients so we leave it as a quadratic. Sometimes called a quadratic resonance.

Any polynomial with real coefficients can be factored into linear and quadratic factors

Quadratic Factors

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

A quadratic factor in a transfer function is: $F(j \omega)=a(j \omega)^{2}+b(j \omega)+c$.
Case 1: If $b^{2} \geq 4 a c$ then we can factorize it:

$$
\begin{aligned}
& F(j \omega)=a\left(j \omega-p_{1}\right)\left(j \omega-p_{2}\right) \\
& \text { where } p_{i}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} .
\end{aligned}
$$

$$
\begin{aligned}
\frac{Y}{X}(j \omega) & =\frac{1}{6 R^{2} C^{2}(j \omega)^{2}+7 R C j \omega+1} \\
& =\frac{1}{(6 j \omega R C+1)(j \omega R C+1)} \\
& \omega_{c}=\frac{0.17}{R C}, \frac{1}{R C}=\left|p_{1}\right|,\left|p_{2}\right|
\end{aligned}
$$

Case 2: If $b^{2}<4 a c$, we cannot factorize with real coefficients so we leave it as a quadratic. Sometimes called a quadratic resonance.

Any polynomial with real coefficients can be factored into linear and quadratic factors \Rightarrow a quadratic factor is as complicated as it gets.

Damping Factor and Q

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at

Resonance

- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

$$
\text { Suppose } b^{2}<4 a c \text { in } F(j \omega)=a(j \omega)^{2}+b(j \omega)+c
$$

Damping Factor and Q

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at

Resonance

- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

Suppose $b^{2}<4 a c$ in $F(j \omega)=a(j \omega)^{2}+b(j \omega)+c$.
Low/High freq asymptotes:

Damping Factor and Q

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at

Resonance

- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

Suppose $b^{2}<4 a c$ in $F(j \omega)=a(j \omega)^{2}+b(j \omega)+c$.
Low/High freq asymptotes: $F_{\mathrm{LF}}(j \omega)=c$

Damping Factor and Q

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at

Resonance

- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

Suppose $b^{2}<4 a c$ in $F(j \omega)=a(j \omega)^{2}+b(j \omega)+c$.
Low/High freq asymptotes: $F_{\mathrm{LF}}(j \omega)=c, \quad F_{\mathrm{HF}}(j \omega)=a(j \omega)^{2}$

Damping Factor and Q

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

Suppose $b^{2}<4 a c$ in $F(j \omega)=a(j \omega)^{2}+b(j \omega)+c$.
Low/High freq asymptotes: $F_{\mathrm{LF}}(j \omega)=c, \quad F_{\mathrm{HF}}(j \omega)=a(j \omega)^{2}$
The asymptote magnitudes cross at the corner frequency:

Damping Factor and Q

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at

Resonance

- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

Suppose $b^{2}<4 a c$ in $F(j \omega)=a(j \omega)^{2}+b(j \omega)+c$.
Low/High freq asymptotes: $F_{\mathrm{LF}}(j \omega)=c, \quad F_{\mathrm{HF}}(j \omega)=a(j \omega)^{2}$
The asymptote magnitudes cross at the corner frequency:

$$
\left|a\left(j \omega_{c}\right)^{2}\right|=|c| \Rightarrow \omega_{c}=\sqrt{\frac{c}{a}}
$$

Damping Factor and Q

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

Suppose $b^{2}<4 a c$ in $F(j \omega)=a(j \omega)^{2}+b(j \omega)+c$.
Low/High freq asymptotes: $F_{\mathrm{LF}}(j \omega)=c, \quad F_{\mathrm{HF}}(j \omega)=a(j \omega)^{2}$
The asymptote magnitudes cross at the corner frequency:

$$
\left|a\left(j \omega_{c}\right)^{2}\right|=|c| \Rightarrow \omega_{c}=\sqrt{\frac{c}{a}}
$$

We define the damping factor, "zeta", to be $\zeta=\frac{b}{2 a \omega_{c}}$

Damping Factor and Q

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

Suppose $b^{2}<4 a c$ in $F(j \omega)=a(j \omega)^{2}+b(j \omega)+c$.
Low/High freq asymptotes: $F_{\mathrm{LF}}(j \omega)=c, \quad F_{\mathrm{HF}}(j \omega)=a(j \omega)^{2}$
The asymptote magnitudes cross at the corner frequency:

$$
\left|a\left(j \omega_{c}\right)^{2}\right|=|c| \Rightarrow \omega_{c}=\sqrt{\frac{c}{a}}
$$

We define the damping factor, "zeta", to be $\zeta=\frac{b}{2 a \omega_{c}}=\frac{b \omega_{c}}{2 c}=\frac{b \operatorname{sgn}(a)}{\sqrt{4 a c}}$

Damping Factor and Q

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

Suppose $b^{2}<4 a c$ in $F(j \omega)=a(j \omega)^{2}+b(j \omega)+c$.
Low/High freq asymptotes: $F_{\mathrm{LF}}(j \omega)=c, \quad F_{\mathrm{HF}}(j \omega)=a(j \omega)^{2}$
The asymptote magnitudes cross at the corner frequency:

$$
\left|a\left(j \omega_{c}\right)^{2}\right|=|c| \Rightarrow \omega_{c}=\sqrt{\frac{c}{a}}
$$

We define the damping factor, "zeta", to be $\zeta=\frac{b}{2 a \omega_{c}}=\frac{b \omega_{c}}{2 c}=\frac{b \operatorname{sgn}(a)}{\sqrt{4 a c}}$

$$
\Rightarrow F(j \omega)=c\left(\left(j \frac{\omega}{\omega_{c}}\right)^{2}+2 \zeta\left(j \frac{\omega}{\omega_{c}}\right)+1\right)
$$

Damping Factor and Q

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

Suppose $b^{2}<4 a c$ in $F(j \omega)=a(j \omega)^{2}+b(j \omega)+c$.
Low/High freq asymptotes: $F_{\mathrm{LF}}(j \omega)=c, \quad F_{\mathrm{HF}}(j \omega)=a(j \omega)^{2}$
The asymptote magnitudes cross at the corner frequency:

$$
\left|a\left(j \omega_{c}\right)^{2}\right|=|c| \Rightarrow \omega_{c}=\sqrt{\frac{c}{a}}
$$

We define the damping factor, "zeta", to be $\zeta=\frac{b}{2 a \omega_{c}}=\frac{b \omega_{c}}{2 c}=\frac{b \operatorname{sgn}(a)}{\sqrt{4 a c}}$

$$
\Rightarrow F(j \omega)=c\left(\left(j \frac{\omega}{\omega_{c}}\right)^{2}+2 \zeta\left(j \frac{\omega}{\omega_{c}}\right)+1\right)
$$

Properties to notice in this expression:
(a) c is just an overall scale factor.

Damping Factor and Q

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

Suppose $b^{2}<4 a c$ in $F(j \omega)=a(j \omega)^{2}+b(j \omega)+c$.
Low/High freq asymptotes: $F_{\mathrm{LF}}(j \omega)=c, \quad F_{\mathrm{HF}}(j \omega)=a(j \omega)^{2}$
The asymptote magnitudes cross at the corner frequency:

$$
\left|a\left(j \omega_{c}\right)^{2}\right|=|c| \Rightarrow \omega_{c}=\sqrt{\frac{c}{a}}
$$

We define the damping factor, "zeta", to be $\zeta=\frac{b}{2 a \omega_{c}}=\frac{b \omega_{c}}{2 c}=\frac{b \operatorname{sgn}(a)}{\sqrt{4 a c}}$

$$
\Rightarrow F(j \omega)=c\left(\left(j \frac{\omega}{\omega_{c}}\right)^{2}+2 \zeta\left(j \frac{\omega}{\omega_{c}}\right)+1\right)
$$

Properties to notice in this expression:
(a) c is just an overall scale factor.
(b) ω_{c} just scales the frequency axis since $F(j \omega)$ is a function of $\frac{\omega}{\omega_{c}}$.

Damping Factor and Q

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

Suppose $b^{2}<4 a c$ in $F(j \omega)=a(j \omega)^{2}+b(j \omega)+c$.
Low/High freq asymptotes: $F_{\mathrm{LF}}(j \omega)=c, \quad F_{\mathrm{HF}}(j \omega)=a(j \omega)^{2}$
The asymptote magnitudes cross at the corner frequency:

$$
\left|a\left(j \omega_{c}\right)^{2}\right|=|c| \Rightarrow \omega_{c}=\sqrt{\frac{c}{a}} .
$$

We define the damping factor, "zeta", to be $\zeta=\frac{b}{2 a \omega_{c}}=\frac{b \omega_{c}}{2 c}=\frac{b \operatorname{sgn}(a)}{\sqrt{4 a c}}$

$$
\Rightarrow F(j \omega)=c\left(\left(j \frac{\omega}{\omega_{c}}\right)^{2}+2 \zeta\left(j \frac{\omega}{\omega_{c}}\right)+1\right)
$$

Properties to notice in this expression:
(a) c is just an overall scale factor.
(b) ω_{c} just scales the frequency axis since $F(j \omega)$ is a function of $\frac{\omega}{\omega_{c}}$.
(c) The shape of the $F(j \omega)$ graphs is determined entirely by ζ.

Damping Factor and Q

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

Suppose $b^{2}<4 a c$ in $F(j \omega)=a(j \omega)^{2}+b(j \omega)+c$.
Low/High freq asymptotes: $F_{\mathrm{LF}}(j \omega)=c, \quad F_{\mathrm{HF}}(j \omega)=a(j \omega)^{2}$
The asymptote magnitudes cross at the corner frequency:

$$
\left|a\left(j \omega_{c}\right)^{2}\right|=|c| \Rightarrow \omega_{c}=\sqrt{\frac{c}{a}} .
$$

We define the damping factor, "zeta", to be $\zeta=\frac{b}{2 a \omega_{c}}=\frac{b \omega_{c}}{2 c}=\frac{b \operatorname{sgn}(a)}{\sqrt{4 a c}}$

$$
\Rightarrow F(j \omega)=c\left(\left(j \frac{\omega}{\omega_{c}}\right)^{2}+2 \zeta\left(j \frac{\omega}{\omega_{c}}\right)+1\right)
$$

Properties to notice in this expression:
(a) c is just an overall scale factor.
(b) ω_{c} just scales the frequency axis since $F(j \omega)$ is a function of $\frac{\omega}{\omega_{c}}$.
(c) The shape of the $F(j \omega)$ graphs is determined entirely by ζ.
(d) The quadratic cannot be factorized $\Leftrightarrow b^{2}<4 a c \Leftrightarrow|\zeta|<1$.

