12: Resonance

- Quadratic Factors
- Damping Factor and Q

+

+

- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

12: Resonance

12: Resonance

- Quadratic Factors
- Damping Factor and Q

÷

+

- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass FilterResonance Peak for LP

filter

• Summary

A quadratic factor in a transfer function is: $F(j\omega) = a (j\omega)^2 + b (j\omega) + c$.

12: Resonance

- Quadratic Factors
- Damping Factor and Q

÷

- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

A quadratic factor in a transfer function is: $F(j\omega) = a (j\omega)^2 + b (j\omega) + c$.

$$F(j\omega) = a(j\omega - p_1)(j\omega - p_2)$$

12: Resonance

- Quadratic Factors
- Damping Factor and Q

÷

- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

A quadratic factor in a transfer function is: $F(j\omega) = a (j\omega)^2 + b (j\omega) + c$.

$$F(j\omega) = a(j\omega - p_1)(j\omega - p_2)$$

where
$$p_i = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
.

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

A quadratic factor in a transfer function is: $F(j\omega) = a (j\omega)^2 + b (j\omega) + c$.

$$F(j\omega) = a(j\omega - p_1)(j\omega - p_2)$$

where
$$p_i = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
.

$$\frac{Y}{X}(j\omega) = \frac{1}{6R^2C^2(j\omega)^2 + 7RCj\omega + 1}$$

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

A quadratic factor in a transfer function is: $F(j\omega) = a (j\omega)^2 + b (j\omega) + c$.

-

$$F(j\omega) = a(j\omega - p_1)(j\omega - p_2)$$

where
$$p_i = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
.

$$\frac{Y}{X}(j\omega) = \frac{1}{6R^2C^2(j\omega)^2 + 7RCj\omega + 1}$$
$$= \frac{1}{(6j\omega RC + 1)(j\omega RC + 1)}$$

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

A quadratic factor in a transfer function is: $F(j\omega) = a (j\omega)^2 + b (j\omega) + c$.

$$F(j\omega) = a(j\omega - p_1)(j\omega - p_2)$$

where
$$p_i = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
.

$$\frac{Y}{X}(j\omega) = \frac{1}{6R^2C^2(j\omega)^2 + 7RCj\omega + 1}$$
$$= \frac{1}{(6j\omega RC + 1)(j\omega RC + 1)}$$
$$\omega_c = \frac{0.17}{RC}, \ \frac{1}{RC}$$

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

A quadratic factor in a transfer function is: $F(j\omega) = a (j\omega)^2 + b (j\omega) + c$.

Case 1: If $b^2 \ge 4ac$ then we can factorize it:

$$F(j\omega) = a(j\omega - p_1)(j\omega - p_2)$$

where
$$p_i = rac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

2R

 X_{-1}

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

A quadratic factor in a transfer function is: $F(j\omega) = a (j\omega)^2 + b (j\omega) + c$.

 $\frac{Y}{X}$

$$F(j\omega) = a(j\omega - p_1)(j\omega - p_2)$$

where
$$p_i = rac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
.

$$(j\omega) = \frac{1}{6R^2C^2(j\omega)^2 + 7RCj\omega + 1}$$

= $\frac{1}{(6j\omega RC + 1)(j\omega RC + 1)}$
 $\omega_c = \frac{0.17}{RC}, \ \frac{1}{RC} = |p_1|, \ |p_2|$

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

A quadratic factor in a transfer function is: $F(j\omega) = a (j\omega)^2 + b (j\omega) + c$.

Case 1: If $b^2 \ge 4ac$ then we can factorize it:

$$F(j\omega) = a(j\omega - p_1)(j\omega - p_2)$$

where
$$p_i = rac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

$$(j\omega) = \frac{1}{6R^2C^2(j\omega)^2 + 7RCj\omega + 1}$$

= $\frac{1}{(6j\omega RC + 1)(j\omega RC + 1)}$
 $\omega_c = \frac{0.17}{RC}, \ \frac{1}{RC} = |p_1|, \ |p_2|$

Case 2: If $b^2 < 4ac$, we cannot factorize with real coefficients so we leave it as a quadratic.

 $\frac{Y}{X}$

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

A quadratic factor in a transfer function is: $F(j\omega) = a (j\omega)^2 + b (j\omega) + c$.

Case 1: If $b^2 \ge 4ac$ then we can factorize it:

$$F(j\omega) = a(j\omega - p_1)(j\omega - p_2)$$

where
$$p_i = rac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

$$(j\omega) = \frac{1}{6R^2C^2(j\omega)^2 + 7RCj\omega + 1}$$

= $\frac{1}{(6j\omega RC + 1)(j\omega RC + 1)}$
 $\omega_c = \frac{0.17}{RC}, \ \frac{1}{RC} = |p_1|, \ |p_2|$

Case 2: If $b^2 < 4ac$, we cannot factorize with real coefficients so we leave it as a quadratic. Sometimes called a *quadratic resonance*.

 $\frac{Y}{X}$

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

A quadratic factor in a transfer function is: $F(j\omega) = a (j\omega)^2 + b (j\omega) + c$.

Case 1: If $b^2 \ge 4ac$ then we can factorize it:

$$F(j\omega) = a(j\omega - p_1)(j\omega - p_2)$$

where
$$p_i = rac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

$$(j\omega) = \frac{1}{6R^2C^2(j\omega)^2 + 7RCj\omega + 1}$$

= $\frac{1}{(6j\omega RC + 1)(j\omega RC + 1)}$
 $\omega_c = \frac{0.17}{RC}, \ \frac{1}{RC} = |p_1|, \ |p_2|$

Case 2: If $b^2 < 4ac$, we cannot factorize with real coefficients so we leave it as a quadratic. Sometimes called a *quadratic resonance*.

 $\frac{Y}{X}$

Any polynomial with real coefficients can be factored into linear and quadratic factors

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

A quadratic factor in a transfer function is: $F(j\omega) = a (j\omega)^2 + b (j\omega) + c$.

Case 1: If $b^2 \ge 4ac$ then we can factorize it:

$$F(j\omega) = a(j\omega - p_1)(j\omega - p_2)$$

where
$$p_i = rac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
.

$$\frac{Y}{X}(j\omega) = \frac{1}{6R^2C^2(j\omega)^2 + 7RCj\omega + 1} \\ = \frac{1}{(6j\omega RC + 1)(j\omega RC + 1)} \\ \omega_c = \frac{0.17}{RC}, \ \frac{1}{RC} = |p_1|, \ |p_2|$$

Case 2: If $b^2 < 4ac$, we cannot factorize with real coefficients so we leave it as a quadratic. Sometimes called a *quadratic resonance*.

Any polynomial with real coefficients can be factored into linear and quadratic factors \Rightarrow a quadratic factor is as complicated as it gets.

12: Resonance

- Quadratic Factors
- Damping Factor and Q

+

+

- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass FilterResonance Peak for LP

filter

• Summary

Suppose $b^2 < 4ac$ in $F(j\omega) = a(j\omega)^2 + b(j\omega) + c$.

12: Resonance

- Quadratic Factors
- Damping Factor and Q

÷

+

- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

Suppose $b^2 < 4ac$ in $F(j\omega) = a (j\omega)^2 + b (j\omega) + c$.

Low/High freq asymptotes:

12: Resonance

- Quadratic Factors
- Damping Factor and Q

+

- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

Suppose $b^2 < 4ac$ in $F(j\omega) = a (j\omega)^2 + b (j\omega) + c$.

Low/High freq asymptotes: $F_{\rm LF}(j\omega)=c$

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter

+

• Summary

Suppose $b^2 < 4ac$ in $F(j\omega) = a (j\omega)^2 + b (j\omega) + c$.

