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A quadrati
 fa
tor in a transfer fun
tion is: F (jω) = a (jω)2 + b (jω) + c.

Case 1: If b2 ≥ 4ac then we 
an fa
torize it:

F (jω) = a(jω − p1)(jω − p2)

where pi =
−b±

√
b2−4ac
2a .

0.1/RC 0.3/RC 1/RC 3/RC

-40

-20

0

ω

Y
X (jω) = 1

6R2C2(jω)2+7RCjω+1

= 1
(6jωRC+1)(jωRC+1)

ωc =
0.17
RC , 1

RC = |p1| , |p2|

Case 2: If b2 < 4ac, we 
annot fa
torize with real 
oe�
ients so we leave it

as a quadrati
. Sometimes 
alled a quadrati
 resonan
e.

Any polynomial with real 
oe�
ients 
an be fa
tored into linear and

quadrati
 fa
tors ⇒ a quadrati
 fa
tor is as 
ompli
ated as it gets.
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KCL at V gives

V −X
2R

+ jωCV + V −Y
3R

= 0 ⇒ 3 (V −X) + 6jωRCV + 2 (V − Y ) = 0

⇒ (5 + 6jωRC)V = 3X + 2Y .

KCL at Y gives

Y −V
3R

+ jωCY = 0 ⇒ (1 + 3jωRC)Y = V .

Eliminating V beween these two equations gives

(5 + 6jωRC) (1 + 3jωRC)Y = 3X + 2Y

⇒

(

5 + 21jωRC + 18 (jωRC)2 − 2
)

Y = 3X

⇒
Y
X

= 3
3+21jωRC+18(jωRC)2

= 1
1+7jωRC+6(jωRC)2

= 1
(1+6jωRC)(1+jωRC)

.

At high frequen
ies, the impedan
e of the 
apa
itor is mu
h less than 3R so we 
an think of the 
ir
uit

as two potential dividers one after the other (i.e. the 
urrent through the 3R is negligible 
ompared

to the 
urrent throught the �rst C). The high frequen
y asymptote is therefore the produ
t of the

asymptotes for the two potential dividers whi
h gives

Y
X

≈
1

2jωRC
×

1
3jωRC

= 1
6(jωRC)2

.
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Suppose b2 < 4ac in F (jω) = a (jω)2 + b (jω) + c.

Low/High freq asymptotes: FLF(jω) = c, FHF(jω) = a (jω)2

The asymptote magnitudes 
ross at the 
orner frequen
y :

∣

∣

∣
a (jωc)

2
∣

∣

∣
= |c| ⇒ ωc =

√

c
a .

We de�ne the damping fa
tor , �zeta�, to be ζ = b
2aωc

= bωc

2c = b sgn(a)√
4ac

⇒ F (jω) = c

(

(

j ω
ωc

)2

+ 2ζ
(

j ω
ωc

)

+ 1

)

Properties to noti
e in this expression:

(a) c is just an overall s
ale fa
tor.

(b) ωc just s
ales the frequen
y axis sin
e F (jω) is a fun
tion of

ω
ωc

.

(
) The shape of the F (jω) graphs is determined entirely by ζ.

(d) The quadrati
 
annot be fa
torized ⇔ b2 < 4ac ⇔ |ζ| < 1.

(e) At ω = ωc, asymptote gain = c but F (jω) = c× 2jζ.

Alternatively, we sometimes use the quality fa
tor , Q ≈ 1
2ζ = aωc

b .
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Y
I = 1

1

R
+ 1

jωL
+jωC

= jωL
LC(jω)2+L

R
jω+1

ωc =
√

c
a = 1000, ζ = b

2aωc
= 0.083

Asymptotes: jωL and

1
jωC .

Power absorbed by resistor ∝ Y 2

. It peaks quite

sharply at ω = 1000. The resonant frequen
y, ωr,

is when the impedan
e is purely real:

at ωr = 1000, ZRLC = Y
I = R.

A system with a strong peak in power absorption

is a resonant system.
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ω = 1000 ⇒ ZL = 100j, ZC = −100j.

