14: Power in AC D Circuits
Average Power
Cosine Wave RMS
Power Factor
Complex Power
Power in R, L, C Tellegen's Theorem Power Factor
Correction
Ideal Transformer Transformer Applications
Summary

14: Power in AC Circuits

Average Power

14: Power in AC Circuits

\triangle Average Power

 Cosine Wave RMS Power Factor Complex PowerPower in R, L, C Tellegen's Theorem

Power Factor

Correction
Ideal Transformer
Transformer
Applications
Summary

Intantaneous Power dissipated in R : $p(t)=\frac{v^{2}(t)}{R}$
Average Power dissipated in R :
$P=\frac{1}{T} \int_{0}^{T} p(t) d t=\frac{1}{R} \times \frac{1}{T} \int_{0}^{T} v^{2}(t) d t=\frac{\left\langle v^{2}(t)\right\rangle}{R}$
$\left\langle v^{2}(t)\right\rangle$ is the value of $v^{2}(t)$ averaged over time
We define the RMS Voltage (Root Mean Square): $V_{r m s} \triangleq \sqrt{\left\langle v^{2}(t)\right\rangle}$
The average power dissipated in R is $P=\frac{\left\langle v^{2}(t)\right\rangle}{R}=\frac{\left(V_{r m s}\right)^{2}}{R}$ $V_{r m s}$ is the DC voltage that would cause R to dissipate the same power.

We use small letters for time-varying voltages and capital letters for time-invariant values.

Cosine Wave RMS

14: Power in AC

Circuits

Average Power

\triangleright Cosine Wave RMS
Power Factor + Complex Power
Power in R, L, C Tellegen's Theorem

Power Factor

Correction
Ideal Transformer
Transformer Applications
Summary

Cosine Wave: $v(t)=5 \cos \omega t$. Amplitude is $V=5 \mathrm{~V}$.
Squared Voltage: $v^{2}(t)=V^{2} \cos ^{2} \omega t=V^{2}\left(\frac{1}{2}+\frac{1}{2} \cos 2 \omega t\right)$
Mean Square Voltage: $\left\langle v^{2}\right\rangle=\frac{V^{2}}{2}$ since $\cos 2 \omega t$ averages to zero.
RMS Voltage: $V_{r m s}=\sqrt{\left\langle v^{2}\right\rangle}=\frac{1}{\sqrt{2}} V=3.54 \mathrm{~V}=\widetilde{V}$
Note: Power engineers always use RMS voltages and currents exclusively and omit the "rms" subscript.
For example UK Mains voltage $=230 \mathrm{~V}$ rms $=325 \mathrm{~V}$ peak.
In this lecture course only, a \sim overbar means $\div \sqrt{2}$: thus $\widetilde{V}=\frac{1}{\sqrt{2}} V$.

14: Power in AC

Circuits

Average Power

Cosine Wave RMS
\triangleright Power Factor Complex Power
Power in R, L, C Tellegen's Theorem

Power Factor

Correction

Ideal Transformer

Transformer

 ApplicationsSummary

Suppose voltage and current phasors are:

$$
\begin{aligned}
V & =|V| e^{j \theta_{V}} & \Leftrightarrow & v(t)=|V| \cos \left(\omega t+\theta_{V}\right) \\
I & =|I| e^{j \theta_{I}} & \Leftrightarrow & i(t)=|I| \cos \left(\omega t+\theta_{I}\right)
\end{aligned}
$$

Power dissipated in load Z is

$$
\begin{aligned}
p(t) & =v(t) i(t)=|V||I| \cos \left(\omega t+\theta_{V}\right) \cos \left(\omega t+\theta_{I}\right) \\
& =|V||I|\left(\frac{1}{2} \cos \left(2 \omega t+\theta_{V}+\theta_{I}\right)+\frac{1}{2} \cos \left(\theta_{V}-\theta_{I}\right)\right) \\
& =\frac{1}{2}|V||I| \cos \left(\theta_{V}-\theta_{I}\right)+\frac{1}{2}|V||I| \cos \left(2 \omega t+\theta_{V}+\theta_{I}\right)
\end{aligned}
$$

Average power: $P=\frac{1}{2}|V||I| \cos (\phi) \quad$ where $\quad \phi=\theta_{V}-\theta_{I}$

$$
=|\widetilde{V}||\widetilde{I}| \cos (\phi) \quad \cos \phi \text { is the power factor }
$$

$\phi>0 \Leftrightarrow$ a lagging power factor (normal case: Current lags Voltage)
$\phi<0 \Leftrightarrow$ a leading power factor (rare case: Current leads Voltage)