Low/High freq asymptotes: $F_{\rm LF}(j\omega) = c$, $F_{\rm HF}(j\omega) = a (j\omega)^2$

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

Suppose $b^2 < 4ac$ in $F(j\omega) = a(j\omega)^2 + b(j\omega) + c$.

Low/High freq asymptotes: $F_{\rm LF}(j\omega) = c$, $F_{\rm HF}(j\omega) = a (j\omega)^2$

The asymptote magnitudes cross at the *corner frequency*:

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

Suppose $b^2 < 4ac$ in $F(j\omega) = a(j\omega)^2 + b(j\omega) + c$.

Low/High freq asymptotes: $F_{\rm LF}(j\omega) = c$, $F_{\rm HF}(j\omega) = a (j\omega)^2$

The asymptote magnitudes cross at the *corner frequency*:

$$\left|a\left(j\omega_{c}\right)^{2}\right| = \left|c\right| \Rightarrow \omega_{c} = \sqrt{\frac{c}{a}}.$$

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

Suppose $b^2 < 4ac$ in $F(j\omega) = a(j\omega)^2 + b(j\omega) + c$. Low/High freq asymptotes: $F_{\rm LF}(j\omega) = c$, $F_{\rm HF}(j\omega) = a(j\omega)^2$ The asymptote magnitudes cross at the *corner frequency*: $\left|a(j\omega_c)^2\right| = |c| \Rightarrow \omega_c = \sqrt{\frac{c}{a}}.$

We define the *damping factor*, "zeta", to be $\zeta = rac{b}{2a\omega_c}$

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

Suppose $b^2 < 4ac$ in $F(j\omega) = a (j\omega)^2 + b (j\omega) + c$.

Low/High freq asymptotes: $F_{\rm LF}(j\omega) = c$, $F_{\rm HF}(j\omega) = a (j\omega)^2$

The asymptote magnitudes cross at the *corner frequency*: $\left|a\left(j\omega_{c}\right)^{2}\right| = |c| \Rightarrow \omega_{c} = \sqrt{\frac{c}{a}}.$

We define the *damping factor*, "zeta", to be $\zeta = \frac{b}{2a\omega_c} = \frac{b\omega_c}{2c} = \frac{b \operatorname{sgn}(a)}{\sqrt{4ac}}$

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

Suppose $b^2 < 4ac$ in $F(j\omega) = a (j\omega)^2 + b (j\omega) + c$. Low/High freq asymptotes: $F_{\rm LF}(j\omega) = c$, $F_{\rm HF}(j\omega) = a (j\omega)^2$

The asymptote magnitudes cross at the *corner frequency*: $\left|a\left(j\omega_{c}\right)^{2}\right| = |c| \Rightarrow \omega_{c} = \sqrt{\frac{c}{a}}.$

We define the damping factor, "zeta", to be $\zeta = \frac{b}{2a\omega_c} = \frac{b\omega_c}{2c} = \frac{b \operatorname{sgn}(a)}{\sqrt{4ac}}$ $\Rightarrow F(j\omega) = c \left(\left(j \frac{\omega}{\omega_c} \right)^2 + 2\zeta \left(j \frac{\omega}{\omega_c} \right) + 1 \right)$

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

Suppose $b^2 < 4ac$ in $F(j\omega) = a (j\omega)^2 + b (j\omega) + c$.

Low/High freq asymptotes: $F_{\rm LF}(j\omega) = c$, $F_{\rm HF}(j\omega) = a (j\omega)^2$

The asymptote magnitudes cross at the *corner frequency*: $\left|a\left(j\omega_{c}\right)^{2}\right| = |c| \Rightarrow \omega_{c} = \sqrt{\frac{c}{a}}.$

We define the *damping factor*, "zeta", to be $\zeta = \frac{b}{2a\omega_c} = \frac{b\omega_c}{2c} = \frac{b \operatorname{sgn}(a)}{\sqrt{4ac}}$ $\Rightarrow F(j\omega) = c \left(\left(j \frac{\omega}{\omega_c} \right)^2 + 2\zeta \left(j \frac{\omega}{\omega_c} \right) + 1 \right)$

Properties to notice in this expression:

(a) c is just an overall scale factor.

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

Suppose $b^2 < 4ac$ in $F(j\omega) = a (j\omega)^2 + b (j\omega) + c$.

Low/High freq asymptotes: $F_{\rm LF}(j\omega) = c$, $F_{\rm HF}(j\omega) = a (j\omega)^2$

The asymptote magnitudes cross at the *corner frequency*: $\left|a\left(j\omega_{c}\right)^{2}\right| = |c| \Rightarrow \omega_{c} = \sqrt{\frac{c}{a}}.$

We define the *damping factor*, "zeta", to be $\zeta = \frac{b}{2a\omega_c} = \frac{b\omega_c}{2c} = \frac{b \operatorname{sgn}(a)}{\sqrt{4ac}}$ $\Rightarrow F(j\omega) = c \left(\left(j \frac{\omega}{\omega_c} \right)^2 + 2\zeta \left(j \frac{\omega}{\omega_c} \right) + 1 \right)$

- (a) c is just an overall scale factor.
- (b) ω_c just scales the frequency axis since $F(j\omega)$ is a function of $\frac{\omega}{\omega_c}$.

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

Suppose $b^2 < 4ac$ in $F(j\omega) = a (j\omega)^2 + b (j\omega) + c$.

Low/High freq asymptotes: $F_{\rm LF}(j\omega) = c$, $F_{\rm HF}(j\omega) = a (j\omega)^2$

The asymptote magnitudes cross at the *corner frequency*:

$$\left|a\left(j\omega_{c}\right)^{2}\right| = \left|c\right| \Rightarrow \omega_{c} = \sqrt{\frac{c}{a}}.$$

We define the damping factor, "zeta", to be $\zeta = \frac{b}{2a\omega_c} = \frac{b\omega_c}{2c} = \frac{b \sin(a)}{\sqrt{4ac}}$ $\Rightarrow F(j\omega) = c \left(\left(j \frac{\omega}{\omega_c} \right)^2 + 2\zeta \left(j \frac{\omega}{\omega_c} \right) + 1 \right)$

- (a) c is just an overall scale factor.
- (b) ω_c just scales the frequency axis since $F(j\omega)$ is a function of $\frac{\omega}{\omega_c}$.
- (c) The shape of the $F(j\omega)$ graphs is determined entirely by ζ .

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

Suppose $b^2 < 4ac$ in $F(j\omega) = a(j\omega)^2 + b(j\omega) + c$.

Low/High freq asymptotes: $F_{\rm LF}(j\omega) = c$, $F_{\rm HF}(j\omega) = a (j\omega)^2$

The asymptote magnitudes cross at the *corner frequency*:

$$\left|a\left(j\omega_{c}\right)^{2}\right| = \left|c\right| \Rightarrow \omega_{c} = \sqrt{\frac{c}{a}}.$$

We define the damping factor, "zeta", to be $\zeta = \frac{b}{2a\omega_c} = \frac{b\omega_c}{2c} = \frac{b \sin(a)}{\sqrt{4ac}}$ $\Rightarrow F(j\omega) = c \left(\left(j \frac{\omega}{\omega_c} \right)^2 + 2\zeta \left(j \frac{\omega}{\omega_c} \right) + 1 \right)$

- (a) c is just an overall scale factor.
- (b) ω_c just scales the frequency axis since $F(j\omega)$ is a function of $\frac{\omega}{\omega_c}$.
- (c) The shape of the $F(j\omega)$ graphs is determined entirely by ζ .
- (d) The quadratic cannot be factorized $\Leftrightarrow b^2 < 4ac \Leftrightarrow |\zeta| < 1$.

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

Suppose $b^2 < 4ac$ in $F(j\omega) = a(j\omega)^2 + b(j\omega) + c$.

