14: Power in AC ▷ Circuits Average Power Cosine Wave RMS Power Factor + Complex Power Power in R, L, C Tellegen's Theorem Power Factor Correction Ideal Transformer Transformer Applications Summary

14: Power in AC Circuits

Average Power

14: Power in AC Circuits ▷ Average Power Cosine Wave RMS Power Factor + Complex Power Power in R, L, C Tellegen's Theorem Power Factor Correction Ideal Transformer Transformer Applications Summary

Intantaneous Power dissipated in R: $p(t) = \frac{v^2(t)}{R}$

Average Power dissipated in R: $P = \frac{1}{T} \int_0^T p(t) dt = \frac{1}{R} \times \frac{1}{T} \int_0^T v^2(t) dt = \frac{\langle v^2(t) \rangle}{R}$ $\langle v^2(t) \rangle \text{ is the value of } v^2(t) \text{ averaged over time}$

We define the *RMS Voltage* (Root Mean Square): $V_{rms} \triangleq \sqrt{\langle v^2(t) \rangle}$

The average power dissipated in R is $P = \frac{\langle v^2(t) \rangle}{R} = \frac{\langle V_{rms} \rangle^2}{R}$ V_{rms} is the DC voltage that would cause R to dissipate the same power. We use *small letters* for time-varying voltages and *capital letters* for time-invariant values. 14: Power in AC <u>Circuits</u> Average Power ▷ Cosine Wave RMS Power Factor + Complex Power Power in R, L, C Tellegen's Theorem Power Factor Correction Ideal Transformer Transformer Applications Summary

Cosine Wave: $v(t) = 5 \cos \omega t$. Amplitude is V = 5 V. Squared Voltage: $v^2(t) = V^2 \cos^2 \omega t = V^2 \left(\frac{1}{2} + \frac{1}{2}\cos 2\omega t\right)$ Mean Square Voltage: $\langle v^2 \rangle = \frac{V^2}{2}$ since $\cos 2\omega t$ averages to zero. RMS Voltage: $V_{rms} = \sqrt{\langle v^2 \rangle} = \frac{1}{\sqrt{2}}V = 3.54 \text{ V} = \widetilde{V}$

Note: Power engineers *always* use RMS voltages and currents exclusively and omit the "rms" subscript. For example UK Mains voltage = 230 V rms = 325 V peak.

In this lecture course only, a ~ overbar means $\div \sqrt{2}$: thus $\widetilde{V} = \frac{1}{\sqrt{2}}V$.

Power Factor

AC Power: 14 - 4 / 11

From the previous slide, if the phasor voltage and current are $V = |V|e^{j\theta_V}$ and $I = |I|e^{j\theta_I}$, then the corresponding waveforms are $v(t) = |V|\cos(\omega t + \theta_V)$ and $i(t) = |I|\cos(\omega t + \theta_I)$. When you multiply these two waveforms together you get $p(t) = \frac{1}{2}|V||I|\cos(\theta_V - \theta_I) + \frac{1}{2}|V||I|\cos(2\omega t + \theta_V + \theta_I)$. This product contains two components: a constant, or DC, term that doesn't involve t and a second term that is a cosine wave of frequency 2ω .

The time-average of the second term is zero (because a cosine wave of any non-zero frequency goes symmetrically positive and negative and so averages to zero) and so the average power is just equal to the first term: $\frac{1}{2}|V||I| \cos(\theta_V - \theta_I)$. It is easy to see that $V \times I^* = |V|e^{j\theta_V} \times |I|e^{-j\theta_I} = |V||I| e^{j(\theta_V - \theta_I)} = |V||I| \cos(\theta_V - \theta_I) + j|V||I| \sin(\theta_V - \theta_I)$ and so the average power is the real part of $\frac{1}{2}V \times I^*$.