Damping Factor and Q

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

Suppose $b^{2}<4 a c$ in $F(j \omega)=a(j \omega)^{2}+b(j \omega)+c$.
Low/High freq asymptotes: $F_{\mathrm{LF}}(j \omega)=c, \quad F_{\mathrm{HF}}(j \omega)=a(j \omega)^{2}$
The asymptote magnitudes cross at the corner frequency:

$$
\left|a\left(j \omega_{c}\right)^{2}\right|=|c| \Rightarrow \omega_{c}=\sqrt{\frac{c}{a}} .
$$

We define the damping factor, "zeta", to be $\zeta=\frac{b}{2 a \omega_{c}}=\frac{b \omega_{c}}{2 c}=\frac{b \operatorname{sgn}(a)}{\sqrt{4 a c}}$

$$
\Rightarrow F(j \omega)=c\left(\left(j \frac{\omega}{\omega_{c}}\right)^{2}+2 \zeta\left(j \frac{\omega}{\omega_{c}}\right)+1\right)
$$

Properties to notice in this expression:
(a) c is just an overall scale factor.
(b) ω_{c} just scales the frequency axis since $F(j \omega)$ is a function of $\frac{\omega}{\omega_{c}}$.
(c) The shape of the $F(j \omega)$ graphs is determined entirely by ζ.
(d) The quadratic cannot be factorized $\Leftrightarrow b^{2}<4 a c \Leftrightarrow|\zeta|<1$.
(e) At $\omega=\omega_{c}$, asymptote gain $=c$ but $F(j \omega)=c \times 2 j \zeta$.

Damping Factor and Q

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

Suppose $b^{2}<4 a c$ in $F(j \omega)=a(j \omega)^{2}+b(j \omega)+c$.
Low/High freq asymptotes: $F_{\mathrm{LF}}(j \omega)=c, \quad F_{\mathrm{HF}}(j \omega)=a(j \omega)^{2}$
The asymptote magnitudes cross at the corner frequency:

$$
\left|a\left(j \omega_{c}\right)^{2}\right|=|c| \Rightarrow \omega_{c}=\sqrt{\frac{c}{a}}
$$

We define the damping factor, "zeta", to be $\zeta=\frac{b}{2 a \omega_{c}}=\frac{b \omega_{c}}{2 c}=\frac{b \operatorname{sgn}(a)}{\sqrt{4 a c}}$

$$
\Rightarrow F(j \omega)=c\left(\left(j \frac{\omega}{\omega_{c}}\right)^{2}+2 \zeta\left(j \frac{\omega}{\omega_{c}}\right)+1\right)
$$

Properties to notice in this expression:
(a) c is just an overall scale factor.
(b) ω_{c} just scales the frequency axis since $F(j \omega)$ is a function of $\frac{\omega}{\omega_{c}}$.
(c) The shape of the $F(j \omega)$ graphs is determined entirely by ζ.
(d) The quadratic cannot be factorized $\Leftrightarrow b^{2}<4 a c \Leftrightarrow|\zeta|<1$.
(e) At $\omega=\omega_{c}$, asymptote gain $=c$ but $F(j \omega)=c \times 2 j \zeta$.

Alternatively, we sometimes use the quality factor, $Q \approx \frac{1}{2 \zeta}=\frac{a \omega_{c}}{b}$.

Parallel RLC

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at

Resonance

$$
\frac{Y}{I}=\frac{1}{\frac{1}{R}+\frac{1}{j \omega L}+j \omega C}=\frac{j \omega L}{L C(j \omega)^{2}+\frac{L}{R} j \omega+1}
$$

- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

Parallel RLC

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at

Resonance

- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

$$
\begin{aligned}
\frac{Y}{I} & =\frac{1}{\frac{1}{R}+\frac{1}{j \omega L}+j \omega C}=\frac{j \omega L}{L C(j \omega)^{2}+\frac{L}{R} j \omega+1} \\
\omega_{c} & =\sqrt{\frac{C}{a}}=1000, \zeta=\frac{b}{2 a \omega_{c}}=0.083
\end{aligned}
$$

Parallel RLC

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary
$\frac{Y}{I}=\frac{1}{\frac{1}{R}+\frac{1}{j \omega L}+j \omega C}=\frac{j \omega L}{L C(j \omega)^{2}+\frac{L}{R} j \omega+1}$
$\omega_{c}=\sqrt{\frac{c}{a}}=1000, \zeta=\frac{b}{2 a \omega_{c}}=0.083$
Asymptotes: $j \omega L$ and $\frac{1}{j \omega C}$.

Parallel RLC

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary
$\frac{Y}{I}=\frac{1}{\frac{1}{R}+\frac{1}{j \omega L}+j \omega C}=\frac{j \omega L}{L C(j \omega)^{2}+\frac{L}{R} j \omega+1}$
$\omega_{c}=\sqrt{\frac{c}{a}}=1000, \zeta=\frac{b}{2 a \omega_{c}}=0.083$
Asymptotes: $j \omega L$ and $\frac{1}{j \omega C}$.

Power absorbed by resistor $\propto Y^{2}$. It peaks quite sharply at $\omega=1000$.

Parallel RLC

12: Resonance

- Quadratic Factor
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary
$\frac{Y}{I}=\frac{1}{\frac{1}{R}+\frac{1}{j \omega L}+j \omega C}=\frac{j \omega L}{L C(j \omega)^{2}+\frac{L}{R} j \omega+1}$
$\omega_{c}=\sqrt{\frac{c}{a}}=1000, \zeta=\frac{b}{2 a \omega_{c}}=0.083$
Asymptotes: $j \omega L$ and $\frac{1}{j \omega C}$.

Power absorbed by resistor $\propto Y^{2}$. It peaks quite sharply at $\omega=1000$. The resonant frequency,
ω_{r}, is when the impedance is purely real:
at $\omega_{r}=1000, Z_{R L C}=\frac{Y}{I}=R$.

Parallel RLC

12: Resonance

- Quadratic Factor
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

$$
\begin{aligned}
\frac{Y}{I} & =\frac{1}{\frac{1}{R}+\frac{1}{j \omega L}+j \omega C}=\frac{j \omega L}{L C(j \omega)^{2}+\frac{L}{R} j \omega+1} \\
\omega_{c} & =\sqrt{\frac{c}{a}}=1000, \zeta=\frac{b}{2 a \omega_{c}}=0.083
\end{aligned}
$$

Asymptotes: $j \omega L$ and $\frac{1}{j \omega C}$.

Power absorbed by resistor $\propto Y^{2}$. It peaks quite sharply at $\omega=1000$. The resonant frequency, ω_{r}, is when the impedance is purely real:
at $\omega_{r}=1000, Z_{R L C}=\frac{Y}{I}=R$.
A system with a strong peak in power absorption is a resonant system.

Parallel RLC

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary
$\frac{Y}{I}=\frac{1}{\frac{1}{R}+\frac{1}{j \omega L}+j \omega C}=\frac{j \omega L}{L C(j \omega)^{2}+\frac{L}{R} j \omega+1}$
$\omega_{c}=\sqrt{\frac{c}{a}}=1000, \zeta=\frac{b}{2 a \omega_{c}}=0.083$
Asymptotes: $j \omega L$ and $\frac{1}{j \omega C}$.

Power absorbed by resistor $\propto Y^{2}$. It peaks quite sharply at $\omega=1000$. The resonant frequency, ω_{r}, is when the impedance is purely real:
at $\omega_{r}=1000, Z_{R L C}=\frac{Y}{I}=R$.
A system with a strong peak in power absorption is a resonant system.

Behaviour at Resonance

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter

$\omega=1000 \Rightarrow Z_{L}=100 j, Z_{C}=-100 j$.

- Summary

Behaviour at Resonance

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

$\omega=1000 \Rightarrow Z_{L}=100 j, Z_{C}=-100 j$. $Z_{L}=-Z_{C} \Rightarrow I_{L}=-I_{C}$

Behaviour at Resonance

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

$$
\begin{aligned}
& \omega=1000 \Rightarrow Z_{L}=100 j, Z_{C}=-100 j \\
& Z_{L}=-Z_{C} \Rightarrow I_{L}=-I_{C} \\
& \Rightarrow I=I_{R}+I_{L}+I_{C}=I_{R}=1
\end{aligned}
$$

Behaviour at Resonance

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

$$
\begin{aligned}
& \omega=1000 \Rightarrow Z_{L}=100 j, Z_{C}=-100 j \\
& Z_{L}=-Z_{C} \Rightarrow I_{L}=-I_{C} \\
& \Rightarrow I=I_{R}+I_{L}+I_{C}=I_{R}=1 \\
& \Rightarrow Y=I_{R} R=600 \angle 0^{\circ}=56 \mathrm{dBV}
\end{aligned}
$$

Behaviour at Resonance

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

$$
\begin{aligned}
& { }^{60} \\
& \omega=1000 \Rightarrow Z_{L}=100 j, Z_{C}=-100 j \text {. } \\
& Z_{L}=-Z_{C} \Rightarrow I_{L}=-I_{C} \\
& \Rightarrow I=I_{R}+I_{L}+I_{C}=I_{R}=1 \\
& \Rightarrow Y=I_{R} R=600 \angle 0^{\circ}=56 \mathrm{dBV} \\
& \Rightarrow I_{L}=\frac{Y}{Z_{L}}=\frac{600}{100 j}=-6 j
\end{aligned}
$$

Behaviour at Resonance

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

$\omega=1000 \Rightarrow Z_{L}=100 j, Z_{C}=-100 j$.
$Z_{L}=-Z_{C} \Rightarrow I_{L}=-I_{C}$
$\Rightarrow I=I_{R}+I_{L}+I_{C}=I_{R}=1$
$\Rightarrow Y=I_{R} R=600 \angle 0^{\circ}=56 \mathrm{dBV}$
$\Rightarrow I_{L}=\frac{Y}{Z_{L}}=\frac{600}{100 j}=-6 j$