[Multiplying Phasors]

From the previous slide, if the phasor voltage and current are $V=|V| e^{j \theta_{V}}$ and $I=|I| e^{j \theta_{I}}$, then the corresponding waveforms are $v(t)=|V| \cos \left(\omega t+\theta_{V}\right)$ and $i(t)=|I| \cos \left(\omega t+\theta_{I}\right)$. When you multiply these two wavefoms together you get $p(t)=\frac{1}{2}|V||I| \cos \left(\theta_{V}-\theta_{I}\right)+\frac{1}{2}|V||I| \cos \left(2 \omega t+\theta_{V}+\theta_{I}\right)$. This product contains two components: a constant, or DC, term that doesn't involve t and a second term that is a cosine wave of frequency 2ω.

The time-average of the second term is zero (because a cosine wave of any non-zero frequency goes symmetrically positive and negative and so averages to zero) and so the average power is just equal to the first term: $\frac{1}{2}|V||I| \cos \left(\theta_{V}-\theta_{I}\right)$. It is easy to see that $V \times I^{*}=|V| e^{j \theta_{V}} \times|I| e^{-j \theta_{I}}=$ $|V||I| e^{j\left(\theta_{V}-\theta_{I}\right)}=|V||I| \cos \left(\theta_{V}-\theta_{I}\right)+j|V||I| \sin \left(\theta_{V}-\theta_{I}\right)$ and so the average power is the real part of $\frac{1}{2} V \times I^{*}$.

The second term is a cosine wave at a frequency of 2ω and so it is possible to represent this waveform, $\frac{1}{2}|V||I| \cos \left(2 \omega t+\theta_{V}+\theta_{I}\right)$, as a phasor whose value is $\frac{1}{2} V \times I=\frac{1}{2}|V||I| e^{j\left(\theta_{V}+\theta_{I}\right)}$.

So to sum up, if you multiply together the two sinusoidal waveforms corresponding to phasors V and I, you get two components: (a) a DC component of value $\Re\left(\frac{1}{2} V \times I^{*}\right)$ and (b) a sinusoidal component of twice the frequency which corresponds to the phasor $\frac{1}{2} V \times I$.

Complex Power

14: Power in AC Circuits

Average Power

Cosine Wave RMS
Power Factor
\triangleright Complex Power
Power in R, L, C Tellegen's Theorem

Power Factor

Correction
Ideal Transformer

Transformer

Applications
Summary

If $\quad \widetilde{V}=\frac{1}{\sqrt{2}}|V| e^{j \theta_{V}}$ and $\quad \tilde{I}=\frac{1}{\sqrt{2}}|I| e^{j \theta_{I}}$
The complex power absorbed by Z is $S \triangleq \widetilde{V} \times \widetilde{I}^{*}$
 where * means complex conjugate.

$$
\begin{aligned}
\widetilde{V} \times & \widetilde{I}^{*}=|\widetilde{V}| e^{j \theta_{V}} \times|\widetilde{I}| e^{-j \theta_{I}}=|\widetilde{V}||\widetilde{I}| e^{j\left(\theta_{V}-\theta_{I}\right)} \\
& =|\widetilde{V}||\widetilde{I}| e^{j \phi}=|\widetilde{V}||\widetilde{I}| \cos \phi+j|\widetilde{V}||\widetilde{I}| \sin \phi \\
& =P+j Q
\end{aligned}
$$

Complex Power: $\quad S \triangleq \widetilde{V} \widetilde{I}^{*}=P+j Q$ measured in Volt-Amps (VA) Apparent Power: $|S| \triangleq|\widetilde{V}||\widetilde{I}|$ measured in Volt-Amps (VA)
Average Power: $\quad P \triangleq \Re(S)$ measured in Watts (W)
Reactive Power: $Q \triangleq \Im(S)$ Measured in Volt-Amps Reactive (VAR)
Power Factor: $\cos \phi \triangleq \cos (\angle \widetilde{V}-\angle \widetilde{I})=\frac{P}{|S|}$
Machines and transformers have capacity limits and power losses that are independent of $\cos \phi$; their ratings are always given in apparent power.
Power Company: Costs \propto apparent power, Revenue \propto average power.