The second term is a cosine wave at a frequency of 2ω and so it is possible to represent this waveform, $\frac{1}{2}|V||I| \cos(2\omega t + \theta_V + \theta_I)$, as a phasor whose value is $\frac{1}{2}V \times I = \frac{1}{2}|V||I|e^{j(\theta_V + \theta_I)}$.

So to sum up, if you multiply together the two sinusoidal waveforms corresponding to phasors V and I, you get two components: (a) a DC component of value $\Re\left(\frac{1}{2}V \times I^*\right)$ and (b) a sinusoidal component of twice the frequency which corresponds to the phasor $\frac{1}{2}V \times I$.

14: Power in AC Circuits Average Power Cosine Wave RMS Power Factor + ▷ Complex Power Power in R, L, C Tellegen's Theorem Power Factor Correction Ideal Transformer Transformer Applications Summary

If
$$\widetilde{V} = \frac{1}{\sqrt{2}} |V| e^{j\theta_V}$$
 and $\widetilde{I} = \frac{1}{\sqrt{2}} |I| e^{j\theta_I}$

The *complex power* absorbed by Z is $S \triangleq \widetilde{V} \times \widetilde{I}^*$ where * means complex conjugate.

$$\widetilde{V} \times \widetilde{I}^* = \left| \widetilde{V} \right| e^{j\theta_V} \times \left| \widetilde{I} \right| e^{-j\theta_I} = \left| \widetilde{V} \right| \left| \widetilde{I} \right| e^{j(\theta_V - \theta_I)} \\ = \left| \widetilde{V} \right| \left| \widetilde{I} \right| e^{j\phi} = \left| \widetilde{V} \right| \left| \widetilde{I} \right| \cos \phi + j \left| \widetilde{V} \right| \left| \widetilde{I} \right| \sin \phi \\ = P + jQ$$

 $\begin{array}{ll} \mbox{Complex Power:} & S \triangleq \widetilde{V}\widetilde{I}^* = P + jQ \mbox{ measured in Volt-Amps (VA)} \\ \mbox{Apparent Power:} & |S| \triangleq \left|\widetilde{V}\right| \left|\widetilde{I}\right| \mbox{ measured in Volt-Amps (VA)} \\ \mbox{Average Power:} & P \triangleq \Re \left(S\right) \mbox{ measured in Watts (W)} \\ \mbox{Reactive Power:} & Q \triangleq \Im \left(S\right) \mbox{ Measured in Volt-Amps Reactive (VAR)} \\ \mbox{Power Factor:} & \cos \phi \triangleq \cos \left(\angle \widetilde{V} - \angle \widetilde{I}\right) = \frac{P}{|S|} \end{array}$

Machines and transformers have capacity limits and power losses that are independent of $\cos \phi$; their ratings are always given in apparent power. <u>Power Company</u>: Costs \propto apparent power, Revenue \propto average power.

Power in R, L, C

14: Power in AC <u>Circuits</u> Average Power Cosine Wave RMS Power Factor + Complex Power ▷ Power in R, L, C Tellegen's Theorem Power Factor Correction Ideal Transformer Transformer Applications Summary For any impedance, Z, complex power absorbed: $S = \widetilde{V}\widetilde{I}^* = P + jQ$ Using (a) $\widetilde{V} = \widetilde{I}Z$ (b) $\widetilde{I} \times \widetilde{I}^* = \left|\widetilde{I}\right|^2$ we get $S = \left|\widetilde{I}\right|^2 Z = \frac{\left|\widetilde{V}\right|^2}{Z^*}$

Resistor:
$$S = \left| \widetilde{I} \right|^2 R = \frac{\left| \widetilde{V} \right|^2}{R} \qquad \phi = 0$$

Absorbs average power, no VARs (Q = 0)

Inductor:
$$S = j \left| \widetilde{I} \right|^2 \omega L = j \frac{\left| \widetilde{V} \right|^2}{\omega L} \qquad \phi = +90^{\circ}$$

No average power, Absorbs VARs (Q > 0)