ZL = −ZC ⇒ IL = −IC
⇒ I = IR + IL + IC = IR = 1
⇒ Y = IRR = 600∠0◦ = 56dBV
⇒ IL = Y

ZL
= 600

100j = −6j

Large 
urrents in L and C exa
tly 
an
el out ⇒ IR = I and Z = R (real)
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ω = 2000 ⇒ ZL = 200j, ZC = −50j

Z =
(

1
R + 1

ZL
+ 1

ZC

)−1

= 66∠− 84◦

Y = I × Z = 66∠− 84◦ = 36dBV
IR = Y

R = 0.11∠− 84◦

IL = Y
ZL

= 0.33∠− 174◦, IC = 1.33∠+ 6◦

Most 
urrent now �ows through C, only 0.11 through R.
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Y
I = 1

1/R+j(ωC−1/ωL)

Bandwidth is the range of frequen
ies for

whi
h

∣

∣

Y
I

∣

∣

2

is greater than half its peak.

Also 
alled half-power bandwidth or 3dB

bandwidth.

∣

∣

Y
I

∣

∣

2
= 1

(1/R)2+(ωC−1/ωL)2

Peak is

∣

∣

Y
I (ω0)

∣

∣

2
= R2

� ω0 = 1000

At ω3dB:

∣

∣

Y
I (ω3dB)

∣

∣

2
= 1

2

∣

∣

Y
I (ω0)

∣

∣

2

1
(1/R)2+(ω3dBC−1/ω

3dB
L)2

= R2

2 ⇒ 1 +
(

ω3dBRC − R
ω3dBL

)2

= 2

ω3dBRC − R/ω3dBL = ±1 ⇒ ω2
3dBRLC ± ω3dBL−R = 0

Positive roots: ω3dB = ±L+
√
L2+4R2LC
2RLC = {920, 1086} rad/s

Bandwidth: B = 1086− 920 = 167 rad/s.

Q fa
tor ≈ ω0

B = 1
2ζ = 6. (Q = �Quality�)



Power and Energy at Resonan
e +

12: Resonan
e

Quadrati
 Fa
tors +

Damping Fa
tor and

Q
Parallel RLC

Behaviour at

Resonan
e

Away from resonan
e

Bandwidth and Q

⊲

Power and Energy

at Resonan
e +

Low Pass Filter

Resonan
e Peak for

LP �lter

Summary

E1.1 Analysis of Cir
uits (2017-10213) Resonan
e: 12 � 8 / 11

Absorbed Power =v(t)i(t):

PL and PC opposite and ≫ PR.

Stored Energy =

1
2Li

2
L + 1

2Cy2:

sloshes between L and C.

Q , ω ×W

stored

÷ PR

= ω × 1
2C |IR|2 ÷ 1

2 |I|
2
R= ωRC �ω = 1000: Y = 600,

IR = 1, IL = −6j, IC = +6j

Q , ω× peak stored energy ÷ average power loss.
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The input 
urrent is a phasor I = 1 (i.e. i(t) = cosωt where ω = 1000 rad/s).

The 
omplex impedan
es are ZL = jωL = 100jΩ and ZC = 1
jωC

= −100jΩ. Using the formula for

parallel impedan
es, the total impedan
e satis�es

1
Z

= 1
600

+ 1
100j

+ 1
−100j

= 1
600

. So, at the resonant

frequen
y, the impedan
es of L and C 
an
el out and the total impedan
e is just Z = 600Ω.

The voltage phasor a
ross the three passive 
omponents is V = IZ = 1× 600 = 600V. The waveform


orresponding to this phasor is v(t) = 600 cosωt and is plotted in the upper right graph. From knowing

V , we 
an use Ohm's law to work out the individual 
urrent phasors in the three 
omponents as

IR = V
R

= 600
600

= 1, IC = V
ZC

= 600
−100j

= 6j and IL = V
ZL

= 600
100j

= −6j. The waveforms


orresponding to these three phasors are plotted in the upper left graph.

Multiplying phasors together doesn't dire
tly give the 
orre
t result and so we 
al
ulate the power

waveforms dire
tly by multiplying v(t) × i(t). For the resistor, V = 600 and IR = 1, so pR(t) =
600 cosωt× cosωt = 600 cos2 ωt = 300 + 300 cos 2ωt. For the indu
tor, V = 600 and IL = −6j, so

pR(t) = 600 cosωt × 6 sinωt = 3600 sinωt cosωt = 1800 sin 2ωt. Finally, for the 
apa
itor, V = 600

and IL = +6j, so pR(t) = 600 cosωt × −6 sinωt = −3600 sinωt cosωt = −1800 sin 2ωt. These are

plotted in the lower left graph.

