17: Transmission \triangleright Lines
Transmission Lines
Transmission Line
Equations
Solution to
Transmission Line
Equations
Forward Wave
Forward + Backward
Waves
Power Flow
Reflections
Reflection
Coefficients
Driving a line
Multiple Reflections
Transmission Line
Characteristics
Summary

17: Transmission Lines

Transmission Lines

17: Transmission Lines

\downarrow Transmission Lines

Transmission Line

 Equations Solution to Transmission Line
Equations

Forward Wave

Forward + Backward

Waves

Power Flow
Reflections
Reflection Coefficients
Driving a line
Multiple Reflections
Transmission Line
Characteristics
Summary

Previously assume that any change in $v_{0}(t)$ appears instantly at $v_{L}(t)$.
This is not true.
If fact signals travel at around half the speed of light ($c=30 \mathrm{~cm} / \mathrm{ns}$).
Reason: all wires have capacitance to ground and to neighbouring conductors and also self-inductance. It takes time to change the current through an inductor or voltage across a capacitor.

A transmission line is a wire with a uniform goemetry along its length: the capacitance and inductance of any segment is proportional to its length. We represent as a large number of small inductors and capacitors spaced along the line.
The signal speed along a transmisison line is predictable.

Transmission Line Equations

17: Transmission

Lines

Transmission Lines Transmission Line
\triangleright Equations
Solution to

Transmission Line

Equations

Forward Wave

Forward + Backward

Waves

Power Flow
Reflections
Reflection
Coefficients
Driving a line
Multiple Reflections
Transmission Line Characteristics Summary

A short section of line δx long:
$v(x, t)$ and $i(x, t)$ depend on both position and time.

Small $\delta x \Rightarrow$ ignore 2 nd order derivatives:

$$
\frac{\partial v(x, t)}{\partial t}=\frac{\partial v(x+\delta x, t)}{\partial t} \triangleq \frac{\partial v}{\partial t} .
$$

Basic Equations
$\mathrm{KVL}: \quad v(x, t)=V_{2}+v(x+\delta x, t)+V_{1}$
KCL: $\quad i(x, t)=i_{C}+i(x+\delta x, t)$
Capacitor equation: $\quad C \frac{\partial v}{\partial t}=i_{C}=i(x, t)-i(x+\delta x, t)=-\frac{\partial i}{\partial x} \delta x$ Inductor equation (L_{1} and L_{2} have the same current):

$$
\left(L_{1}+L_{2}\right) \frac{\partial t}{\partial t}=V_{1}+V_{2}=v(x, t)-v(x+\delta x, t)=-\frac{\partial v}{\partial x} \delta x
$$

Transmission Line Equations

$$
\begin{aligned}
& C_{0} \frac{\partial v}{\partial t}=-\frac{\partial i}{\partial x} \\
& L_{0} \frac{\partial i}{\partial t}=-\frac{\partial v}{\partial x}
\end{aligned}
$$

where $C_{0}=\frac{C}{\delta x}$ is the capacitance per unit length (Farads/m) and $L_{0}=\frac{L_{1}+L_{2}}{\delta x}$ is the total inductance per unit length (Henries/m).

[Partial Derivatives]

When we differentiate a function of two variables, we keep one of the variables fixed while differentiating with respect to the other; this is called a partial derivative and is written with a curly version of the letter " d ". Thus

$$
\frac{\partial v}{\partial x} \triangleq \lim _{\delta x \rightarrow 0} \frac{v(x+\delta x, t)-v(x, t)}{\delta x} \quad \text { and } \quad \frac{\partial v}{\partial t} \triangleq \lim _{\delta t \rightarrow 0} \frac{v(x, t+\delta t)-v(x, t)}{\delta t}
$$

Higher order derivatives may be obtained by differentiating the partial derivatives again to give

$$
\frac{\partial^{2} v}{\partial x^{2}} \triangleq \frac{\partial}{\partial x}\left(\frac{\partial v}{\partial x}\right), \quad \frac{\partial^{2} v}{\partial t^{2}} \triangleq \frac{\partial}{\partial t}\left(\frac{\partial v}{\partial t}\right) \quad \text { and } \quad \frac{\partial^{2} v}{\partial x \partial t} \triangleq \frac{\partial}{\partial x}\left(\frac{\partial v}{\partial t}\right)
$$

Provided the second order partial derivatives are continuous, the order of differentiation doesn't matter so that $\frac{\partial^{2} v}{\partial x \partial t}=\frac{\partial^{2} v}{\partial t \partial x}$.
If we take the normal Taylor series with respect to $x, v(x+\delta x, t)=v(x, t)+\frac{\partial v(x, t)}{\partial x} \delta x+O\left(\delta x^{2}\right)$, and differentiate each term with respect to t, we get

$$
\frac{\partial v(x+\delta x, t)}{\partial t}=\frac{\partial v(x, t)}{\partial t}+\frac{\partial^{2} v(x, t)}{\partial t \partial x} \delta x+O\left(\delta x^{2}\right)
$$

If $\delta x \rightarrow 0$, then we get $\frac{\partial v(x+\delta x, t)}{\partial t} \rightarrow \frac{\partial v(x, t)}{\partial t}$ as assumed on the previous slide.