Capacitor:
$$S = -j \frac{|\tilde{I}|^2}{\omega C} = -j \left| \tilde{V} \right|^2 \omega C$$
 $\phi = -90^{\circ}$
No average power, Generates VARs ($Q < 0$)

VARs are generated by capacitors and absorbed by inductors The phase, ϕ , of the absorbed power, S, equals the phase of Z 14: Power in AC Circuits **Average Power** Cosine Wave RMS Power Factor +**Complex** Power Power in R, L, C Tellegen's Theorem Power Factor Correction Ideal Transformer Transformer Applications Summarv

Tellegen's Theorem: The complex power, S, dissipated in any circuit's components sums to zero.

 $x_n =$ voltage at node n $V_b, I_b =$ voltage/current in branch b(obeying passive sign convention) $a_{bn} \triangleq \begin{cases} -1 & \text{if } V_b \text{ starts from node } n \\ +1 & \text{if } V_b \text{ ends at node } n \\ 0 & \text{else} \end{cases}$ e.g. branch 4 goes from 2 to $3 \Rightarrow a_{4*} = [0, -1, 1]$ Branch voltages: $V_b = \sum_n a_{bn} x_n$ (e.g. $V_4 = x_3 - x_2$) KCL @ node n: $\sum_{b} a_{bn} I_b = 0 \implies \sum_{b} a_{bn} I_b^* = 0$ Tellegen: $\sum_{b} V_b I_b^* = \sum_{b} \sum_{n} a_{bn} x_n I_b^*$

 $= \sum_{n} \sum_{b} a_{bn} I_{b}^{*} x_{n} = \sum_{n} x_{n} \sum_{b} a_{bn} I_{b}^{*} = \sum_{n} x_{n} \times 0$ Note: $\sum_{b} S_{b} = 0 \implies \sum_{b} P_{b} = 0$ and also $\sum_{b} Q_{b} = 0$.

AC Power: 14 - 7 / 11

14: Power in AC Circuits Average Power Cosine Wave RMS Power Factor + Complex Power Power in R, L, C Tellegen's Theorem Power Factor ▷ Correction Ideal Transformer Transformer Applications Summary

$$\widetilde{V} = 230.$$
 Motor modelled as $5||7j \Omega.$
 $\widetilde{I} = \frac{\widetilde{V}}{R} + \frac{\widetilde{V}}{Z_L} = 46 - j32.9 \text{ A} = 56.5 \angle -36^{\circ}$
 $S = \widetilde{V}\widetilde{I}^* = 10.6 + j7.6 \text{ kVA} = 13 \angle 36^{\circ} \text{ kVA}$
 $\cos \phi = \frac{P}{|S|} = \cos 36^{\circ} = 0.81$

 $Z_C = \frac{1}{j\omega C} = -10.6j \,\Omega \Rightarrow I_C = 21.7j \,\mathsf{A}$

Add parallel capacitor of $300 \,\mu$ F:

 $\widetilde{I} = 46 - i11.2 \,\mathsf{A} = 47 \angle -14^{\circ} \,\mathsf{A}$

$$\begin{split} S_C &= \widetilde{V}\widetilde{I}_C^* = -j5 \text{ kVA} \\ S &= \widetilde{V}\widetilde{I}^* = 10.6 + j2.6 \text{ kVA} = 10.9 \angle 14^\circ \text{ kVA} \\ \cos \phi &= \frac{P}{|S|} = \cos 14^\circ = 0.97 \end{split}$$

Average power to motor, P, is 10.6 kW in both cases. $\left|\widetilde{I}\right|$, reduced from $56.5 \searrow 47 \text{ A} (-16\%) \Rightarrow \text{lower losses}$. Effect of C: VARs = $7.6 \searrow 2.6 \text{ kVAR}$, power factor = $0.81 \nearrow 0.97$.