Behaviour at Resonance

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

$\omega=1000 \Rightarrow Z_{L}=100 j, Z_{C}=-100 j$.
$Z_{L}=-Z_{C} \Rightarrow I_{L}=-I_{C}$
$\Rightarrow I=I_{R}+I_{L}+I_{C}=I_{R}=1$
$\Rightarrow Y=I_{R} R=600 \angle 0^{\circ}=56 \mathrm{dBV}$
$\Rightarrow I_{L}=\frac{Y}{Z_{L}}=\frac{600}{100 j}=-6 j$

I (A)

Behaviour at Resonance

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter

Resonance Peak for LP
filter

- Summary

$$
\begin{aligned}
& { }^{60} \\
& \omega=1000 \Rightarrow Z_{L}=100 j, Z_{C}=-100 j \text {. } \\
& Z_{L}=-Z_{C} \Rightarrow I_{L}=-I_{C} \\
& \Rightarrow I=I_{R}+I_{L}+I_{C}=I_{R}=1 \\
& \Rightarrow Y=I_{R} R=600 \angle 0^{\circ}=56 \mathrm{dBV} \\
& \Rightarrow I_{L}=\frac{Y}{Z_{L}}=\frac{600}{100 j}=-6 j
\end{aligned}
$$

Behaviour at Resonance

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

$$
\begin{aligned}
& { }^{60} \\
& \omega=1000 \Rightarrow Z_{L}=100 j, Z_{C}=-100 j \\
& Z_{L}=-Z_{C} \Rightarrow I_{L}=-I_{C} \\
& \Rightarrow I=I_{R}+I_{L}+I_{C}=I_{R}=1 \\
& \Rightarrow Y=I_{R} R=600 \angle 0^{\circ}=56 \mathrm{dBV} \\
& \Rightarrow I_{L}=\frac{Y}{Z_{L}}=\frac{600}{100 j}=-6 j
\end{aligned}
$$

Large currents in L and C exactly cancel out $\Rightarrow I_{R}=I$ and $Z=R$ (real)

Away from resonance

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter

$\omega=2000 \Rightarrow Z_{L}=200 j, Z_{C}=-50 j$

- Summary

Away from resonance

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

$$
\omega=2000 \Rightarrow Z_{L}=200 j, Z_{C}=-50 j
$$

$$
Z=\left(\frac{1}{R}+\frac{1}{Z_{L}}+\frac{1}{Z_{C}}\right)^{-1}=66 \angle-84^{\circ}
$$

Away from resonance

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter

Resonance Peak for LP
filter

- Summary

$\omega=2000 \Rightarrow Z_{L}=200 j, Z_{C}=-50 j$
$Z=\left(\frac{1}{R}+\frac{1}{Z_{L}}+\frac{1}{Z_{C}}\right)^{-1}=66 \angle-84^{\circ}$
$Y=I \times Z=66 \angle-84^{\circ}=36 \mathrm{dBV}$

Away from resonance

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter

Resonance Peak for LP
filter

- Summary

$\omega=2000 \Rightarrow Z_{L}=200 j, Z_{C}=-50 j$
$Z=\left(\frac{1}{R}+\frac{1}{Z_{L}}+\frac{1}{Z_{C}}\right)^{-1}=66 \angle-84^{\circ}$
$Y=I \times Z=66 \angle-84^{\circ}=36 \mathrm{dBV}$

Away from resonance

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

$$
\begin{aligned}
& =\underbrace{\overbrace{100}}_{\substack{1 \mathrm{k} \\
\omega(\mathrm{rad} / \mathrm{s})}} \\
& \omega=2000 \Rightarrow Z_{L}=200 j, Z_{C}=-50 j \\
& Z=\left(\frac{1}{R}+\frac{1}{Z_{L}}+\frac{1}{Z_{C}}\right)^{-1}=66 \angle-84^{\circ} \\
& Y=I \times Z=66 \angle-84^{\circ}=36 \mathrm{dBV} \\
& I_{R}=\frac{Y}{R}=0.11 \angle-84^{\circ}
\end{aligned}
$$

Away from resonance

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter

Resonance Peak for LP
filter

- Summary

$$
\begin{aligned}
& { }^{60} \\
& \omega=2000 \Rightarrow Z_{L}=200 j, Z_{C}=-50 j \\
& Z=\left(\frac{1}{R}+\frac{1}{Z_{L}}+\frac{1}{Z_{L}}+\frac{1}{Z_{C}}\right)^{-1}=66 \angle-84^{\circ} \\
& Y=I \times Z=66 \angle-84^{\circ}=36 \mathrm{dBV} \\
& I_{R}=\frac{Y}{R}=0.11 \angle-84^{\circ} \\
& I_{L}=\frac{Y}{Z_{L}}=0.33 \angle-174^{\circ}
\end{aligned}
$$

Away from resonance

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

$$
\begin{aligned}
& { }^{60} \\
& \omega=2000 \Rightarrow Z_{L}=200 j, Z_{C}=-50 j \\
& Z=\left(\frac{1}{R}+\frac{1}{Z_{L}(\text { rads }}+\frac{1}{Z_{C}}\right)^{-1}=66 \angle-84^{\circ} \\
& Y=I \times Z=66 \angle-84^{\circ}=36 \mathrm{dBV} \\
& I_{R}=\frac{Y}{R}=0.11 \angle-84^{\circ} \\
& I_{L}=\frac{Y}{Z_{L}}=0.33 \angle-174^{\circ}, I_{C}=1.33 \angle+6^{\circ}
\end{aligned}
$$

Away from resonance

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter

Resonance Peak for LP
filter

- Summary

$\omega=2000 \Rightarrow Z_{L}=200 j, Z_{C}=-50 j$

$$
\begin{aligned}
& Z=\left(\frac{1}{R}+\frac{1}{Z_{L}}+\frac{1}{Z_{C}}\right)^{-1}=66 \angle-84^{\circ} \\
& Y=I \times Z=66 \angle-84^{\circ}=36 \mathrm{dBV} \\
& I_{R}=\frac{Y}{R}=0.11 \angle-84^{\circ} \\
& I_{L}=\frac{Y}{Z_{L}}=0.33 \angle-174^{\circ}, I_{C}=1.33 \angle+6^{\circ}
\end{aligned}
$$

Away from resonance

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter

Resonance Peak for LP
filter

- Summary

$\omega=2000 \Rightarrow Z_{L}=200 j, Z_{C}=-50 j$

$$
\begin{aligned}
& Z=\left(\frac{1}{R}+\frac{1}{Z_{L}}+\frac{1}{Z_{C}}\right)^{-1}=66 \angle-84^{\circ} \\
& Y=I \times Z=66 \angle-84^{\circ}=36 \mathrm{dBV} \\
& I_{R}=\frac{Y}{R}=0.11 \angle-84^{\circ} \\
& I_{L}=\frac{Y}{Z_{L}}=0.33 \angle-174^{\circ}, I_{C}=1.33 \angle+6^{\circ}
\end{aligned}
$$

Away from resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

$\omega=2000 \Rightarrow Z_{L}=200 j, Z_{C}=-50 j$

$$
\begin{aligned}
& Z=\left(\frac{1}{R}+\frac{1}{Z_{L}}+\frac{1}{Z_{C}}\right)^{-1}=66 \angle-84^{\circ} \\
& Y=I \times Z=66 \angle-84^{\circ}=36 \mathrm{dBV} \\
& I_{R}=\frac{Y}{R}=0.11 \angle-84^{\circ} \\
& I_{L}=\frac{Y}{Z_{L}}=0.33 \angle-174^{\circ}, I_{C}=1.33 \angle+6^{\circ}
\end{aligned}
$$

Most current now flows through C, only 0.11 through R.

Bandwidth and Q

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at

Resonance

$$
\frac{Y}{I}=\frac{1}{1 / R+j(\omega C-1 / \omega L)}
$$

- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

Bandwidth and Q

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary
$\frac{Y}{I}=\frac{1}{1 / R+j(\omega C-1 / \omega L)}$
Bandwidth is the range of frequencies for which $\left|\frac{Y}{I}\right|^{2}$ is greater than half its peak. Also called half-power bandwidth or $3 d B$ bandwidth.

Bandwidth and Q

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary
$\frac{Y}{I}=\frac{1}{1 / R+j(\omega C-1 / \omega L)}$
Bandwidth is the range of frequencies for which $\left|\frac{Y}{I}\right|^{2}$ is greater than half its peak. Also called half-power bandwidth or 3dB bandwidth.

Bandwidth and Q

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary
$\frac{Y}{I}=\frac{1}{1 / R+j(\omega C-1 / \omega L)}$
Bandwidth is the range of frequencies for which $\left|\frac{Y}{I}\right|^{2}$ is greater than half its peak. Also called half-power bandwidth or 3dB bandwidth.

$$
\left|\frac{Y}{I}\right|^{2}=\frac{1}{(1 / R)^{2}+(\omega C-1 / \omega L)^{2}}
$$

Bandwidth and Q

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary
$\frac{Y}{I}=\frac{1}{1 / R+j(\omega C-1 / \omega L)}$
Bandwidth is the range of frequencies for which $\left|\frac{Y}{I}\right|^{2}$ is greater than half its peak. Also called half-power bandwidth or 3dB bandwidth.
$\left|\frac{Y}{I}\right|^{2}=\frac{1}{(1 / R)^{2}+(\omega C-1 / \omega L)^{2}}$
Peak is $\left|\frac{Y}{I}\left(\omega_{0}\right)\right|^{2}=R^{2} @ \omega_{0}=1000$

Bandwidth and Q

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary
$\frac{Y}{I}=\frac{1}{1 / R+j(\omega C-1 / \omega L)}$
Bandwidth is the range of frequencies for which $\left|\frac{Y}{I}\right|^{2}$ is greater than half its peak. Also called half-power bandwidth or 3dB bandwidth.

$$
\left|\frac{Y}{I}\right|^{2}=\frac{1}{(1 / R)^{2}+(\omega C-1 / \omega L)^{2}}
$$