Low/High freq asymptotes: $F_{\rm LF}(j\omega) = c$, $F_{\rm HF}(j\omega) = a (j\omega)^2$

The asymptote magnitudes cross at the *corner frequency*:

$$\left|a\left(j\omega_{c}\right)^{2}\right| = \left|c\right| \Rightarrow \omega_{c} = \sqrt{\frac{c}{a}}.$$

We define the damping factor, "zeta", to be $\zeta = \frac{b}{2a\omega_c} = \frac{b\omega_c}{2c} = \frac{b \sin(a)}{\sqrt{4ac}}$ $\Rightarrow F(j\omega) = c \left(\left(j \frac{\omega}{\omega_c} \right)^2 + 2\zeta \left(j \frac{\omega}{\omega_c} \right) + 1 \right)$

- (a) c is just an overall scale factor.
- (b) ω_c just scales the frequency axis since $F(j\omega)$ is a function of $\frac{\omega}{\omega_c}$.
- (c) The shape of the $F(j\omega)$ graphs is determined entirely by ζ .
- (d) The quadratic cannot be factorized $\Leftrightarrow b^2 < 4ac \Leftrightarrow |\zeta| < 1$.
- (e) At $\omega = \omega_c$, asymptote gain = c but $F(j\omega) = c \times 2j\zeta$.

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

Suppose $b^2 < 4ac$ in $F(j\omega) = a (j\omega)^2 + b (j\omega) + c$.

Low/High freq asymptotes: $F_{\rm LF}(j\omega) = c$, $F_{\rm HF}(j\omega) = a (j\omega)^2$

The asymptote magnitudes cross at the *corner frequency*:

$$\left|a\left(j\omega_{c}\right)^{2}\right| = \left|c\right| \Rightarrow \omega_{c} = \sqrt{\frac{c}{a}}.$$

We define the damping factor, "zeta", to be $\zeta = \frac{b}{2a\omega_c} = \frac{b\omega_c}{2c} = \frac{b \sin(a)}{\sqrt{4ac}}$ $\Rightarrow F(j\omega) = c \left(\left(j \frac{\omega}{\omega_c} \right)^2 + 2\zeta \left(j \frac{\omega}{\omega_c} \right) + 1 \right)$

Properties to notice in this expression:

- (a) c is just an overall scale factor.
- (b) ω_c just scales the frequency axis since $F(j\omega)$ is a function of $\frac{\omega}{\omega_c}$.
- (c) The shape of the $F(j\omega)$ graphs is determined entirely by ζ .
- (d) The quadratic cannot be factorized $\Leftrightarrow b^2 < 4ac \Leftrightarrow |\zeta| < 1$.
- (e) At $\omega = \omega_c$, asymptote gain = c but $F(j\omega) = c \times 2j\zeta$.

Alternatively, we sometimes use the *quality factor*, $Q \approx \frac{1}{2\zeta} = \frac{a\omega_c}{b}$.

12: Resonance

- Quadratic Factors
- Damping Factor and Q

+

+

- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP

filter

• Summary

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at

+

- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at

+

- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

Asymptotes:
$$j\omega L$$
 and $\frac{1}{j\omega C}$.

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

Power absorbed by resistor $\propto Y^2$. It peaks quite sharply at $\omega = 1000$.

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP
 filter
- Summary

 $\frac{Y}{I} = \frac{1}{\frac{1}{R} + \frac{1}{j\omega L} + j\omega C} = \frac{j\omega L}{LC(j\omega)^2 + \frac{L}{R}j\omega + 1}$ *I*=1 $\omega_c = \sqrt{\frac{c}{a}} = 1000, \ \zeta = \frac{b}{2a\omega_c} = 0.083$ R 600 ≾100m 10µ Asymptotes: $j\omega L$ and $\frac{1}{i\omega C}$. 60 0.5 $arg(Y/I)/\pi$ |Y/I| (dB) 40 0 $1/j\omega C$ ίωL 20 -0.5 100 1k 100 1k 10k 10k

Power absorbed by resistor $\propto Y^2$. It peaks quite sharply at $\omega = 1000$. The resonant frequency, ω_r , is when the impedance is purely real: at $\omega_r = 1000$, $Z_{RLC} = \frac{Y}{T} = R$.

 ω (rad/s)

E1.1 Analysis of Circuits (2017-10213)

 ω (rad/s)

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP
 filter
- Summary

 $\frac{Y}{I} = \frac{1}{\frac{1}{R} + \frac{1}{j\omega L} + j\omega C} = \frac{j\omega L}{LC(j\omega)^2 + \frac{L}{R}j\omega + 1}$ I=1 $\omega_c = \sqrt{\frac{c}{a}} = 1000, \ \zeta = \frac{b}{2a\omega_c} = 0.083$ R 600 10µ ⊃100m Asymptotes: $j\omega L$ and $\frac{1}{i\omega C}$. 60 ı 0.5 $arg(Y/I)/\pi$ |Y/I| (dB) 40 0 $1/j\omega C$ ίωL 20 -0.5 100 100 1k 1k 10k 10k

Power absorbed by resistor $\propto Y^2$. It peaks quite sharply at $\omega = 1000$. The resonant frequency, ω_r , is when the impedance is purely real: at $\omega_r = 1000$, $Z_{RLC} = \frac{Y}{I} = R$.

 ω (rad/s)

A system with a strong peak in power absorption is a *resonant* system.

 ω (rad/s)

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP
 filter
- Summary

 $\frac{Y}{I} = \frac{1}{\frac{1}{R} + \frac{1}{j\omega L} + j\omega C} = \frac{j\omega L}{LC(j\omega)^2 + \frac{L}{R}j\omega + 1}$ $\omega_c = \sqrt{\frac{c}{a}} = 1000, \ \zeta = \frac{b}{2a\omega_c} = 0.083$

Asymptotes:
$$j\omega L$$
 and $\frac{1}{j\omega C}$.

Power absorbed by resistor $\propto Y^2$. It peaks quite sharply at $\omega = 1000$. The resonant frequency, ω_r , is when the impedance is purely real: at $\omega_r = 1000$, $Z_{RLC} = \frac{Y}{I} = R$.

A system with a strong peak in power absorption is a *resonant* system.

Behaviour at Resonance

12: Resonance

- Quadratic Factors
- Damping Factor and Q

+

+

- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

$$\omega = 1000 \Rightarrow Z_L = 100j, \ Z_C = -100j.$$

12: Resonance

- Quadratic Factors
- Damping Factor and Q

+

- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

$\omega = 1000 \Rightarrow Z_L = 100j, \ Z_C = -$	-100j.
$Z_L = -Z_C \Rightarrow I_L = -I_C$	

12: Resonance

- Quadratic Factors
- Damping Factor and Q

+

- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

 $\omega = 1000 \Rightarrow Z_L = 100j, \ Z_C = -100j.$ $Z_L = -Z_C \Rightarrow I_L = -I_C$ $\Rightarrow I = I_R + I_L + I_C = I_R = 1$