[Deriving the Transmission Line Equations]

This note provides slightly more detail about how we derive the transmission line equations. By expanding $v(x+\delta x, t)$ and $i(x+\delta x, t)$ as Taylor Series in x, we can write

$$
v(x+\delta x, t)=v(x, t)+\delta x \frac{\partial v}{\partial x}(x, t)+O\left(\delta x^{2}\right) \quad \text { and } \quad i(x+\delta x, t)=i(x, t)+\delta x \frac{\partial i}{\partial x}(x, t)+O\left(\delta x^{2}\right)
$$

From the diagram on the previous page, the voltage across the capacitor is $v(x+\delta x, t)$ and so the capacitor equation is

$$
C \frac{\partial v}{\partial t}(x+\delta x, t)=i(x, t)-i(x+\delta x, t)
$$

Substituting in the Taylor series expansions for $v(x+\delta x, t)$ and $i(x+\delta x, t)$ and also substituting $C=C_{0} \delta x$ results in

$$
\begin{aligned}
C_{0} \delta x\left(\frac{\partial v}{\partial t}(x, t)+\delta x \frac{\partial^{2} v}{\partial x \partial t}(x, t)+O\left(\delta x^{2}\right)\right) & =-\delta x \frac{\partial i}{\partial x}(x, t)-O\left(\delta x^{2}\right) \\
\Rightarrow \quad C_{0}\left(\frac{\partial v}{\partial t}(x, t)+\delta x \frac{\partial^{2} v}{\partial x \partial t}(x, t)+O\left(\delta x^{2}\right)\right) & =-\frac{\partial i}{\partial x}(x, t)-O(\delta x)
\end{aligned}
$$

Finally, we let $\delta x \rightarrow 0$ and so all the terms that are $O(\delta x)$ or smaller disappear which leaves

$$
C_{0} \frac{\partial v}{\partial t}(x, t)=-\frac{\partial i}{\partial x}(x, t)
$$

The inductor equation, $L_{0} \frac{\partial i}{\partial t}=-\frac{\partial v}{\partial x}$, can be derived in a similar way.

Solution to Transmission Line Equations

17: Transmission

Lines

Transmission Lines

Transmission Line Equations

Solution to Transmission Line
Equations
Forward Wave
Forward + Backward
Waves
Power Flow
Reflections
Reflection
Coefficients
Driving a line
Multiple Reflections
Transmission Line Characteristics
Summary

Transmission Line Equations: $\quad C_{0} \frac{\partial v}{\partial t}=-\frac{\partial i}{\partial x} \quad L_{0} \frac{\partial i}{\partial t}=-\frac{\partial v}{\partial x}$
General solution:

$$
\begin{aligned}
& v(t, x)=f\left(t-\frac{x}{u}\right)+g\left(t+\frac{x}{u}\right) \\
& i(t, x)=\frac{f\left(t-\frac{x}{u}\right)-g\left(t+\frac{x}{u}\right)}{Z_{0}}
\end{aligned}
$$

$$
\text { where } u=\sqrt{\frac{1}{L_{0} C_{0}}} \text { and } Z_{0}=\sqrt{\frac{L_{0}}{C_{0}}} \text {. }
$$

u is the propagation velocity and Z_{0} is the characteristic impedance.
$f()$ and $g()$ can be any differentiable functions.
Verify by substitution:

$$
\begin{aligned}
-\frac{\partial i}{\partial x} & =-\left(\frac{-f^{\prime}\left(t-\frac{x}{u}\right)-g^{\prime}\left(t+\frac{x}{u}\right)}{Z_{0}} \times \frac{1}{u}\right) \\
& =C_{0}\left(f^{\prime}\left(t-\frac{x}{u}\right)+g^{\prime}\left(t+\frac{x}{u}\right)\right)=C_{0} \frac{\partial v}{\partial t}
\end{aligned}
$$

Forward Wave

17: Transmission

Lines

Transmission Lines

Transmission Line Equations
Solution to
Transmission Line

Equations

\triangleright Forward Wave
Forward + Backward

Waves

Power Flow
Reflections
Reflection
Coefficients

Driving a line

Multiple Reflections
Transmission Line Characteristics
Summary

Suppose:

$$
\begin{aligned}
& u=15 \mathrm{~cm} / \mathrm{ns} \\
& \text { and } g(t) \equiv 0 \\
& \Rightarrow v(x, t)=f\left(t-\frac{x}{u}\right)
\end{aligned}
$$

- At $x=0 \mathrm{~cm}[\mathbf{\Delta}]$, $v_{S}(t)=f\left(t-\frac{0}{u}\right)$
- At $x=45 \mathrm{~cm}[\mathrm{\Delta}]$, $v(45, t)=f\left(t-\frac{45}{u}\right)$
 $f\left(t-\frac{45}{u}\right)$ is exactly the same as $f(t)$ but delayed by $\frac{45}{u}=3 \mathrm{~ns}$.
- At $x=90 \mathrm{~cm}[\mathbf{\Delta}], v_{R}(t)=f\left(t-\frac{90}{u}\right)$; now delayed by 6 ns .