Peak is $\left|\frac{Y}{I}\left(\omega_{0}\right)\right|^{2}=R^{2} @ \omega_{0}=1000$
At $\omega_{3 \mathrm{~dB}}:\left|\frac{Y}{I}\left(\omega_{3 \mathrm{~dB}}\right)\right|^{2}=\frac{1}{2}\left|\frac{Y}{I}\left(\omega_{0}\right)\right|^{2}$

Bandwidth and Q

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

$$
\frac{Y}{I}=\frac{1}{1 / R+j(\omega C-1 / \omega L)}
$$

Bandwidth is the range of frequencies for which $\left|\frac{Y}{I}\right|^{2}$ is greater than half its peak. Also called half-power bandwidth or 3dB bandwidth.

$$
\begin{aligned}
& \left|\frac{Y}{I}\right|^{2}=\frac{1}{(1 / R)^{2}+(\omega C-1 / \omega L)^{2}} \\
& \text { Peak is }\left|\frac{Y}{I}\left(\omega_{0}\right)\right|^{2}=R^{2} @ \omega_{0}=1000 \\
& \text { At } \omega_{3 \mathrm{~dB}}:\left|\frac{Y}{I}\left(\omega_{3 \mathrm{~dB}}\right)\right|^{2}=\frac{1}{2}\left|\frac{Y}{I}\left(\omega_{0}\right)\right|^{2} \\
& \qquad \frac{1}{(1 / R)^{2}+\left(\omega_{3 \mathrm{~dB}} C-1 / \omega_{3 \mathrm{~dB}} L\right)^{2}}=\frac{R^{2}}{2}
\end{aligned}
$$

Bandwidth and Q

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary
$\frac{Y}{I}=\frac{1}{1 / R+j(\omega C-1 / \omega L)}$
Bandwidth is the range of frequencies for which $\left|\frac{Y}{I}\right|^{2}$ is greater than half its peak. Also called half-power bandwidth or $3 d B$ bandwidth.

$$
\left|\frac{Y}{I}\right|^{2}=\frac{1}{(1 / R)^{2}+(\omega C-1 / \omega L)^{2}}
$$

Peak is $\left|\frac{Y}{I}\left(\omega_{0}\right)\right|^{2}=R^{2} @ \omega_{0}=1000$
At $\omega_{3 \mathrm{~dB}}:\left|\frac{Y}{I}\left(\omega_{3 \mathrm{~dB}}\right)\right|^{2}=\frac{1}{2}\left|\frac{Y}{I}\left(\omega_{0}\right)\right|^{2}$

$$
\frac{1}{(1 / R)^{2}+\left(\omega_{3 \mathrm{~dB}} C-1 / \omega_{3 \mathrm{~dB}} L\right)^{2}}=\frac{R^{2}}{2} \Rightarrow 1+\left(\omega_{3 \mathrm{~dB}} R C-\frac{R}{\omega_{3 \mathrm{~dB}} L}\right)^{2}=2
$$

Bandwidth and Q

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

$$
\frac{Y}{I}=\frac{1}{1 / R+j(\omega C-1 / \omega L)}
$$

Bandwidth is the range of frequencies for which $\left|\frac{Y}{I}\right|^{2}$ is greater than half its peak. Also called half-power bandwidth or 3dB bandwidth.

$$
\begin{aligned}
& \left|\frac{Y}{I}\right|^{2}=\frac{1}{(1 / R)^{2}+(\omega C-1 / \omega L)^{2}} \\
& \text { Peak is }\left|\frac{Y}{I}\left(\omega_{0}\right)\right|^{2}=R^{2} @ \omega_{0}=1000 \\
& \text { At } \omega_{3 \mathrm{~dB}}:\left|\frac{Y}{I}\left(\omega_{3 \mathrm{~dB}}\right)\right|^{2}=\frac{1}{2}\left|\frac{Y}{I}\left(\omega_{0}\right)\right|^{2} \\
& \quad \frac{1}{(1 / R)^{2}+\left(\omega_{3 \mathrm{~dB}} C-1 / \omega_{3 \mathrm{~dB}} L\right)^{2}}=\frac{R^{2}}{2} \Rightarrow 1+\left(\omega_{3 \mathrm{~dB}} R C-\frac{R}{\omega_{3 \mathrm{~dB}} L}\right)^{2}=2 \\
& \quad \omega_{3 \mathrm{~dB}} R C-R / \omega_{3 \mathrm{~dB}} L= \pm 1
\end{aligned}
$$

Bandwidth and Q

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

$$
\frac{Y}{I}=\frac{1}{1 / R+j(\omega C-1 / \omega L)}
$$

Bandwidth is the range of frequencies for which $\left|\frac{Y}{I}\right|^{2}$ is greater than half its peak. Also called half-power bandwidth or 3dB bandwidth.

$$
\left|\frac{Y}{I}\right|^{2}=\frac{1}{(1 / R)^{2}+(\omega C-1 / \omega L)^{2}}
$$

Peak is $\left|\frac{Y}{I}\left(\omega_{0}\right)\right|^{2}=R^{2} @ \omega_{0}=1000$
At $\omega_{3 \mathrm{~dB}}:\left|\frac{Y}{I}\left(\omega_{3 \mathrm{~dB}}\right)\right|^{2}=\frac{1}{2}\left|\frac{Y}{I}\left(\omega_{0}\right)\right|^{2}$

$$
\begin{aligned}
& \frac{1}{(1 / R)^{2}+\left(\omega_{3 \mathrm{~dB}} C-1 / \omega_{3 \mathrm{~dB}} L\right)^{2}}=\frac{R^{2}}{2} \Rightarrow 1+\left(\omega_{3 \mathrm{~dB}} R C-\frac{R}{\omega_{3 \mathrm{~dB}} L}\right)^{2}=2 \\
& \omega_{3 \mathrm{~dB}} R C-R / \omega_{3 \mathrm{~dB}} L= \pm 1 \quad \Rightarrow \quad \omega_{3 \mathrm{~dB}}^{2} R L C \pm \omega_{3 \mathrm{~dB}} L-R=0
\end{aligned}
$$

Bandwidth and Q

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

$$
\frac{Y}{I}=\frac{1}{1 / R+j(\omega C-1 / \omega L)}
$$

Bandwidth is the range of frequencies for which $\left|\frac{Y}{I}\right|^{2}$ is greater than half its peak. Also called half-power bandwidth or 3dB bandwidth.

$$
\left|\frac{Y}{I}\right|^{2}=\frac{1}{(1 / R)^{2}+(\omega C-1 / \omega L)^{2}}
$$

Peak is $\left|\frac{Y}{I}\left(\omega_{0}\right)\right|^{2}=R^{2} @ \omega_{0}=1000$
At $\omega_{3 \mathrm{~dB}}:\left|\frac{Y}{I}\left(\omega_{3 \mathrm{~dB}}\right)\right|^{2}=\frac{1}{2}\left|\frac{Y}{I}\left(\omega_{0}\right)\right|^{2}$

$$
\begin{aligned}
& \frac{1}{(1 / R)^{2}+\left(\omega_{3 \mathrm{~dB}} C-1 / \omega_{3 \mathrm{~dB}} L\right)^{2}}=\frac{R^{2}}{2} \Rightarrow 1+\left(\omega_{3 \mathrm{~dB}} R C-\frac{R}{\omega_{3 \mathrm{~dB}} L}\right)^{2}=2 \\
& \omega_{3 \mathrm{~dB}} R C-R / \omega_{3 \mathrm{~dB}} L= \pm 1 \quad \Rightarrow \quad \omega_{3 \mathrm{~dB}}^{2} R L C \pm \omega_{3 \mathrm{~dB}} L-R=0
\end{aligned}
$$

Positive roots: $\omega_{3 \mathrm{~dB}}=\frac{ \pm L+\sqrt{L^{2}+4 R^{2} L C}}{2 R L C}=\{920,1086\} \mathrm{rad} / \mathrm{s}$

Bandwidth and Q

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

$$
\frac{Y}{I}=\frac{1}{1 / R+j(\omega C-1 / \omega L)}
$$

Bandwidth is the range of frequencies for which $\left|\frac{Y}{I}\right|^{2}$ is greater than half its peak. Also called half-power bandwidth or 3dB bandwidth.

$$
\left|\frac{Y}{I}\right|^{2}=\frac{1}{(1 / R)^{2}+(\omega C-1 / \omega L)^{2}}
$$

Peak is $\left|\frac{Y}{I}\left(\omega_{0}\right)\right|^{2}=R^{2} @ \omega_{0}=1000$
At $\omega_{3 \mathrm{~dB}}:\left|\frac{Y}{I}\left(\omega_{3 \mathrm{~dB}}\right)\right|^{2}=\frac{1}{2}\left|\frac{Y}{I}\left(\omega_{0}\right)\right|^{2}$

$$
\begin{aligned}
& \frac{1}{(1 / R)^{2}+\left(\omega_{3 \mathrm{~dB}} C-1 / \omega_{3 \mathrm{~dB}} L\right)^{2}}=\frac{R^{2}}{2} \Rightarrow 1+\left(\omega_{3 \mathrm{~dB}} R C-\frac{R}{\omega_{3 \mathrm{~dB}} L}\right)^{2}=2 \\
& \omega_{3 \mathrm{~dB}} R C-R / \omega_{3 \mathrm{~dB}} L= \pm 1 \quad \Rightarrow \quad \omega_{3 \mathrm{~dB}}^{2} R L C \pm \omega_{3 \mathrm{~dB}} L-R=0
\end{aligned}
$$

Positive roots: $\omega_{3 \mathrm{~dB}}=\frac{ \pm L+\sqrt{L^{2}+4 R^{2} L C}}{2 R L C}=\{920,1086\} \mathrm{rad} / \mathrm{s}$
Bandwidth: $B=1086-920=167 \mathrm{rad} / \mathrm{s}$.