12: Resonance

- Quadratic Factors
- Damping Factor and Q

+

- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

$$\omega = 1000 \Rightarrow Z_L = 100j, \ Z_C = -100j.$$

$$Z_L = -Z_C \Rightarrow I_L = -I_C$$

$$\Rightarrow I = I_R + I_L + I_C = I_R = 1$$

$$\Rightarrow Y = I_R R = 600 \angle 0^\circ = 56 \text{ dBV}$$

12: Resonance

- Quadratic Factors
- Damping Factor and Q

+

- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

$$\omega = 1000 \Rightarrow Z_L = 100j, \ Z_C = -100j.$$

$$Z_L = -Z_C \Rightarrow I_L = -I_C$$

$$\Rightarrow I = I_R + I_L + I_C = I_R = 1$$

$$\Rightarrow Y = I_R R = 600 \angle 0^\circ = 56 \text{ dBV}$$

$$\Rightarrow I_L = \frac{Y}{Z_L} = \frac{600}{100j} = -6j$$

12: Resonance

- Quadratic Factors
- Damping Factor and Q

+

- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

$\omega = 1000 \Rightarrow Z_L = 100j, \ Z_C = -100j.$
$Z_L = -Z_C \Rightarrow I_L = -I_C$
$\Rightarrow I = I_R + I_L + I_C = I_R = 1$
$\Rightarrow Y = I_R R = 600 \angle 0^\circ = 56 \mathrm{dBV}$
$\Rightarrow I_L = \frac{Y}{Z_L} = \frac{600}{100j} = -6j$

12: Resonance

- Quadratic Factors
- Damping Factor and Q

+

- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

$\omega = 1000 \Rightarrow Z_L = 100j, \ Z_C = -100j.$
$Z_L = -Z_C \Rightarrow I_L = -I_C$
$\Rightarrow I = I_R + I_L + I_C = I_R = 1$
$\Rightarrow Y = I_R R = 600 \angle 0^\circ = 56 \mathrm{dBV}$
$\Rightarrow I_L = \frac{Y}{Z_L} = \frac{600}{100j} = -6j$

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

Large currents in L and C exactly cancel out $\Rightarrow I_R = I$ and Z = R (real)

12: Resonance

- Quadratic Factors
- Damping Factor and Q

+

- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

$$\omega = 2000 \Rightarrow Z_L = 200j, \ Z_C = -50j$$

12: Resonance

- Quadratic Factors
- Damping Factor and Q

+

- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

$\omega = 2000 \Rightarrow Z_L = 200j$	$, Z_C = -50j$
$\omega = 2000 \Rightarrow Z_L = 200j$ $Z = \left(\frac{1}{R} + \frac{1}{Z_L} + \frac{1}{Z_C}\right)^{-1}$	$= 66\angle - 84^{\circ}$

12: Resonance

- Quadratic Factors
- Damping Factor and Q

+

- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

$\omega = 2000 \Rightarrow Z_L = 200j, \ Z_C = -50j$
$Z = \left(\frac{1}{R} + \frac{1}{Z_L} + \frac{1}{Z_C}\right)^{-1} = 66\angle - 84^{\circ}$
$Y = I \times Z = 66 \angle -84^\circ = 36 \mathrm{dBV}$

12: Resonance

- Quadratic Factors
- Damping Factor and Q

+

- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

 $\omega = 2000 \Rightarrow Z_L = 200j, Z_C = -50j$ $Z = \left(\frac{1}{R} + \frac{1}{Z_L} + \frac{1}{Z_C}\right)^{-1} = 66\angle - 84^\circ$ $Y = I \times Z = 66\angle - 84^\circ = 36 \,\mathrm{dBV}$

12: Resonance

- Quadratic Factors
- Damping Factor and Q

+

- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

$$\omega = 2000 \Rightarrow Z_L = 200j, Z_C = -50j$$
$$Z = \left(\frac{1}{R} + \frac{1}{Z_L} + \frac{1}{Z_C}\right)^{-1} = 66\angle - 84^\circ$$
$$Y = I \times Z = 66\angle - 84^\circ = 36 \,\mathrm{dBV}$$
$$I_R = \frac{Y}{R} = 0.11\angle - 84^\circ$$

12: Resonance

- Quadratic Factors
- Damping Factor and Q

+

- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

$$\omega = 2000 \Rightarrow Z_L = 200j, Z_C = -50j$$
$$Z = \left(\frac{1}{R} + \frac{1}{Z_L} + \frac{1}{Z_C}\right)^{-1} = 66\angle - 84^\circ$$
$$Y = I \times Z = 66\angle - 84^\circ = 36 \,\mathrm{dBV}$$
$$I_R = \frac{Y}{R} = 0.11\angle - 84^\circ$$
$$I_L = \frac{Y}{Z_L} = 0.33\angle - 174^\circ$$

12: Resonance

- Quadratic Factors
- Damping Factor and Q

+

- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

$$\omega = 2000 \Rightarrow Z_L = 200j, \ Z_C = -50j$$

$$Z = \left(\frac{1}{R} + \frac{1}{Z_L} + \frac{1}{Z_C}\right)^{-1} = 66\angle - 84^{\circ}$$

$$Y = I \times Z = 66\angle - 84^{\circ} = 36 \text{ dBV}$$

$$I_R = \frac{Y}{R} = 0.11\angle - 84^{\circ}$$

$$I_L = \frac{Y}{Z_L} = 0.33\angle - 174^{\circ}, \ I_C = 1.33\angle + 6^{\circ}$$

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

Most current now flows through C, only 0.11 through R.

6

12: Resonance

- Quadratic Factors
- Damping Factor and Q

+

+

- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass FilterResonance Peak for LP

filter

• Summary

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

 $\frac{Y}{I} = \frac{1}{\frac{1}{R+j(\omega C - 1/\omega L)}}$

Bandwidth is the range of frequencies for which $\left|\frac{Y}{I}\right|^2$ is greater than half its peak. Also called *half-power bandwidth* or 3dB bandwidth.

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

 $\frac{Y}{I} = \frac{1}{\frac{1}{R+j(\omega C - 1/\omega L)}}$

Bandwidth is the range of frequencies for which $\left|\frac{Y}{I}\right|^2$ is greater than half its peak. Also called half-power bandwidth or 3dB bandwidth.

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP
 filter
- Summary

 $\frac{Y}{I} = \frac{1}{\frac{1}{R+j(\omega C - 1/\omega L)}}$

Bandwidth is the range of frequencies for which $\left|\frac{Y}{I}\right|^2$ is greater than half its peak. Also called *half-power bandwidth* or 3dB bandwidth.

$$\left|\frac{Y}{I}\right|^2 = \frac{1}{(1/R)^2 + (\omega C - 1/\omega L)^2}$$

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP
 filter
- Summary

 $\frac{Y}{I} = \frac{1}{\frac{1}{R+j(\omega C - 1/\omega L)}}$

Bandwidth is the range of frequencies for which $\left|\frac{Y}{I}\right|^2$ is greater than half its peak. Also called *half-power bandwidth* or 3dB bandwidth.

 $\left|\frac{Y}{I}\right|^2 = \frac{1}{(1/R)^2 + (\omega C - 1/\omega L)^2}$

Peak is
$$\left|\frac{Y}{I}(\omega_0)\right|^2 = R^2$$
 @ $\omega_0 = 1000$

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP
 filter
- mer
- Summary

 $\frac{Y}{I} = \frac{1}{\frac{1}{R+j(\omega C - 1/\omega L)}}$

Bandwidth is the range of frequencies for which $\left|\frac{Y}{I}\right|^2$ is greater than half its peak. Also called *half-power bandwidth* or 3dB bandwidth.

 $\left|\frac{Y}{I}\right|^2 = \frac{1}{(1/R)^2 + (\omega C - 1/\omega L)^2}$

Peak is $\left|\frac{Y}{I}(\omega_0)\right|^2 = R^2 @ \omega_0 = 1000$ At ω_{3dB} : $\left|\frac{Y}{I}(\omega_{3dB})\right|^2 = \frac{1}{2} \left|\frac{Y}{I}(\omega_0)\right|^2$

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP
 filter
- Summary

 $\frac{Y}{I} = \frac{1}{\frac{1}{R+j(\omega C - 1/\omega L)}}$

Bandwidth is the range of frequencies for which $\left|\frac{Y}{I}\right|^2$ is greater than half its peak. Also called *half-power bandwidth* or 3dB bandwidth.