The energy stored in an indu
tor is wL(t) = 1
2
Li2(t) = 1

2
× 0.1 × 36 sin2 ωt = 1.8 sin2 ωt =

0.9 (1− cos 2ωt). The energy stored in a 
apa
itor is wC(t) = 1
2
Cv2(t) = 1

2
× 10−5

× 6002 cos2 ωt =

1.8 cos2 ωt = 0.9 (1 + cos 2ωt). These are plotted in the lower right graph. The total stored energy in

the 
ir
uit is wL(t) + wC(t) = 1.8 J whi
h does not vary with time.
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Y
X =

1/jωC

R+jωL+ 1

jωC

= 1
LC(jω)2+RCjω+1

Asymptotes: 1 and

1
LC (jω)

−2

.

ωc =
√

c
a = 1000, ζ = b

2aωc
= R

200

�ωc : ZL = −ZC = 100j, I = X
R ,

∣

∣

Y
X

∣

∣ = 1
RCω = 1

2ζ , ∠
Y
X = −π

2

Magntitude Plot:

Small ζ ⇒ less loss, higher peak, smaller bandwidth.

Large ζ more loss, smaller peak at a lower ω, larger bandwidth.

Phase Plot:

Small ζ ⇒ fast phase 
hange: π over 2ζ de
ades.

∠ Y
X ≈ −π

2

(

1 + 1
ζ log10

ω
ωc

)

for 10−ζ < ω
ωc

< 10+ζ

C

R

L

100 1k 10k
-40

-20

0

20 R=20, ζ=0.1
R=5, ζ=0.03

R=60, ζ=0.3
R=120, ζ=0.6

ω (rad/s)
100 251 1k 3.98k 10k
-1

-0.5

0

R=20, ζ=0.1
R=5, ζ=0.03

R=60, ζ=0.3
R=120, ζ=0.6

ω (rad/s)

π
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Y
X = 1

LC(jω)2+RCjω+1
= 1

(j ω
ωc
)2+2ζj ω

ωc
+1

ωc =
√

c
a = 1000, ζ = b

2aωc
= bωc

2c = R
200

Y
X is a fun
tion of

ω
ωc

so ωc just s
ales frequen
y axis (= shift on log axis).

The damping fa
tor , ζ, (�zeta�) determines the shape of the peak.

Peak frequen
y:

ωp = ωc

√

1− 2ζ2

ζ ≥ 0.5 ⇒ passes under 
orner,

ζ ≥ 0.71 ⇒ no peak,

ζ ≥ 1 ⇒ 
an fa
torize 0.7 0.8 0.9 1 1.2 1.4
-10

0

10

20

30

R=20, ζ=0.1990, 14dB
R=5, ζ=0.03999, 26dB

R=60, ζ=0.3906, 5dB
R=120, ζ=0.6529, 4dB

ω (krad/s)

Gain relative to asymptote: � ωp:

1

2ζ
√

1−ζ2

� ωc:

1
2ζ ≈ Q

Three frequen
ies: ωp= peak, ωc= asymptotes 
ross, ωr= real impedan
e

For ζ < 0.3, ωp ≈ ωc ≈ ωr. All get 
alled the resonant frequen
y.

The exa
t relationship between ωp, ωc and ωr and the gain at these

frequen
ies is a�e
ted by any other 
orner frequen
ies in the response.
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• Resonan
e is a peak in energy absorption

◦ Parallel or series 
ir
uit has a real impedan
e at ωr

⊲ peak response may be at a slightly di�erent frequen
y

◦ The quality fa
tor, Q, of the resonan
e is

Q ,
ω0×stored energy

power in R
≈ ω0

3 dB bandwidth

≈ 1
2ζ

◦ 3 dB bandwidth is where power falls by

1
2 or voltage by

1√
2

◦ The stored energy sloshes between L and C

• Quadrati
 fa
tor:

(

jω
ωc

)2

+ 2ζ
(

jω
ωc

)

+ 1

◦ a (jω)2 + b (jω) + c ⇒ ωc =
√

c
a and ζ = b

2aωc
= b sgn(a)√

4ac

◦ ±40 dB/de
ade slope 
hange in magnitude response

◦ phase 
hanges rapidly by 180◦ over ω = 10∓ζωc

◦ Gain error in asymptote is

1
2ζ ≈ Q at ω0

For further details see Hayt Ch 16 or Irwin Ch 12.
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