Bandwidth and Q

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

$$
\frac{Y}{I}=\frac{1}{1 / R+j(\omega C-1 / \omega L)}
$$

Bandwidth is the range of frequencies for which $\left|\frac{Y}{I}\right|^{2}$ is greater than half its peak. Also called half-power bandwidth or 3dB bandwidth.

$$
\left|\frac{Y}{I}\right|^{2}=\frac{1}{(1 / R)^{2}+(\omega C-1 / \omega L)^{2}}
$$

Peak is $\left|\frac{Y}{I}\left(\omega_{0}\right)\right|^{2}=R^{2} @ \omega_{0}=1000$
At $\omega_{3 \mathrm{~dB}}:\left|\frac{Y}{I}\left(\omega_{3 \mathrm{~dB}}\right)\right|^{2}=\frac{1}{2}\left|\frac{Y}{I}\left(\omega_{0}\right)\right|^{2}$

$$
\begin{aligned}
& \frac{1}{(1 / R)^{2}+\left(\omega_{3 \mathrm{~dB}} C-1 / \omega_{3 \mathrm{~dB}} L\right)^{2}}=\frac{R^{2}}{2} \Rightarrow 1+\left(\omega_{3 \mathrm{~dB}} R C-\frac{R}{\omega_{3 \mathrm{~dB}} L}\right)^{2}=2 \\
& \omega_{3 \mathrm{~dB}} R C-R / \omega_{3 \mathrm{~dB}} L= \pm 1 \quad \Rightarrow \quad \omega_{3 \mathrm{~dB}}^{2} R L C \pm \omega_{3 \mathrm{~dB}} L-R=0
\end{aligned}
$$

Positive roots: $\omega_{3 \mathrm{~dB}}=\frac{ \pm L+\sqrt{L^{2}+4 R^{2} L C}}{2 R L C}=\{920,1086\} \mathrm{rad} / \mathrm{s}$
Bandwidth: $B=1086-920=167 \mathrm{rad} / \mathrm{s}$.

$$
Q \text { factor } \approx \frac{\omega_{0}}{B}=\frac{1}{2 \zeta}=6 .(Q=\text { "Quality") }
$$

Power and Energy at Resonance

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at

Resonance

- Low Pass Filter

Resonance Peak for LP
filter

- Summary

Power and Energy at Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

Absorbed Power $=v(t) i(t)$:

$$
\begin{aligned}
& @ \omega=1000: Y=600 \\
& I_{R}=1, I_{L}=-6 j, I_{C}=+6 j
\end{aligned}
$$

Power and Energy at Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

Absorbed Power $=v(t) i(t)$:

$$
\begin{aligned}
& @ \omega=1000: Y=600 \\
& I_{R}=1, I_{L}=-6 j, I_{C}=+6 j
\end{aligned}
$$

Power and Energy at Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

Absorbed Power $=v(t) i(t)$:
P_{L} and P_{C} opposite and $\gg P_{R}$.

$$
\begin{aligned}
& @ \omega=1000: Y=600, \\
& I_{R}=1, I_{L}=-6 j, I_{C}=+6 j
\end{aligned}
$$

Power and Energy at Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

Absorbed Power $=v(t) i(t)$:
P_{L} and P_{C} opposite and $\gg P_{R}$.
Stored Energy $=\frac{1}{2} L i_{L}^{2}+\frac{1}{2} C y^{2}$:

$$
\begin{aligned}
& @ \omega=1000: Y=600 \\
& I_{R}=1, I_{L}=-6 j, I_{C}=+6 j
\end{aligned}
$$

Power and Energy at Resonance

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

Absorbed Power $=v(t) i(t)$:
P_{L} and P_{C} opposite and $\gg P_{R}$.
Stored Energy $=\frac{1}{2} L i_{L}^{2}+\frac{1}{2} C y^{2}$:

$$
\begin{aligned}
& @ \omega=1000: Y=600, \\
& I_{R}=1, I_{L}=-6 j, I_{C}=+6 j
\end{aligned}
$$

Power and Energy at Resonance

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

Absorbed Power $=v(t) i(t)$:
P_{L} and P_{C} opposite and $\gg P_{R}$.
Stored Energy $=\frac{1}{2} L i_{L}^{2}+\frac{1}{2} C y^{2}$:
sloshes between L and C.

$$
\begin{aligned}
& @ \omega=1000: Y=600 \\
& I_{R}=1, I_{L}=-6 j, I_{C}=+6 j
\end{aligned}
$$

Power and Energy at Resonance

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at

Resonance

- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

Absorbed Power $=v(t) i(t)$:
P_{L} and P_{C} opposite and $\gg P_{R}$.
Stored Energy $=\frac{1}{2} L i_{L}^{2}+\frac{1}{2} C y^{2}$:
sloshes between L and C.
$Q \triangleq \omega \times W_{\text {stored }} \div \bar{P}_{R}$

$$
\begin{aligned}
& @ \omega=1000: Y=600, \\
& I_{R}=1, I_{L}=-6 j, I_{C}=+6 j
\end{aligned}
$$

Power and Energy at Resonance

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at

Resonance

- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

Absorbed Power $=v(t) i(t)$:
P_{L} and P_{C} opposite and $\gg P_{R}$.
Stored Energy $=\frac{1}{2} L i_{L}^{2}+\frac{1}{2} C y^{2}$:
sloshes between L and C.
$Q \triangleq \omega \times W_{\text {stored }} \div \bar{P}_{R}$

$$
=\omega \times \frac{1}{2} C|I R|^{2} \div \frac{1}{2}|I|^{2} R=\omega R C
$$

$$
\begin{aligned}
& @ \omega=1000: Y=600, \\
& I_{R}=1, I_{L}=-6 j, I_{C}=+6 j
\end{aligned}
$$

Power and Energy at Resonance

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at

Resonance

- Low Pass Filter
- Resonance Peak for LP filter
- Summary

Absorbed Power $=v(t) i(t)$:
P_{L} and P_{C} opposite and $\gg P_{R}$.
Stored Energy $=\frac{1}{2} L i_{L}^{2}+\frac{1}{2} C y^{2}$:
sloshes between L and C.
$Q \triangleq \omega \times W_{\text {stored }} \div \bar{P}_{R}$

$$
=\omega \times \frac{1}{2} C|I R|^{2} \div \frac{1}{2}|I|^{2} R=\omega R C
$$

$$
\begin{aligned}
& @ \omega=1000: Y=600, \\
& I_{R}=1, I_{L}=-6 j, I_{C}=+6 j
\end{aligned}
$$

$Q \triangleq \omega \times$ peak stored energy \div average power loss.

Low Pass Filter

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at

Resonance

$$
\frac{Y}{X}=\frac{1 / j \omega C}{R+j \omega L+\frac{1}{j \omega C}}=\frac{1}{L C(j \omega)^{2}+R C j \omega+1}
$$

- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

Low Pass Filter

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance

$$
\frac{Y}{X}=\frac{1 / j \omega C}{R+j \omega L+\frac{1}{j \omega C}}=\frac{1}{L C(j \omega)^{2}+R C j \omega+1}
$$

Asymptotes: 1 and $\frac{1}{L C}(j \omega)^{-2}$.

- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

Low Pass Filter

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

$$
\frac{Y}{X}=\frac{1 / j \omega C}{R+j \omega L+\frac{1}{j \omega C}}=\frac{1}{L C(j \omega)^{2}+R C j \omega+1}
$$

Asymptotes: 1 and $\frac{1}{L C}(j \omega)^{-2}$.
$\omega_{c}=\sqrt{\frac{c}{a}}=1000, \zeta=\frac{b}{2 a \omega_{c}}=\frac{R}{200}$

Low Pass Filter

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

$$
\frac{Y}{X}=\frac{1 / j \omega C}{R+j \omega L+\frac{1}{j \omega C}}=\frac{1}{L C(j \omega)^{2}+R C j \omega+1}
$$

Asymptotes: 1 and $\frac{1}{L C}(j \omega)^{-2}$.
$\omega_{c}=\sqrt{\frac{c}{a}}=1000, \zeta=\frac{b}{2 a \omega_{c}}=\frac{R}{200}$

Low Pass Filter

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

$$
\frac{Y}{X}=\frac{1 / j \omega C}{R+j \omega L+\frac{1}{j \omega C}}=\frac{1}{L C(j \omega)^{2}+R C j \omega+1}
$$

Asymptotes: 1 and $\frac{1}{L C}(j \omega)^{-2}$.
$\omega_{c}=\sqrt{\frac{c}{a}}=1000, \zeta=\frac{b}{2 a \omega_{c}}=\frac{R}{200}$

$@ \omega_{c}: Z_{L}=-Z_{C}=100 j, I=\frac{X}{R},\left|\frac{Y}{X}\right|=\frac{1}{R C \omega}=\frac{1}{2 \zeta}, \angle \frac{Y}{X}=-\frac{\pi}{2}$

Low Pass Filter

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

$$
\frac{Y}{X}=\frac{1 / j \omega C}{R+j \omega L+\frac{1}{j \omega C}}=\frac{1}{L C(j \omega)^{2}+R C j \omega+1}
$$

Asymptotes: 1 and $\frac{1}{L C}(j \omega)^{-2}$.
$\omega_{c}=\sqrt{\frac{c}{a}}=1000, \zeta=\frac{b}{2 a \omega_{c}}=\frac{R}{200}$

$@ \omega_{c}: Z_{L}=-Z_{C}=100 j, I=\frac{X}{R},\left|\frac{Y}{X}\right|=\frac{1}{R C \omega}=\frac{1}{2 \zeta}, \angle \frac{Y}{X}=-\frac{\pi}{2}$
Magntitude Plot:

Low Pass Filter

12: Resonance

- Quadratic Factor
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary
$\frac{Y}{X}=\frac{1 / j \omega C}{R+j \omega L+\frac{1}{j \omega C}}=\frac{1}{L C(j \omega)^{2}+R C j \omega+1}$
Asymptotes: 1 and $\frac{1}{L C}(j \omega)^{-2}$.
$\omega_{c}=\sqrt{\frac{c}{a}}=1000, \zeta=\frac{b}{2 a \omega_{c}}=\frac{R}{200}$

$@ \omega_{c}: Z_{L}=-Z_{C}=100 j, I=\frac{X}{R},\left|\frac{Y}{X}\right|=\frac{1}{R C \omega}=\frac{1}{2 \zeta}, \angle \frac{Y}{X}=-\frac{\pi}{2}$
Magntitude Plot:
Small $\zeta \Rightarrow$ less loss, higher peak, smaller bandwidth.