 $\left|\frac{Y}{I}\right|^2 = \frac{1}{(1/R)^2 + (\omega C - 1/\omega L)^2}$

Peak is
$$\left|\frac{Y}{I}(\omega_0)\right|^2 = R^2 @ \omega_0 = 1000$$

At ω_{3dB} : $\left|\frac{Y}{I}(\omega_{3dB})\right|^2 = \frac{1}{2} \left|\frac{Y}{I}(\omega_0)\right|^2$
 $\frac{1}{(1/R)^2 + (\omega_{3dB}C - 1/\omega_{3dB}L)^2} = \frac{R^2}{2}$

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP
 filter
- Summary

 $\frac{Y}{I} = \frac{1}{\frac{1}{R+j(\omega C - 1/\omega L)}}$

Bandwidth is the range of frequencies for which $\left|\frac{Y}{I}\right|^2$ is greater than half its peak. Also called *half-power bandwidth* or 3dB bandwidth.

$$\left|\frac{Y}{I}\right|^2 = \frac{1}{(1/R)^2 + (\omega C - 1/\omega L)^2}$$

Peak is $\left|\frac{Y}{I}(\omega_0)\right|^2 = R^2 @ \omega_0 = 1000$ At ω_{3dB} : $\left|\frac{Y}{I}(\omega_{3dB})\right|^2 = \frac{1}{2} \left|\frac{Y}{I}(\omega_0)\right|^2$ $\frac{1}{(1/R)^2 + (\omega_{3dB}C - 1/\omega_{3dB}L)^2} = \frac{R^2}{2} \Rightarrow 1 + 1$

$$\frac{1}{(1/R)^2 + (\omega_{3dB}C - 1/\omega_{3dB}L)^2} = \frac{R^2}{2} \Rightarrow 1 + \left(\omega_{3dB}RC - \frac{R}{\omega_{3dB}L}\right)^2 = 2$$

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

 $\frac{Y}{I} = \frac{1}{\frac{1}{R+j(\omega C - 1/\omega L)}}$

Bandwidth is the range of frequencies for which $\left|\frac{Y}{I}\right|^2$ is greater than half its peak. Also called *half-power bandwidth* or 3dB bandwidth.

 $\left|\frac{Y}{I}\right|^2 = \frac{1}{(1/R)^2 + (\omega C - 1/\omega L)^2}$

 $\begin{aligned} \text{Peak is } \left|\frac{Y}{I}(\omega_{0})\right|^{2} &= R^{2} @ \omega_{0} = 1000 \\ \text{At } \omega_{3\text{dB}} : \left|\frac{Y}{I}(\omega_{3\text{dB}})\right|^{2} &= \frac{1}{2} \left|\frac{Y}{I}(\omega_{0})\right|^{2} \\ \frac{1}{(1/R)^{2} + (\omega_{3\text{dB}}C - 1/\omega_{3\text{dB}}L)^{2}} &= \frac{R^{2}}{2} \Rightarrow 1 + \left(\omega_{3\text{dB}}RC - \frac{R}{\omega_{3\text{dB}}L}\right)^{2} = 2 \\ \omega_{3\text{dB}}RC - R/\omega_{3\text{dB}}L &= \pm 1 \end{aligned}$

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP
 filter
- Summary

 $\frac{Y}{I} = \frac{1}{\frac{1}{R+j(\omega C - 1/\omega L)}}$

Bandwidth is the range of frequencies for which $\left|\frac{Y}{I}\right|^2$ is greater than half its peak. Also called *half-power bandwidth* or 3dB bandwidth.

$$\left|\frac{Y}{I}\right|^2 = \frac{1}{(1/R)^2 + (\omega C - 1/\omega L)^2}$$

Peak is $\left|\frac{Y}{I}(\omega_0)\right|^2 = R^2 @ \omega_0 = 1000$ At ω_{3dB} : $\left|\frac{Y}{I}(\omega_{3dB})\right|^2 = \frac{1}{2} \left|\frac{Y}{I}(\omega_0)\right|^2$

$$\frac{1}{(1/R)^2 + (\omega_{3dB}C - 1/\omega_{3dB}L)^2} = \frac{R^2}{2} \Rightarrow 1 + \left(\omega_{3dB}RC - \frac{R}{\omega_{3dB}L}\right)^2 = 2$$

 $\omega_{3dB}RC - R/\omega_{3dB}L = \pm 1 \quad \Rightarrow \quad \omega_{3dB}^2RLC \pm \omega_{3dB}L - R = 0$

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

 $\frac{Y}{I} = \frac{1}{\frac{1}{R+j(\omega C - 1/\omega L)}}$

Bandwidth is the range of frequencies for which $\left|\frac{Y}{I}\right|^2$ is greater than half its peak. Also called *half-power bandwidth* or 3dB bandwidth.

 $\left|\frac{Y}{I}\right|^2 = \frac{1}{(1/R)^2 + (\omega C - 1/\omega L)^2}$

 $\begin{aligned} \text{Peak is } \left|\frac{Y}{I}(\omega_{0})\right|^{2} &= R^{2} @ \omega_{0} = 1000 \\ \text{At } \omega_{3\text{dB}}: \left|\frac{Y}{I}(\omega_{3\text{dB}})\right|^{2} &= \frac{1}{2} \left|\frac{Y}{I}(\omega_{0})\right|^{2} \\ \frac{1}{(1/R)^{2} + (\omega_{3\text{dB}}C - 1/\omega_{3\text{dB}}L)^{2}} &= \frac{R^{2}}{2} \Rightarrow 1 + \left(\omega_{3\text{dB}}RC - \frac{R}{\omega_{3\text{dB}}L}\right)^{2} = 2 \\ \omega_{3\text{dB}}RC - R/\omega_{3\text{dB}}L &= \pm 1 \Rightarrow \omega_{3\text{dB}}^{2}RLC \pm \omega_{3\text{dB}}L - R = 0 \end{aligned}$

Positive roots: $\omega_{3dB} = \frac{\pm L + \sqrt{L^2 + 4R^2LC}}{2RLC} = \{920, 1086\}$ rad/s

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

 $\frac{Y}{I} = \frac{1}{\frac{1}{R+j(\omega C - 1/\omega L)}}$

Bandwidth is the range of frequencies for which $\left|\frac{Y}{I}\right|^2$ is greater than half its peak. Also called *half-power bandwidth* or 3dB bandwidth.

 $\left|\frac{Y}{I}\right|^2 = \frac{1}{(1/R)^2 + (\omega C - 1/\omega L)^2}$

Peak is $\left|\frac{Y}{I}(\omega_{0})\right|^{2} = R^{2}$ @ $\omega_{0} = 1000$ At ω_{3dB} : $\left|\frac{Y}{I}(\omega_{3dB})\right|^{2} = \frac{1}{2} \left|\frac{Y}{I}(\omega_{0})\right|^{2}$ $\frac{1}{(1/R)^{2} + (\omega_{3dB}C - 1/\omega_{3dB}L)^{2}} = \frac{R^{2}}{2} \Rightarrow 1 + \left(\omega_{3dB}RC - \frac{R}{\omega_{3dB}L}\right)^{2} = 2$ $\omega_{3dB}RC - R/\omega_{3dB}L = \pm 1 \Rightarrow \omega_{3dB}^{2}RLC \pm \omega_{3dB}L - R = 0$ Positive roots: $\omega_{3dB} = \frac{\pm L + \sqrt{L^{2} + 4R^{2}LC}}{2RLC} = \{920, 1086\}$ rad/s

Bandwidth: $B = 1086 - 920 = 167 \, \text{rad/s}$.