Power in R, L, C

14: Power in AC

 Circuits
Average Power

Cosine Wave RMS

Power Factor

Complex Power

\triangleright Power in R, L, C
Tellegen's Theorem

Power Factor

Correction

Ideal Transformer

Transformer

 Applications SummaryFor any impedance, Z, complex power absorbed: $S=\widetilde{V} \widetilde{I}^{*}=P+j Q$
Using (a) $\widetilde{V}=\widetilde{I} Z$ (b) $\widetilde{I} \times \widetilde{I}^{*}=|\widetilde{I}|^{2}$ we get $S=|\widetilde{I}|^{2} Z=\frac{|\widetilde{V}|^{2}}{Z^{*}}$
Resistor: $S=|\widetilde{I}|^{2} R=\frac{|\widetilde{V}|^{2}}{R} \quad \phi=0$
Absorbs average power, no VARs $(Q=0)$

Inductor: $S=j|\widetilde{I}|^{2} \omega L=j \frac{|\widetilde{V}|^{2}}{\omega L} \quad \phi=+90^{\circ}$
No average power, Absorbs VARs $(Q>0)$

Capacitor: $S=-j \frac{|\widetilde{T}|^{2}}{\omega C}=-j|\widetilde{V}|^{2} \omega C \quad \phi=-90^{\circ}$
No average power, Generates VARs $(Q<0)$

VARs are generated by capacitors and absorbed by inductors
The phase, ϕ, of the absorbed power, S, equals the phase of Z

Tellegen's Theorem

14: Power in AC Circuits

Average Power

Cosine Wave RMS

Power Factor

Complex Power

Power in R, L, C
Tellegen's
\triangle Theorem
Power Factor

Correction

Ideal Transformer
Transformer
Applications
Summary

Tellegen's Theorem: The complex power, S, dissipated in any circuit's components sums to zero.
$x_{n}=$ voltage at node n
$V_{b}, I_{b}=$ voltage/current in branch b
(obeying passive sign convention)
$a_{b n} \triangleq \begin{cases}-1 & \text { if } V_{b} \text { starts from node } n \\ +1 & \text { if } V_{b} \text { ends at node } n \\ 0 & \text { else }\end{cases}$

e.g. branch 4 goes from 2 to $3 \Rightarrow a_{4 *}=[0,-1,1]$

Branch voltages: $V_{b}=\sum_{n} a_{b n} x_{n}$ (e.g. $V_{4}=x_{3}-x_{2}$)
KCL @ node $n: \sum_{b} a_{b n} I_{b}=0 \Rightarrow \sum_{b} a_{b n} I_{b}^{*}=0$
Tellegen: $\sum_{b} V_{b} I_{b}^{*}=\sum_{b} \sum_{n} a_{b n} x_{n} I_{b}^{*}$

nodes (n)		
$a_{b n}$	12	3
1	0	0
$\underbrace{}_{2}$	-1	0
\bigcirc	01	0
[im	$0-1$	
	0 0	

$$
=\sum_{n} \sum_{b} a_{b n} I_{b}^{*} x_{n}=\sum_{n} x_{n} \sum_{b} a_{b n} I_{b}^{*}=\sum_{n} x_{n} \times 0
$$

Note: $\sum_{b} S_{b}=0 \Rightarrow \sum_{b} P_{b}=0 \quad$ and also $\quad \sum_{b} Q_{b}=0$.

Power Factor Correction

14: Power in AC Circuits

Average Power

Cosine Wave RMS
Power Factor Complex Power
Power in R, L, C Tellegen's Theorem Power Factor \triangleright Correction Ideal Transformer Transformer Applications Summary
$\widetilde{V}=230$. Motor modelled as $5 \| 7 j \Omega$.
$\widetilde{I}=\frac{\widetilde{V}}{R}+\frac{\widetilde{V}}{Z_{L}}=46-j 32.9 \mathrm{~A}=56.5 \angle-36^{\circ}$
$S=\widetilde{V} \widetilde{I}^{*}=10.6+j 7.6 \mathrm{kVA}=13 \angle 36^{\circ} \mathrm{kVA}$
$\cos \phi=\frac{P}{|S|}=\cos 36^{\circ}=0.81$
Add parallel capacitor of $300 \mu \mathrm{~F}$:
$Z_{C}=\frac{1}{j \omega C}=-10.6 j \Omega \Rightarrow \widetilde{I}_{C}=21.7 j \mathrm{~A}$
$\widetilde{I}=46-j 11.2 \mathrm{~A}=47 \angle-14^{\circ} \mathrm{A}$
$S_{C}=\widetilde{V} \widetilde{I}_{C}^{*}=-j 5 \mathrm{kVA}$
$S=\widetilde{V} \widetilde{I}^{*}=10.6+j 2.6 \mathrm{kVA}=10.9 \angle 14^{\circ} \mathrm{kVA}$
$\cos \phi=\frac{P}{|S|}=\cos 14^{\circ}=0.97$

Average power to motor, P, is 10.6 kW in both cases.
$|\widetilde{I}|$, reduced from $56.5 \searrow 47 \mathrm{~A}(-16 \%) \Rightarrow$ lower losses.
Effect of $C:$ VARs $=7.6 \searrow 2.6 \mathrm{kVAR}$, power factor $=0.81 \nearrow 0.97$.