Low Pass Filter

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary
$\frac{Y}{X}=\frac{1 / j \omega C}{R+j \omega L+\frac{1}{j \omega C}}=\frac{1}{L C(j \omega)^{2}+R C j \omega+1}$
Asymptotes: 1 and $\frac{1}{L C}(j \omega)^{-2}$.
$\omega_{c}=\sqrt{\frac{c}{a}}=1000, \zeta=\frac{b}{2 a \omega_{c}}=\frac{R}{200}$

$@ \omega_{c}: Z_{L}=-Z_{C}=100 j, I=\frac{X}{R},\left|\frac{Y}{X}\right|=\frac{1}{R C \omega}=\frac{1}{2 \zeta}, \angle \frac{Y}{X}=-\frac{\pi}{2}$
Magntitude Plot:
Small $\zeta \Rightarrow$ less loss, higher peak, smaller bandwidth.
Large ζ more loss, smaller peak at a lower ω, larger bandwidth.

Low Pass Filter

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary
$\frac{Y}{X}=\frac{1 / j \omega C}{R+j \omega L+\frac{1}{j \omega C}}=\frac{1}{L C(j \omega)^{2}+R C j \omega+1}$
Asymptotes: 1 and $\frac{1}{L C}(j \omega)^{-2}$.
$\omega_{c}=\sqrt{\frac{c}{a}}=1000, \zeta=\frac{b}{2 a \omega_{c}}=\frac{R}{200}$

$@ \omega_{c}: Z_{L}=-Z_{C}=100 j, I=\frac{X}{R},\left|\frac{Y}{X}\right|=\frac{1}{R C \omega}=\frac{1}{2 \zeta}, \angle \frac{Y}{X}=-\frac{\pi}{2}$
Magntitude Plot:
Small $\zeta \Rightarrow$ less loss, higher peak, smaller bandwidth.
Large ζ more loss, smaller peak at a lower ω, larger bandwidth.

Low Pass Filter

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary
$\frac{Y}{X}=\frac{1 / j \omega C}{R+j \omega L+\frac{1}{j \omega C}}=\frac{1}{L C(j \omega)^{2}+R C j \omega+1}$
Asymptotes: 1 and $\frac{1}{L C}(j \omega)^{-2}$.
$\omega_{c}=\sqrt{\frac{c}{a}}=1000, \zeta=\frac{b}{2 a \omega_{c}}=\frac{R}{200}$

$@ \omega_{c}: Z_{L}=-Z_{C}=100 j, I=\frac{X}{R},\left|\frac{Y}{X}\right|=\frac{1}{R C \omega}=\frac{1}{2 \zeta}, \angle \frac{Y}{X}=-\frac{\pi}{2}$
Magntitude Plot:
Small $\zeta \Rightarrow$ less loss, higher peak, smaller bandwidth.
Large ζ more loss, smaller peak at a lower ω, larger bandwidth.

Phase Plot:

Low Pass Filter

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary
$\frac{Y}{X}=\frac{1 / j \omega C}{R+j \omega L+\frac{1}{j \omega C}}=\frac{1}{L C(j \omega)^{2}+R C j \omega+1}$
Asymptotes: 1 and $\frac{1}{L C}(j \omega)^{-2}$.
$\omega_{c}=\sqrt{\frac{c}{a}}=1000, \zeta=\frac{b}{2 a \omega_{c}}=\frac{R}{200}$

$@ \omega_{c}: Z_{L}=-Z_{C}=100 j, I=\frac{X}{R},\left|\frac{Y}{X}\right|=\frac{1}{R C \omega}=\frac{1}{2 \zeta}, \angle \frac{Y}{X}=-\frac{\pi}{2}$
Magntitude Plot:
Small $\zeta \Rightarrow$ less loss, higher peak, smaller bandwidth.
Large ζ more loss, smaller peak at a lower ω, larger bandwidth.

Phase Plot:

Small $\zeta \Rightarrow$ fast phase change: π over 2ζ decades.

Low Pass Filter

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary
$\frac{Y}{X}=\frac{1 / j \omega C}{R+j \omega L+\frac{1}{j \omega C}}=\frac{1}{L C(j \omega)^{2}+R C j \omega+1}$
Asymptotes: 1 and $\frac{1}{L C}(j \omega)^{-2}$.
$\omega_{c}=\sqrt{\frac{c}{a}}=1000, \zeta=\frac{b}{2 a \omega_{c}}=\frac{R}{200}$

$@ \omega_{c}: Z_{L}=-Z_{C}=100 j, I=\frac{X}{R},\left|\frac{Y}{X}\right|=\frac{1}{R C \omega}=\frac{1}{2 \zeta}, \angle \frac{Y}{X}=-\frac{\pi}{2}$
Magntitude Plot:
Small $\zeta \Rightarrow$ less loss, higher peak, smaller bandwidth.
Large ζ more loss, smaller peak at a lower ω, larger bandwidth.

Phase Plot:

Small $\zeta \Rightarrow$ fast phase change: π over 2ζ decades.

Low Pass Filter

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary
$\frac{Y}{X}=\frac{1 / j \omega C}{R+j \omega L+\frac{1}{j \omega C}}=\frac{1}{L C(j \omega)^{2}+R C j \omega+1}$
Asymptotes: 1 and $\frac{1}{L C}(j \omega)^{-2}$.
$\omega_{c}=\sqrt{\frac{c}{a}}=1000, \zeta=\frac{b}{2 a \omega_{c}}=\frac{R}{200}$

$@ \omega_{c}: Z_{L}=-Z_{C}=100 j, I=\frac{X}{R},\left|\frac{Y}{X}\right|=\frac{1}{R C \omega}=\frac{1}{2 \zeta}, \angle \frac{Y}{X}=-\frac{\pi}{2}$
Magntitude Plot:
Small $\zeta \Rightarrow$ less loss, higher peak, smaller bandwidth.
Large ζ more loss, smaller peak at a lower ω, larger bandwidth.

Phase Plot:

Small $\zeta \Rightarrow$ fast phase change: π over 2ζ decades.

Low Pass Filter

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary
$\frac{Y}{X}=\frac{1 / j \omega C}{R+j \omega L+\frac{1}{j \omega C}}=\frac{1}{L C(j \omega)^{2}+R C j \omega+1}$
Asymptotes: 1 and $\frac{1}{L C}(j \omega)^{-2}$.
$\omega_{c}=\sqrt{\frac{c}{a}}=1000, \zeta=\frac{b}{2 a \omega_{c}}=\frac{R}{200}$

$@ \omega_{c}: Z_{L}=-Z_{C}=100 j, I=\frac{X}{R},\left|\frac{Y}{X}\right|=\frac{1}{R C \omega}=\frac{1}{2 \zeta}, \angle \frac{Y}{X}=-\frac{\pi}{2}$
Magntitude Plot:
Small $\zeta \Rightarrow$ less loss, higher peak, smaller bandwidth.
Large ζ more loss, smaller peak at a lower ω, larger bandwidth.

Phase Plot:

Small $\zeta \Rightarrow$ fast phase change: π over 2ζ decades.
$\angle \frac{Y}{X} \approx \frac{-\pi}{2}\left(1+\frac{1}{\zeta} \log _{10} \frac{\omega}{\omega_{c}}\right)$ for $10^{-\zeta}<\frac{\omega}{\omega_{c}}<10^{+\zeta}$

Resonance Peak for LP filter

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at

Resonance

- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

$$
\frac{Y}{X}=\frac{1}{L C(j \omega)^{2}+R C j \omega+1}
$$

Resonance Peak for LP filter

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at

Resonance

- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

$$
\frac{Y}{X}=\frac{1}{L C(j \omega)^{2}+R C j \omega+1}
$$

$$
\omega_{c}=\sqrt{\frac{c}{a}}=1000, \zeta=\frac{b}{2 a \omega_{c}}=\frac{b \omega_{c}}{2 c}=\frac{R}{200}
$$

Resonance Peak for LP filter

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at

Resonance

- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

$$
\begin{aligned}
& \frac{Y}{X}=\frac{1}{L C(j \omega)^{2}+R C j \omega+1}=\frac{1}{\left(j \frac{\omega}{\omega_{c}}\right)^{2}+2 \zeta j \frac{\omega}{\omega_{c}}+1} \\
& \omega_{c}=\sqrt{\frac{c}{a}}=1000, \zeta=\frac{b}{2 a \omega_{c}}=\frac{b \omega_{c}}{2 c}=\frac{R}{200}
\end{aligned}
$$

Resonance Peak for LP filter

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

$$
\begin{aligned}
& \frac{Y}{X}=\frac{1}{L C(j \omega)^{2}+R C j \omega+1}=\frac{1}{\left(j \frac{\omega}{\omega_{c}}\right)^{2}+2 \zeta j \frac{\omega}{\omega_{c}}+1} \\
& \omega_{c}=\sqrt{\frac{c}{a}}=1000, \zeta=\frac{b}{2 a \omega_{c}}=\frac{b \omega_{c}}{2 c}=\frac{R}{200}
\end{aligned}
$$

$\frac{Y}{X}$ is a function of $\frac{\omega}{\omega_{c}}$ so ω_{c} just scales frequency axis (= shift on log axis).

Resonance Peak for LP filter

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

$$
\begin{aligned}
& \frac{Y}{X}=\frac{1}{L C(j \omega)^{2}+R C j \omega+1}=\frac{1}{\left(j \frac{\omega}{\omega_{c}}\right)^{2}+2 \zeta j \frac{\omega}{\omega_{c}}+1} \\
& \omega_{c}=\sqrt{\frac{c}{a}}=1000, \zeta=\frac{b}{2 a \omega_{c}}=\frac{b \omega_{c}}{2 c}=\frac{R}{200}
\end{aligned}
$$

$\frac{Y}{X}$ is a function of $\frac{\omega}{\omega_{c}}$ so ω_{c} just scales frequency axis (= shift on log axis). The damping factor, ζ, ("zeta") determines the shape of the peak.

Resonance Peak for LP filter

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

$$
\begin{aligned}
& \frac{Y}{X}=\frac{1}{L C(j \omega)^{2}+R C j \omega+1}=\frac{1}{\left(j \frac{\omega}{\omega_{c}}\right)^{2}+2 \zeta j \frac{\omega}{\omega_{c}}+1} \\
& \omega_{c}=\sqrt{\frac{c}{a}}=1000, \zeta=\frac{b}{2 a \omega_{c}}=\frac{b \omega_{c}}{2 c}=\frac{R}{200}
\end{aligned}
$$

$\frac{Y}{X}$ is a function of $\frac{\omega}{\omega_{c}}$ so ω_{c} just scales frequency axis (= shift on log axis). The damping factor, ζ, ("zeta") determines the shape of the peak.