I=1 R C 100m 10μ

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

 $\frac{Y}{I} = \frac{1}{\frac{1}{R+i(\omega C - \frac{1}{\omega L})}}$

Bandwidth is the range of frequencies for which $\left|\frac{Y}{T}\right|^2$ is greater than half its peak. Also called *half-power bandwidth* or *3dB* bandwidth.

 $\left|\frac{Y}{I}\right|^2 = \frac{1}{(1/R)^2 + (\omega C - 1/\omega L)^2}$

(gp) |///| Peak is $\left|\frac{Y}{T}(\omega_0)\right|^2 = R^2 @ \omega_0 = 1000$ 500 At ω_{3dB} : $\left|\frac{Y}{T}(\omega_{3dB})\right|^2 = \frac{1}{2} \left|\frac{Y}{T}(\omega_0)\right|^2$ $\frac{1}{(1/R)^2 + (\omega_{3dB}C - 1/\omega_{3dB}L)^2} = \frac{R^2}{2} \Rightarrow 1 + \left(\omega_{3dB}RC - \frac{R}{\omega_{3dB}L}\right)^2 = 2$ $\omega_{3dB}RC - R/\omega_{3dB}L = \pm 1 \Rightarrow \omega_{3dB}^2 RLC \pm \omega_{3dB}L - R = 0$ Positive roots: $\omega_{3dB} = \frac{\pm L + \sqrt{L^2 + 4R^2LC}}{2RLC} = \{920, 1086\}$ rad/s

Bandwidth: B = 1086 - 920 = 167 rad/s.

I=1

60 r

R

600

1k

 ω (rad/s)

10u

2k

⊃100m

3 dB

$$Q$$
 factor $pprox rac{\omega_0}{B} = rac{1}{2\zeta} = 6$. (Q = "Quality")

E1.1 Analysis of Circuits (2017-10213)

Resonance: 12 - 7 / 11

12: Resonance

- Quadratic Factors
- Damping Factor and Q

÷

+

- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP

filter

• Summary

12: Resonance

- Quadratic Factors
- Damping Factor and Q

÷

- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP
 filter
- Tilter
- Summary

12: Resonance

- Quadratic Factors
- Damping Factor and Q

÷

+

- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at

Resonance

- Low Pass Filter
- Resonance Peak for LP
 filter

mer

• Summary

Resonance: 12 - 8 / 11

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at

+

Resonance

- Low Pass Filter
- Resonance Peak for LP
 filter

mei

• Summary

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at

+

Resonance

- Low Pass Filter
- Resonance Peak for LP filter
- Summary

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at

+

Resonance

- Low Pass Filter
- Resonance Peak for LP filter
- Summary

Absorbed Power =v(t)i(t): P_L and P_C opposite and $\gg P_R$. Stored Energy = $\frac{1}{2}Li_L^2 + \frac{1}{2}Cy^2$:

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at

+

- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

Absorbed Power =v(t)i(t): P_L and P_C opposite and $\gg P_R$. Stored Energy = $\frac{1}{2}Li_L^2 + \frac{1}{2}Cy^2$: sloshes between L and C.

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

Absorbed Power =v(t)i(t): P_L and P_C opposite and $\gg P_R$. Stored Energy = $\frac{1}{2}Li_L^2 + \frac{1}{2}Cy^2$: sloshes between L and C. $Q \triangleq \omega \times W_{\text{stored}} \div \overline{P}_R$

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

Absorbed Power =v(t)i(t): P_L and P_C opposite and $\gg P_R$. Stored Energy = $\frac{1}{2}Li_L^2 + \frac{1}{2}Cy^2$: sloshes between L and C. $Q \triangleq \omega \times W_{\text{stored}} \div \overline{P}_R$ $= \omega \times \frac{1}{2}C |IR|^2 \div \frac{1}{2} |I|^2 R = \omega RC$

E1.1 Analysis of Circuits (2017-10213)

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

Absorbed Power =v(t)i(t): P_L and P_C opposite and $\gg P_R$. Stored Energy = $\frac{1}{2}Li_L^2 + \frac{1}{2}Cy^2$: sloshes between L and C. $Q \triangleq \omega \times W_{\text{stored}} \div \overline{P}_R$ $= \omega \times \frac{1}{2}C |IR|^2 \div \frac{1}{2} |I|^2 R = \omega RC$

5

t (ms)

0

 $Q \triangleq \omega \times$ peak stored energy \div average power loss.

10

E1.1 Analysis of Circuits (2017-10213)

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter

+

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at

+

- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

Asymptotes: 1 and $\frac{1}{LC} (j\omega)^{-2}$.

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at

+

- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

Asymptotes: 1 and $\frac{1}{LC} (j\omega)^{-2}$. $\omega_c = \sqrt{\frac{c}{a}} = 1000, \ \zeta = \frac{b}{2a\omega_c} = \frac{R}{200}$

12: Resonance

- Quadratic Factors
- Damping Factor and Q

+

+

- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

$$\frac{Y}{X} = \frac{1/j\omega C}{R+j\omega L + \frac{1}{j\omega C}} = \frac{1}{LC(j\omega)^2 + RCj\omega + 1}$$

Asymptotes: 1 and
$$\frac{1}{LC} (j\omega)^{-2}$$
.
 $\omega_c = \sqrt{\frac{c}{a}} = 1000, \ \zeta = \frac{b}{2a\omega_c} = \frac{R}{200}$

$$@\omega_c: Z_L = -Z_C = 100j, I = \frac{X}{R}$$

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

Magntitude Plot:

Small $\zeta \Rightarrow$ less loss, higher peak, smaller bandwidth.

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

Magntitude Plot:

Small $\zeta \Rightarrow$ less loss, higher peak, smaller bandwidth. Large ζ more loss, smaller peak at a lower ω , larger bandwidth.

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

Magntitude Plot:

Small $\zeta \Rightarrow$ less loss, higher peak, smaller bandwidth. Large ζ more loss, smaller peak at a lower ω , larger bandwidth.

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

Magntitude Plot:

Small $\zeta \Rightarrow$ less loss, higher peak, smaller bandwidth. Large ζ more loss, smaller peak at a lower ω , larger bandwidth.

Phase Plot:

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

Magntitude Plot:

Small $\zeta \Rightarrow$ less loss, higher peak, smaller bandwidth. Large ζ more loss, smaller peak at a lower ω , larger bandwidth.

Phase Plot:

Small $\zeta \Rightarrow$ fast phase change: π over 2ζ decades.

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

Magntitude Plot:

Small $\zeta \Rightarrow$ less loss, higher peak, smaller bandwidth. Large ζ more loss, smaller peak at a lower ω , larger bandwidth.

Phase Plot:

Small $\zeta \Rightarrow$ fast phase change: π over 2ζ decades.

E1.1 Analysis of Circuits (2017-10213)

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

Magntitude Plot:

Small $\zeta \Rightarrow$ less loss, higher peak, smaller bandwidth. Large ζ more loss, smaller peak at a lower ω , larger bandwidth.

Phase Plot:

Small $\zeta \Rightarrow$ fast phase change: π over 2ζ decades.

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

Magntitude Plot:

Small $\zeta \Rightarrow$ less loss, higher peak, smaller bandwidth. Large ζ more loss, smaller peak at a lower ω , larger bandwidth.

Phase Plot:

Small $\zeta \Rightarrow$ fast phase change: π over 2ζ decades.