Ideal Transformer

14: Power in AC

 Circuits
Average Power

Cosine Wave RMS
Power Factor

Complex Power

Power in R, L, C Tellegen's Theorem

Power Factor

Correction

\triangle Ideal Transformer
Transformer
Applications
Summary

A transformer has ≥ 2 windings on the same magnetic core.
Ampère's law: $\sum N_{r} I_{r}=\frac{l \Phi}{\mu A}$; Faraday's law: $\frac{V_{r}}{N_{r}}=\frac{d \Phi}{d t}$. $N_{1}: N_{2}+N_{3}$ shows the turns ratio between the windings.

The \bullet indicates the voltage polarity of each winding.
Since Φ is the same for all windings, $\frac{V_{1}}{N_{1}}=\frac{V_{2}}{N_{2}}=\frac{V_{3}}{N_{3}}$.
Assume $\mu \rightarrow \infty \Rightarrow N_{1} I_{1}+N_{2} I_{2}+N_{3} I_{3}=0$
These two equations allow you to solve circuits and also
 imply that $\sum S_{i}=0$.

Special Case:

For a 2-winding transformer this simplifies to

$V_{2}=\frac{N_{2}}{N_{1}} V_{1}$ and $I_{L}=-I_{2}=\frac{N_{1}}{N_{2}} I_{1}$
Hence $\frac{V_{1}}{I_{1}}=\left(\frac{N_{1}}{N_{2}}\right)^{2} \frac{V_{2}}{I_{L}}=\left(\frac{N_{1}}{N_{2}}\right)^{2} Z$

Equivalent to a reflected impedance of $\left(\frac{N_{1}}{N_{2}}\right)^{2} Z$

Transformer Applications

14: Power in AC Circuits

Average Power

Cosine Wave RMS
Power Factor Complex Power
Power in R, L, C Tellegen's Theorem

Power Factor

Correction

Ideal Transformer
Transformer
\triangleright Applications Summary

Power Transmission
Suppose a power transmission cable has 1Ω resistance.
$100 \mathrm{kVA@} 1 \mathrm{kV}=100 \mathrm{~A} \Rightarrow \widetilde{I}^{2} R=10 \mathrm{~kW}$ losses.
$100 \mathrm{kVA@} 100 \mathrm{kV}=1 \mathrm{~A} \Rightarrow \widetilde{I}^{2} R=1 \mathrm{~W}$ losses.

Voltage Conversion

Electronic equipment requires $\leq 20 \mathrm{~V}$ but mains voltage is $240 \mathrm{~V} \sim$.
Interference protection
Microphone on long cable is susceptible to interference from nearby mains cables. An $N: 1$ transformer reduces the microphone voltage by N but reduces interference by N^{2}.

Isolation

There is no electrical connection between the windings of a transformer so circuitry (or people) on one side will not be endangered by a failure that results in high voltages on the other side.

Summary

14: Power in AC

Circuits

Average Power

 Cosine Wave RMSPower Factor

Complex Power

Power in R, L, C Tellegen's Theorem

Power Factor

Correction

Ideal Transformer

Transformer

Applications
\triangleright Summary

- Complex Power: $S=\widetilde{V} \widetilde{I}^{*}=P+j Q$ where $\widetilde{V}=V_{r m s}=\frac{1}{\sqrt{2}} V$.
- For an impedance $Z: S=|\widetilde{I}|^{2} Z=\frac{|\widetilde{V}|^{2}}{Z^{*}}$
- Apparent Power: $|S|=|\widetilde{V}||\widetilde{I}|$ used for machine ratings.
- Average Power: $P=\Re(S)=|\widetilde{V}||\widetilde{I}| \cos \phi$ (in Watts)
- Reactive Power: $Q=\Im(S)=|\widetilde{V}||\widetilde{I}| \sin \phi$ (in VARs)
- Power engineers always use \widetilde{V} and \widetilde{I} and omit the ~.
- Tellegen: In any circuit $\sum_{b} S_{b}=0 \Rightarrow \sum_{b} P_{b}=\sum_{b} Q_{b}=0$
- Power Factor Correction: add parallel C to generate extra VARs
- Ideal Transformer: $V_{i} \propto N_{i}$ and $\sum N_{i} I_{i}=0$ (implies $\sum S_{i}=0$)

For further details see Hayt Ch 11 or Irwin Ch 9.