Peak frequency:

$$
\omega_{p}=\omega_{c} \sqrt{1-2 \zeta^{2}}
$$

Resonance Peak for LP filter

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

$$
\begin{aligned}
& \frac{Y}{X}=\frac{1}{L C(j \omega)^{2}+R C j \omega+1}=\frac{1}{\left(j \frac{\omega}{\omega_{c}}\right)^{2}+2 \zeta j \frac{\omega}{\omega_{c}}+1} \\
& \omega_{c}=\sqrt{\frac{c}{a}}=1000, \zeta=\frac{b}{2 a \omega_{c}}=\frac{b \omega_{c}}{2 c}=\frac{R}{200}
\end{aligned}
$$

$\frac{Y}{X}$ is a function of $\frac{\omega}{\omega_{c}}$ so ω_{c} just scales frequency axis (= shift on log axis). The damping factor, ζ, ("zeta") determines the shape of the peak.

Peak frequency:

$$
\omega_{p}=\omega_{c} \sqrt{1-2 \zeta^{2}}
$$

$$
\zeta \geq 0.71 \Rightarrow \text { no peak }
$$

Resonance Peak for LP filter

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

$$
\begin{aligned}
& \frac{Y}{X}=\frac{1}{L C(j \omega)^{2}+R C j \omega+1}=\frac{1}{\left(j \frac{\omega}{\omega_{c}}\right)^{2}+2 \zeta j \frac{\omega}{\omega_{c}}+1} \\
& \omega_{c}=\sqrt{\frac{c}{a}}=1000, \zeta=\frac{b}{2 a \omega_{c}}=\frac{b \omega_{c}}{2 c}=\frac{R}{200}
\end{aligned}
$$

$\frac{Y}{X}$ is a function of $\frac{\omega}{\omega_{c}}$ so ω_{c} just scales frequency axis (= shift on log axis). The damping factor, ζ, ("zeta") determines the shape of the peak.

Peak frequency:

$$
\omega_{p}=\omega_{c} \sqrt{1-2 \zeta^{2}}
$$

$$
\begin{aligned}
& \zeta \geq 0.71 \Rightarrow \text { no peak } \\
& \zeta \geq 1 \Rightarrow \text { can factorize }
\end{aligned}
$$

Resonance Peak for LP filter

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

$$
\begin{aligned}
& \frac{Y}{X}=\frac{1}{L C(j \omega)^{2}+R C j \omega+1}=\frac{1}{\left(j \frac{\omega}{\omega_{c}}\right)^{2}+2 \zeta j \frac{\omega}{\omega_{c}}+1} \\
& \omega_{c}=\sqrt{\frac{c}{a}}=1000, \zeta=\frac{b}{2 a \omega_{c}}=\frac{b \omega_{c}}{2 c}=\frac{R}{200}
\end{aligned}
$$

$\frac{Y}{X}$ is a function of $\frac{\omega}{\omega_{c}}$ so ω_{c} just scales frequency axis (= shift on log axis). The damping factor, ζ, ("zeta") determines the shape of the peak.

Peak frequency:

$$
\omega_{p}=\omega_{c} \sqrt{1-2 \zeta^{2}}
$$

$$
\begin{aligned}
& \zeta \geq 0.71 \Rightarrow \text { no peak, } \\
& \zeta \geq 1 \Rightarrow \text { can factorize }
\end{aligned}
$$

Gain relative to asymptote: @ $\omega_{p}: \frac{1}{2 \zeta \sqrt{1-\zeta^{2}}} \quad @ \omega_{c}: \frac{1}{2 \zeta} \approx Q$

Resonance Peak for LP filter

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

$$
\begin{aligned}
& \frac{Y}{X}=\frac{1}{L C(j \omega)^{2}+R C j \omega+1}=\frac{1}{\left(j \frac{\omega}{\omega_{c}}\right)^{2}+2 \zeta j \frac{\omega}{\omega_{c}}+1} \\
& \omega_{c}=\sqrt{\frac{c}{a}}=1000, \zeta=\frac{b}{2 a \omega_{c}}=\frac{b \omega_{c}}{2 c}=\frac{R}{200}
\end{aligned}
$$

$\frac{Y}{X}$ is a function of $\frac{\omega}{\omega_{c}}$ so ω_{c} just scales frequency axis (= shift on log axis). The damping factor, ζ, ("zeta") determines the shape of the peak.

Peak frequency:

$$
\omega_{p}=\omega_{c} \sqrt{1-2 \zeta^{2}}
$$

$$
\begin{aligned}
& \zeta \geq 0.71 \Rightarrow \text { no peak, } \\
& \zeta \geq 1 \Rightarrow \text { can factorize }
\end{aligned}
$$

Gain relative to asymptote: $@ \omega_{p}: \frac{1}{2 \zeta \sqrt{1-\zeta^{2}}} @ \omega_{c}: \frac{1}{2 \zeta} \approx Q$

Resonance Peak for LP filter

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

$$
\begin{aligned}
& \frac{Y}{X}=\frac{1}{L C(j \omega)^{2}+R C j \omega+1}=\frac{1}{\left(j \frac{\omega}{\omega_{c}}\right)^{2}+2 \zeta j \frac{\omega}{\omega_{c}}+1} \\
& \omega_{c}=\sqrt{\frac{c}{a}}=1000, \zeta=\frac{b}{2 a \omega_{c}}=\frac{b \omega_{c}}{2 c}=\frac{R}{200}
\end{aligned}
$$

$\frac{Y}{X}$ is a function of $\frac{\omega}{\omega_{c}}$ so ω_{c} just scales frequency axis (= shift on log axis). The damping factor, ζ, ("zeta") determines the shape of the peak.

Peak frequency:

$$
\omega_{p}=\omega_{c} \sqrt{1-2 \zeta^{2}}
$$

$$
\begin{aligned}
& \zeta \geq 0.71 \Rightarrow \text { no peak, } \\
& \zeta \geq 1 \Rightarrow \text { can factorize }
\end{aligned}
$$

Gain relative to asymptote: @ $\omega_{p}: \frac{1}{2 \zeta \sqrt{1-\zeta^{2}}} \quad @ \omega_{c}: \frac{1}{2 \zeta} \approx Q$

Resonance Peak for LP filter

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

$$
\begin{aligned}
& \frac{Y}{X}=\frac{1}{L C(j \omega)^{2}+R C j \omega+1}=\frac{1}{\left(j \frac{\omega}{\omega_{c}}\right)^{2}+2 \zeta j \frac{\omega}{\omega_{c}}+1} \\
& \omega_{c}=\sqrt{\frac{c}{a}}=1000, \quad \zeta=\frac{b}{2 a \omega_{c}}=\frac{b \omega_{c}}{2 c}=\frac{R}{200}
\end{aligned}
$$

$\frac{Y}{X}$ is a function of $\frac{\omega}{\omega_{c}}$ so ω_{c} just scales frequency axis (= shift on log axis). The damping factor, ζ, ("zeta") determines the shape of the peak.

Peak frequency:

$$
\omega_{p}=\omega_{c} \sqrt{1-2 \zeta^{2}}
$$

$$
\zeta \geq 0.5 \Rightarrow \text { passes under corner }
$$

$$
\zeta \geq 0.71 \Rightarrow \text { no peak }
$$

$$
\zeta \geq 1 \Rightarrow \text { can factorize }
$$

Gain relative to asymptote: @ $\omega_{p}: \frac{1}{2 \zeta \sqrt{1-\zeta^{2}}} \quad @ \omega_{c}: \frac{1}{2 \zeta} \approx Q$

Resonance Peak for LP filter

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

$$
\begin{aligned}
& \frac{Y}{X}=\frac{1}{L C(j \omega)^{2}+R C j \omega+1}=\frac{1}{\left(j \frac{\omega}{\omega_{c}}\right)^{2}+2 \zeta j \frac{\omega}{\omega_{c}}+1} \\
& \omega_{c}=\sqrt{\frac{c}{a}}=1000, \zeta=\frac{b}{2 a \omega_{c}}=\frac{b \omega_{c}}{2 c}=\frac{R}{200}
\end{aligned}
$$

$\frac{Y}{X}$ is a function of $\frac{\omega}{\omega_{c}}$ so ω_{c} just scales frequency axis (= shift on log axis). The damping factor, ζ, ("zeta") determines the shape of the peak.

Peak frequency:

$$
\omega_{p}=\omega_{c} \sqrt{1-2 \zeta^{2}}
$$

$\zeta \geq 0.5 \Rightarrow$ passes under corner,
$\zeta \geq 0.71 \Rightarrow$ no peak,
$\zeta \geq 1 \Rightarrow$ can factorize
(
Gain relative to asymptote:
$@ \omega_{p}: \frac{1}{2 \zeta \sqrt{1-\zeta^{2}}}$
$@ \omega_{c}: \frac{1}{2 \zeta} \approx Q$
Three frequencies: $\omega_{p}=$ peak, $\omega_{c}=$ asymptotes cross, $\omega_{r}=$ real impedance For $\zeta<0.3, \omega_{p} \approx \omega_{c} \approx \omega_{r}$. All get called the resonant frequency.

Resonance Peak for LP filter

12: Resonance

- Quadratic Factor
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary

$$
\begin{aligned}
& \frac{Y}{X}=\frac{1}{L C(j \omega)^{2}+R C j \omega+1}=\frac{1}{\left(j \frac{\omega}{\omega_{c}}\right)^{2}+2 \zeta j \frac{\omega}{\omega_{c}}+1} \\
& \omega_{c}=\sqrt{\frac{c}{a}}=1000, \zeta=\frac{b}{2 a \omega_{c}}=\frac{b \omega_{c}}{2 c}=\frac{R}{200}
\end{aligned}
$$

$\frac{Y}{X}$ is a function of $\frac{\omega}{\omega_{c}}$ so ω_{c} just scales frequency axis (= shift on log axis). The damping factor, ζ, ("zeta") determines the shape of the peak.