12: Resonance

- Quadratic Factors
- Damping Factor and Q

+

+

- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter

filter

 $\frac{Y}{X} = \frac{1}{LC(j\omega)^2 + RCj\omega + 1}$

12: Resonance

- Quadratic Factors
- Damping Factor and Q

+

+

- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP

filter

$$\frac{Y}{X} = \frac{1}{LC(j\omega)^2 + RCj\omega + 1}$$

$$\omega_c = \sqrt{\frac{c}{a}} = 1000, \ \zeta = \frac{b}{2a\omega_c} = \frac{b\omega_c}{2c} = \frac{R}{200}$$

12: Resonance

- Quadratic Factors
- Damping Factor and Q

+

+

- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP

filter

$$\frac{Y}{X} = \frac{1}{LC(j\omega)^2 + RCj\omega + 1} = \frac{1}{\left(j\frac{\omega}{\omega_c}\right)^2 + 2\zeta j\frac{\omega}{\omega_c} + 1} \qquad X = \omega_c = \sqrt{\frac{c}{a}} = 1000, \ \zeta = \frac{b}{2a\omega_c} = \frac{b\omega_c}{2c} = \frac{R}{200}$$

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass FilterResonance Peak for LP

filter

• Summary

 $\frac{Y}{X}$ is a function of $\frac{\omega}{\omega_c}$ so ω_c just scales frequency axis (= shift on log axis).

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP
 filter
- Summary

 $\frac{Y}{X}$ is a function of $\frac{\omega}{\omega_c}$ so ω_c just scales frequency axis (= shift on log axis). The *damping factor*, ζ , ("zeta") determines the shape of the peak.

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP
 filter
- Summary

 $\frac{Y}{X}$ is a function of $\frac{\omega}{\omega_c}$ so ω_c just scales frequency axis (= shift on log axis). The *damping factor*, ζ , ("zeta") determines the shape of the peak.

Peak frequency:

$$\omega_p = \omega_c \sqrt{1 - 2\zeta^2}$$

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

 $\frac{Y}{X}$ is a function of $\frac{\omega}{\omega_c}$ so ω_c just scales frequency axis (= shift on log axis). The *damping factor*, ζ , ("zeta") determines the shape of the peak.

Peak frequency:

 $\omega_p = \omega_c \sqrt{1 - 2\zeta^2}$

 $\zeta \geq 0.71 \Rightarrow$ no peak,

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

 $\frac{Y}{X}$ is a function of $\frac{\omega}{\omega_c}$ so ω_c just scales frequency axis (= shift on log axis). The *damping factor*, ζ , ("zeta") determines the shape of the peak.

Peak frequency:

 $\omega_p = \omega_c \sqrt{1 - 2\zeta^2}$

 $\zeta \ge 0.71 \Rightarrow$ no peak, $\zeta \ge 1 \Rightarrow$ can factorize

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

 $\frac{Y}{X}$ is a function of $\frac{\omega}{\omega_c}$ so ω_c just scales frequency axis (= shift on log axis). The *damping factor*, ζ , ("zeta") determines the shape of the peak.

Peak frequency:

 $\omega_p = \omega_c \sqrt{1 - 2\zeta^2}$

 $\zeta \ge 0.71 \Rightarrow$ no peak, $\zeta \ge 1 \Rightarrow$ can factorize

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

 $\frac{Y}{X}$ is a function of $\frac{\omega}{\omega_c}$ so ω_c just scales frequency axis (= shift on log axis). The *damping factor*, ζ , ("zeta") determines the shape of the peak.

Peak frequency:

 $\omega_p = \omega_c \sqrt{1 - 2\zeta^2}$

 $\zeta \ge 0.71 \Rightarrow$ no peak, $\zeta \ge 1 \Rightarrow$ can factorize

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

 $\frac{Y}{X}$ is a function of $\frac{\omega}{\omega_c}$ so ω_c just scales frequency axis (= shift on log axis). The *damping factor*, ζ , ("zeta") determines the shape of the peak.

Peak frequency:

 $\omega_p = \omega_c \sqrt{1 - 2\zeta^2}$

 $\zeta \ge 0.71 \Rightarrow$ no peak, $\zeta \ge 1 \Rightarrow$ can factorize

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

 $\frac{Y}{X}$ is a function of $\frac{\omega}{\omega_c}$ so ω_c just scales frequency axis (= shift on log axis). The *damping factor*, ζ , ("zeta") determines the shape of the peak.

Peak frequency:

 $\omega_p = \omega_c \sqrt{1 - 2\zeta^2}$ $\zeta \ge 0.5 \Rightarrow \text{passes under corner,}$ $\zeta \ge 0.71 \Rightarrow \text{no peak,}$ $\zeta \ge 1 \Rightarrow \text{corn factorize}$

 $\zeta \geq 1 \Rightarrow$ can factorize

$$@ \omega_p: \frac{1}{2\zeta\sqrt{1-\zeta^2}} \qquad @ \omega_c: \frac{1}{2\zeta} \approx Q$$

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

 $\frac{Y}{X}$ is a function of $\frac{\omega}{\omega_c}$ so ω_c just scales frequency axis (= shift on log axis). The *damping factor*, ζ , ("zeta") determines the shape of the peak.

Peak frequency:

$$\begin{split} \omega_p &= \omega_c \sqrt{1-2\zeta^2} \\ \zeta \geq 0.5 \Rightarrow \text{passes under corner,} \\ \zeta \geq 0.71 \Rightarrow \text{no peak,} \end{split}$$

 $\zeta > 1 \Rightarrow$ can factorize

Gain relative to asymptote:

$$\begin{array}{c} 00 \\ 999, 26dB \\ 990, 14dB \\ 906, 5dB \\ 10 \\ \hline \\ 0 \\ -10 \\ 0.7 \\ 0.8 \\ 0.9 \\ 10 \\ 0.7 \\ 0.8 \\ 0.9 \\ 1 \\ 0.7 \\ 0.8 \\ 0.9 \\ 1 \\ 1.2 \\ 1.4 \\ 0 \\ (krad/s) \\ \end{array}$$

 $@ \omega_p: \frac{1}{2\zeta\sqrt{1-\zeta^2}} \qquad @ \omega_c: \frac{1}{2\zeta} \approx Q$

30,

Three frequencies: ω_p = peak, ω_c = asymptotes cross, ω_r = real impedance For $\zeta < 0.3$, $\omega_p \approx \omega_c \approx \omega_r$. All get called the resonant frequency.

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

 $\frac{Y}{X}$ is a function of $\frac{\omega}{\omega_c}$ so ω_c just scales frequency axis (= shift on log axis). The *damping factor*, ζ , ("zeta") determines the shape of the peak.

Peak frequency:

$$\begin{split} \omega_p &= \omega_c \sqrt{1-2\zeta^2}\\ \zeta \geq 0.5 \Rightarrow \text{passes under corner,}\\ \zeta \geq 0.71 \Rightarrow \text{no peak,} \end{split}$$

 $\zeta \geq 1 \Rightarrow$ can factorize

Gain relative to asymptote:

 $@ \omega_p: \frac{1}{2\zeta\sqrt{1-\zeta^2}} \qquad @ \omega_c: \frac{1}{2\zeta} \approx Q$

30r

Three frequencies: ω_p = peak, ω_c = asymptotes cross, ω_r = real impedance For $\zeta < 0.3$, $\omega_p \approx \omega_c \approx \omega_r$. All get called the resonant frequency. The exact relationship between ω_p , ω_c and ω_r and the gain at these

frequencies is affected by any other corner frequencies in the response.