Ideal Transformer

14: Power in AC <u>Circuits</u> Average Power Cosine Wave RMS Power Factor + Complex Power Power in R, L, C Tellegen's Theorem Power Factor Correction ▷ Ideal Transformer Transformer Applications Summary A transformer has ≥ 2 windings on the same magnetic core.

Ampère's law: $\sum N_r I_r = \frac{l\Phi}{\mu A}$; Faraday's law: $\frac{V_r}{N_r} = \frac{d\Phi}{dt}$. $N_1: N_2 + N_3$ shows the turns ratio between the windings. The • indicates the voltage polarity of each winding.

Since Φ is the same for all windings, $\frac{V_1}{N_1} = \frac{V_2}{N_2} = \frac{V_3}{N_3}$. Assume $\mu \to \infty \Rightarrow N_1I_1 + N_2I_2 + N_3I_3 = 0$

These two equations allow you to solve circuits and also imply that $\sum S_i = 0$.

Special Case:

For a 2-winding transformer this simplifies to $V_2 = \frac{N_2}{N_1}V_1$ and $I_L = -I_2 = \frac{N_1}{N_2}I_1$

Hence
$$\frac{V_1}{I_1} = \left(\frac{N_1}{N_2}\right)^2 \frac{V_2}{I_L} = \left(\frac{N_1}{N_2}\right)^2 Z$$

Equivalent to a *reflected impedance* of $\left(\frac{N_1}{N_2}\right)^2 Z$

14: Power in AC <u>Circuits</u> Average Power Cosine Wave RMS Power Factor + Complex Power Power in R, L, C Tellegen's Theorem Power Factor Correction Ideal Transformer □ Applications Summary

Power Transmission

```
Suppose a power transmission cable has 1 \Omega resistance.

100 \text{ kVA@ } 1 \text{ kV} = 100 \text{ A} \Rightarrow \tilde{I}^2 R = 10 \text{ kW} losses.

100 \text{ kVA@ } 100 \text{ kV} = 1 \text{ A} \Rightarrow \tilde{I}^2 R = 1 \text{ W} losses.
```

Voltage Conversion

Electronic equipment requires $\leq 20 \text{ V}$ but mains voltage is $240 \text{ V} \sim$.

Interference protection

Microphone on long cable is susceptible to interference from nearby mains cables. An N:1 transformer reduces the microphone voltage by N but reduces interference by N^2 .

Isolation

There is no electrical connection between the windings of a transformer so circuitry (or people) on one side will not be endangered by a failure that results in high voltages on the other side.

Summary

14: Power in AC <u>Circuits</u> Average Power Cosine Wave RMS Power Factor + Complex Power Power in R, L, C Tellegen's Theorem Power Factor Correction Ideal Transformer Transformer Applications ▷ Summary Complex Power: $S = \widetilde{V}\widetilde{I}^* = P + jQ$ where $\widetilde{V} = V_{rms} = \frac{1}{\sqrt{2}}V$. • For an impedance Z: $S = \left|\widetilde{I}\right|^2 Z = \frac{|\widetilde{V}|^2}{Z^*}$ • Apparent Power: $|S| = \left|\widetilde{V}\right| \left|\widetilde{I}\right|$ used for machine ratings. • Average Power: $P = \Re(S) = \left|\widetilde{V}\right| \left|\widetilde{I}\right| \cos \phi$ (in Watts) • Reactive Power: $Q = \Im(S) = \left|\widetilde{V}\right| \left|\widetilde{I}\right| \sin \phi$ (in VARs) • Power engineers *always* use \widetilde{V} and \widetilde{I} and omit the $\widetilde{}$.

- Tellegen: In any circuit $\sum_b S_b = 0 \Rightarrow \sum_b P_b = \sum_b Q_b = 0$
- Power Factor Correction: add parallel C to generate extra VARs
- Ideal Transformer: $V_i \propto N_i$ and $\sum N_i I_i = 0$ (implies $\sum S_i = 0$)

For further details see Hayt Ch 11 or Irwin Ch 9.