Peak frequency:

$$
\omega_{p}=\omega_{c} \sqrt{1-2 \zeta^{2}}
$$

$\zeta \geq 0.5 \Rightarrow$ passes under corner,
$\zeta \geq 0.71 \Rightarrow$ no peak,
$\zeta \geq 1 \Rightarrow$ can factorize

Gain relative to asymptote:

$$
@ \omega_{p}: \frac{1}{2 \zeta \sqrt{1-\zeta^{2}}}
$$

$$
@ \omega_{c}: \frac{1}{2 \zeta} \approx Q
$$

Three frequencies: $\omega_{p}=$ peak, $\omega_{c}=$ asymptotes cross, $\omega_{r}=$ real impedance For $\zeta<0.3, \omega_{p} \approx \omega_{c} \approx \omega_{r}$. All get called the resonant frequency.
The exact relationship between ω_{p}, ω_{c} and ω_{r} and the gain at these frequencies is affected by any other corner frequencies in the response.

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at

Resonance

- Low Pass Filter
- Resonance Peak for LP
filter
- Summary
- Resonance is a peak in energy absorption

Summary

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary
- Resonance is a peak in energy absorption
- Parallel or series circuit has a real impedance at ω_{r} \triangleright peak response may be at a slightly different frequency

Summary

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary
- Resonance is a peak in energy absorption
- Parallel or series circuit has a real impedance at ω_{r} \triangleright peak response may be at a slightly different frequency
- The quality factor, Q, of the resonance is

$$
Q \triangleq \frac{\omega_{0} \times \text { stored energy }}{\text { power in } R} \approx \frac{\omega_{0}}{3 \mathrm{~dB} \text { bandwidth }} \approx \frac{1}{2 \zeta}
$$

Summary

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary
- Resonance is a peak in energy absorption
- Parallel or series circuit has a real impedance at ω_{r}
\triangleright peak response may be at a slightly different frequency
- The quality factor, Q, of the resonance is

$$
Q \triangleq \frac{\omega_{0} \times \text { stored energy }}{\text { power in } R} \approx \frac{\omega_{0}}{3 \mathrm{~dB} \text { bandwidth }} \approx \frac{1}{2 \zeta}
$$

- 3 dB bandwidth is where power falls by $\frac{1}{2}$ or voltage by $\frac{1}{\sqrt{2}}$

Summary

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary
- Resonance is a peak in energy absorption
- Parallel or series circuit has a real impedance at ω_{r}
\triangleright peak response may be at a slightly different frequency
- The quality factor, Q, of the resonance is

$$
Q \triangleq \frac{\omega_{0} \times \text { stored energy }}{\text { power in } R} \approx \frac{\omega_{0}}{3 \mathrm{~dB} \text { bandwidth }} \approx \frac{1}{2 \zeta}
$$

- 3 dB bandwidth is where power falls by $\frac{1}{2}$ or voltage by $\frac{1}{\sqrt{2}}$
- The stored energy sloshes between L and C

Summary

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary
- Resonance is a peak in energy absorption
- Parallel or series circuit has a real impedance at ω_{r}
\triangleright peak response may be at a slightly different frequency
- The quality factor, Q, of the resonance is

$$
Q \triangleq \frac{\omega_{0} \times \text { stored energy }}{\text { power in } R} \approx \frac{\omega_{0}}{3 \mathrm{~dB} \text { bandwidth }} \approx \frac{1}{2 \zeta}
$$

- 3 dB bandwidth is where power falls by $\frac{1}{2}$ or voltage by $\frac{1}{\sqrt{2}}$
- The stored energy sloshes between L and C
- Quadratic factor: $\left(\frac{j \omega}{\omega_{c}}\right)^{2}+2 \zeta\left(\frac{j \omega}{\omega_{c}}\right)+1$

Summary

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary
- Resonance is a peak in energy absorption
- Parallel or series circuit has a real impedance at ω_{r}
\triangleright peak response may be at a slightly different frequency
- The quality factor, Q, of the resonance is

$$
Q \triangleq \frac{\omega_{0} \times \text { stored energy }}{\text { power in } R} \approx \frac{\omega_{0}}{3 \mathrm{~dB} \text { bandwidth }} \approx \frac{1}{2 \zeta}
$$

- 3 dB bandwidth is where power falls by $\frac{1}{2}$ or voltage by $\frac{1}{\sqrt{2}}$
- The stored energy sloshes between L and C
- Quadratic factor: $\left(\frac{j \omega}{\omega_{c}}\right)^{2}+2 \zeta\left(\frac{j \omega}{\omega_{c}}\right)+1$

$$
\text { - } a(j \omega)^{2}+b(j \omega)+c \Rightarrow \omega_{c}=\sqrt{\frac{c}{a}} \text { and } \zeta=\frac{b}{2 a \omega_{c}}=\frac{b \operatorname{sgn}(a)}{\sqrt{4 a c}}
$$

Summary

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary
- Resonance is a peak in energy absorption
- Parallel or series circuit has a real impedance at ω_{r}
\triangleright peak response may be at a slightly different frequency
- The quality factor, Q, of the resonance is

$$
Q \triangleq \frac{\omega_{0} \times \text { stored energy }}{\text { power in } R} \approx \frac{\omega_{0}}{3 \mathrm{~dB} \text { bandwidth }} \approx \frac{1}{2 \zeta}
$$

- 3 dB bandwidth is where power falls by $\frac{1}{2}$ or voltage by $\frac{1}{\sqrt{2}}$
- The stored energy sloshes between L and C
- Quadratic factor: $\left(\frac{j \omega}{\omega_{c}}\right)^{2}+2 \zeta\left(\frac{j \omega}{\omega_{c}}\right)+1$
- $a(j \omega)^{2}+b(j \omega)+c \Rightarrow \omega_{c}=\sqrt{\frac{c}{a}}$ and $\zeta=\frac{b}{2 a \omega_{c}}=\frac{b \operatorname{sgn}(a)}{\sqrt{4 a c}}$
- $\pm 40 \mathrm{~dB} /$ decade slope change in magnitude response

Summary

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary
- Resonance is a peak in energy absorption
- Parallel or series circuit has a real impedance at ω_{r}
\triangleright peak response may be at a slightly different frequency
- The quality factor, Q, of the resonance is

$$
Q \triangleq \frac{\omega_{0} \times \text { stored energy }}{\text { power in } R} \approx \frac{\omega_{0}}{3 \mathrm{~dB} \text { bandwidth }} \approx \frac{1}{2 \zeta}
$$

- 3 dB bandwidth is where power falls by $\frac{1}{2}$ or voltage by $\frac{1}{\sqrt{2}}$
- The stored energy sloshes between L and C
- Quadratic factor: $\left(\frac{j \omega}{\omega_{c}}\right)^{2}+2 \zeta\left(\frac{j \omega}{\omega_{c}}\right)+1$
- $a(j \omega)^{2}+b(j \omega)+c \Rightarrow \omega_{c}=\sqrt{\frac{c}{a}}$ and $\zeta=\frac{b}{2 a \omega_{c}}=\frac{b \operatorname{sgn}(a)}{\sqrt{4 a c}}$
- $\pm 40 \mathrm{~dB} /$ decade slope change in magnitude response
- phase changes rapidly by 180° over $\omega=10^{\mp \zeta} \omega_{c}$

Summary

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary
- Resonance is a peak in energy absorption
- Parallel or series circuit has a real impedance at ω_{r}
\triangleright peak response may be at a slightly different frequency
- The quality factor, Q, of the resonance is

$$
Q \triangleq \frac{\omega_{0} \times \text { stored energy }}{\text { power in } R} \approx \frac{\omega_{0}}{3 \mathrm{~dB} \text { bandwidth }} \approx \frac{1}{2 \zeta}
$$

- 3 dB bandwidth is where power falls by $\frac{1}{2}$ or voltage by $\frac{1}{\sqrt{2}}$
- The stored energy sloshes between L and C
- Quadratic factor: $\left(\frac{j \omega}{\omega_{c}}\right)^{2}+2 \zeta\left(\frac{j \omega}{\omega_{c}}\right)+1$
- $a(j \omega)^{2}+b(j \omega)+c \Rightarrow \omega_{c}=\sqrt{\frac{c}{a}}$ and $\zeta=\frac{b}{2 a \omega_{c}}=\frac{b \operatorname{sgn}(a)}{\sqrt{4 a c}}$
- $\pm 40 \mathrm{~dB} /$ decade slope change in magnitude response
- phase changes rapidly by 180° over $\omega=10^{\mp \zeta} \omega_{c}$
- Gain error in asymptote is $\frac{1}{2 \zeta} \approx Q$ at ω_{0}

Summary

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at Resonance
- Low Pass Filter
- Resonance Peak for LP
filter
- Summary
- Resonance is a peak in energy absorption
- Parallel or series circuit has a real impedance at ω_{r}
\triangleright peak response may be at a slightly different frequency
- The quality factor, Q, of the resonance is

$$
Q \triangleq \frac{\omega_{0} \times \text { stored energy }}{\text { power in } R} \approx \frac{\omega_{0}}{3 \mathrm{~dB} \text { bandwidth }} \approx \frac{1}{2 \zeta}
$$

- 3 dB bandwidth is where power falls by $\frac{1}{2}$ or voltage by $\frac{1}{\sqrt{2}}$
- The stored energy sloshes between L and C
- Quadratic factor: $\left(\frac{j \omega}{\omega_{c}}\right)^{2}+2 \zeta\left(\frac{j \omega}{\omega_{c}}\right)+1$
- $a(j \omega)^{2}+b(j \omega)+c \Rightarrow \omega_{c}=\sqrt{\frac{c}{a}}$ and $\zeta=\frac{b}{2 a \omega_{c}}=\frac{b \operatorname{sgn}(a)}{\sqrt{4 a c}}$
- $\pm 40 \mathrm{~dB} /$ decade slope change in magnitude response
- phase changes rapidly by 180° over $\omega=10^{\mp \zeta} \omega_{c}$
- Gain error in asymptote is $\frac{1}{2 \zeta} \approx Q$ at ω_{0}

For further details see Hayt Ch 16 or Irwin Ch 12.