12: Resonance

- Quadratic Factors
- Damping Factor and Q

+

+

- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass FilterResonance Peak for LP

filter

Summary

• **Resonance** is a peak in energy absorption

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

- Resonance is a peak in energy absorption
 - \circ Parallel or series circuit has a real impedance at ω_r
 - ▷ peak response may be at a slightly different frequency

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

- **Resonance** is a peak in energy absorption
 - \circ Parallel or series circuit has a real impedance at ω_r
 - ▷ peak response may be at a slightly different frequency
 - The quality factor, Q, of the resonance is

$$Q \triangleq \frac{\omega_0 \times \text{stored energy}}{\text{power in } R} \approx \frac{\omega_0}{3 \text{ dB bandwidth}} \approx \frac{1}{2\zeta}$$

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP
 filter
- Summary

- **Resonance** is a peak in energy absorption
 - \circ Parallel or series circuit has a real impedance at ω_r
 - ▷ peak response may be at a slightly different frequency
 - \circ $\;$ The quality factor, Q, of the resonance is

$$Q \triangleq rac{\omega_0 imes ext{stored energy}}{ ext{power in } R} pprox rac{\omega_0}{ ext{3 dB bandwidth}} pprox rac{1}{2\zeta}$$

• 3 dB bandwidth is where power falls by $\frac{1}{2}$ or voltage by $\frac{1}{\sqrt{2}}$

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

- **Resonance** is a peak in energy absorption
 - \circ Parallel or series circuit has a real impedance at ω_r
 - ▷ peak response may be at a slightly different frequency
 - \circ $\;$ The quality factor, Q, of the resonance is

$$Q \triangleq \frac{\omega_0 \times \text{stored energy}}{\text{power in } R} \approx \frac{\omega_0}{3 \text{ dB bandwidth}} \approx \frac{1}{2\zeta}$$

- 3 dB bandwidth is where power falls by $\frac{1}{2}$ or voltage by $\frac{1}{\sqrt{2}}$
- \circ The stored energy sloshes between L and C

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

• **Resonance** is a peak in energy absorption

- \circ Parallel or series circuit has a real impedance at ω_r
 - ▷ peak response may be at a slightly different frequency
- \circ $\;$ The quality factor, Q, of the resonance is

- \circ 3 dB bandwidth is where power falls by $\frac{1}{2}$ or voltage by $\frac{1}{\sqrt{2}}$
- \circ The stored energy sloshes between L and C

• Quadratic factor:
$$\left(\frac{j\omega}{\omega_c}\right)^2 + 2\zeta\left(\frac{j\omega}{\omega_c}\right) + 1$$

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

• **Resonance** is a peak in energy absorption

- \circ Parallel or series circuit has a real impedance at ω_r
 - ▷ peak response may be at a slightly different frequency
- \circ The quality factor, Q, of the resonance is

- 3 dB bandwidth is where power falls by $\frac{1}{2}$ or voltage by $\frac{1}{\sqrt{2}}$
- \circ The stored energy sloshes between L and C
- Quadratic factor: $\left(\frac{j\omega}{\omega_c}\right)^2 + 2\zeta \left(\frac{j\omega}{\omega_c}\right) + 1$ • $a (j\omega)^2 + b (j\omega) + c \Rightarrow \omega_c = \sqrt{\frac{c}{a}} \text{ and } \zeta = \frac{b}{2a\omega_c} = \frac{b \operatorname{sgn}(a)}{\sqrt{4ac}}$

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

• **Resonance** is a peak in energy absorption

- \circ Parallel or series circuit has a real impedance at ω_r
 - ▷ peak response may be at a slightly different frequency
- \circ The quality factor, Q, of the resonance is

- 3 dB bandwidth is where power falls by $\frac{1}{2}$ or voltage by $\frac{1}{\sqrt{2}}$
- \circ The stored energy sloshes between L and C
- Quadratic factor: $\left(\frac{j\omega}{\omega_c}\right)^2 + 2\zeta \left(\frac{j\omega}{\omega_c}\right) + 1$ • $a \left(j\omega\right)^2 + b \left(j\omega\right) + c \Rightarrow \omega_c = \sqrt{\frac{c}{a}} \text{ and } \zeta = \frac{b}{2a\omega_c} = \frac{b \operatorname{sgn}(a)}{\sqrt{4ac}}$
 - \circ ± 40 dB/decade slope change in magnitude response

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

• **Resonance** is a peak in energy absorption

- \circ Parallel or series circuit has a real impedance at ω_r
 - ▷ peak response may be at a slightly different frequency
- \circ $\;$ The quality factor, Q , of the resonance is

- \circ 3 dB bandwidth is where power falls by $\frac{1}{2}$ or voltage by $\frac{1}{\sqrt{2}}$
- \circ The stored energy sloshes between L and C
- Quadratic factor: $\left(\frac{j\omega}{\omega_c}\right)^2 + 2\zeta\left(\frac{j\omega}{\omega_c}\right) + 1$
 - $\circ \quad a \left(j \omega \right)^2 + b \left(j \omega \right) + c \quad \Rightarrow \quad \omega_c = \sqrt{\frac{c}{a}} \text{ and } \zeta = \frac{b}{2a\omega_c} = \frac{b \operatorname{sgn}(a)}{\sqrt{4ac}}$
 - \circ $\pm 40\,\mathrm{dB/decade}$ slope change in magnitude response
 - $\circ~$ phase changes rapidly by 180° over $\omega=10^{\mp\zeta}\omega_c$

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

• **Resonance** is a peak in energy absorption

- \circ Parallel or series circuit has a real impedance at ω_r
 - ▷ peak response may be at a slightly different frequency
- \circ $\;$ The quality factor, Q, of the resonance is

- \circ 3 dB bandwidth is where power falls by $\frac{1}{2}$ or voltage by $\frac{1}{\sqrt{2}}$
- \circ The stored energy sloshes between L and C
- Quadratic factor: $\left(\frac{j\omega}{\omega_c}\right)^2 + 2\zeta\left(\frac{j\omega}{\omega_c}\right) + 1$
 - $\circ \quad a \left(j \omega \right)^2 + b \left(j \omega \right) + c \quad \Rightarrow \quad \omega_c = \sqrt{\frac{c}{a}} \text{ and } \zeta = \frac{b}{2a\omega_c} = \frac{b \operatorname{sgn}(a)}{\sqrt{4ac}}$
 - $\circ~\pm40\,\mathrm{dB/decade}$ slope change in magnitude response
 - $\circ~$ phase changes rapidly by 180° over $\omega=10^{\mp\zeta}\omega_c$
 - Gain error in asymptote is $\frac{1}{2\zeta} \approx Q$ at ω_0

12: Resonance

- Quadratic Factors
- Damping Factor and Q
- Parallel RLC
- Behaviour at Resonance
- Away from resonance
- Bandwidth and Q
- Power and Energy at
- Resonance
- Low Pass Filter
- Resonance Peak for LP filter
- Summary

• **Resonance** is a peak in energy absorption

- \circ Parallel or series circuit has a real impedance at ω_r
 - ▷ peak response may be at a slightly different frequency
- \circ The quality factor, Q, of the resonance is

 $Q \triangleq rac{\omega_0 imes ext{stored energy}}{ ext{power in } R} pprox rac{\omega_0}{ ext{3 dB bandwidth}} pprox rac{1}{2\zeta}$

- \circ 3 dB bandwidth is where power falls by $\frac{1}{2}$ or voltage by $\frac{1}{\sqrt{2}}$
- \circ The stored energy sloshes between L and C
- Quadratic factor: $\left(\frac{j\omega}{\omega_c}\right)^2 + 2\zeta\left(\frac{j\omega}{\omega_c}\right) + 1$
 - $\circ \quad a \left(j \omega \right)^2 + b \left(j \omega \right) + c \quad \Rightarrow \quad \omega_c = \sqrt{\frac{c}{a}} \text{ and } \zeta = \frac{b}{2a\omega_c} = \frac{b \operatorname{sgn}(a)}{\sqrt{4ac}}$
 - \circ $\pm 40\,\mathrm{dB/decade}$ slope change in magnitude response
 - $\circ~$ phase changes rapidly by 180° over $\omega=10^{\mp\zeta}\omega_c$
 - Gain error in asymptote is $\frac{1}{2\zeta} \approx Q$ at ω_0

For further details see Hayt Ch 16 or Irwin Ch 12.