Waveform at $x=0$ completely determines the waveform everywhere else.
Snapshot at $t_{0}=4 \mathrm{~ns}$:
the waveform has just arrived at the point $x=u t_{0}=60 \mathrm{~cm}$.

$f\left(t-\frac{x}{u}\right)$ is a wave travelling forward (i.e. towards $+x$) along the line.

Forward + Backward Waves

17: Transmission

 LinesTransmission Lines Transmission Line Equations

Solution to

Transmission Line

Equations

Forward Wave
Forward +
Backward Waves

Power Flow

Reflections
Reflection
Coefficients
Driving a line
Multiple Reflections
Transmission Line Characteristics + Summary

Similarly $g\left(t+\frac{x}{u}\right)$ is a wave travelling backwards, i.e. in the $-x$ direction.

$$
\begin{aligned}
& v(x, t)= \\
& \quad f\left(t-\frac{x}{u}\right)+g\left(t+\frac{x}{u}\right) \\
& \text { At } x=0 \mathrm{~cm}[\mathbf{\Delta}] \\
& \quad v_{S}(t)=f(t)+g(t)
\end{aligned}
$$

At $x=45 \mathrm{~cm}$ [$\mathbf{\Delta}], g$ is only 1 ns behind f and they add together. At $x=90 \mathrm{~cm}$ [$\mathbf{\Lambda}], g$ starts at $t=1$ and f starts at $t=6$.

A vertical line on the diagram gives a snapshot of the entire line at a time instant t.
f and g first meet at $t=3.5$ and $x=52.5$.

Magically, f and g pass through each other entirely unaltered.

Power Flow

17: Transmission Lines

Transmission Lines Transmission Line

 Equations
Solution to

Transmission Line

Equations

Forward Wave

Forward + Backward Waves
\triangleright Power Flow

Reflections

 Reflection Coefficients
Driving a line

Multiple Reflections
Transmission Line Characteristics Summary

Define $f_{x}(t)=f\left(t-\frac{x}{u}\right)$ and $g_{x}(t)=g\left(t+\frac{x}{u}\right)$ to be the forward and backward waveforms at any point, x.

$$
\begin{aligned}
& i \text { is always } \\
& \text { measured in the } \\
& + \text { ve } x \text { direction. }
\end{aligned}
$$

Then $\quad v_{x}(t)=f_{x}(t)+g_{x}(t) \quad$ and $\quad i_{x}(t)=Z_{0}^{-1}\left(f_{x}(t)-g_{x}(t)\right)$.
Note: Knowing the waveform $f_{x}(t)$ or $g_{x}(t)$ at any position x, tells you it at all other positions: $f_{y}(t)=f_{x}\left(t-\frac{y-x}{u}\right)$ and $g_{y}(t)=g_{x}\left(t+\frac{y-x}{u}\right)$.

Power Flow

The power transferred into the shaded region across the boundary at x is

$$
\begin{aligned}
P_{x}(t) & =v_{x}(t) i_{x}(t)=Z_{0}^{-1}\left(f_{x}(t)+g_{x}(t)\right)\left(f_{x}(t)-g_{x}(t)\right) \\
& =\frac{f_{x}^{2}(t)}{Z_{0}}-\frac{g_{x}^{2}(t)}{Z_{0}}
\end{aligned}
$$

f_{x} carries power into shaded area and g_{x} carries power out independently.
Power travels in the same direction as the wave.
The same power as would be absorbed by a [ficticious] resistor of value Z_{0}.

Reflections

17: Transmission

Lines

Transmission Lines

 Transmission Line Equations
Solution to

Transmission Line

Equations

Forward Wave

Forward + Backward

Waves

Power Flow

\triangleright Reflections

Reflection

Coefficients
Driving a line
Multiple Reflections
Transmission Line Characteristics
Summary

$$
\begin{aligned}
& v_{x}=f_{x}+g_{x} \\
& i_{x}=Z_{0}^{-1}\left(f_{x}-g_{x}\right)
\end{aligned}
$$

From Ohm's law at $x=L$, we have $v_{L}(t)=i_{L}(t) R_{L}$
Hence $\left(f_{L}(t)+g_{L}(t)\right)=Z_{0}^{-1}\left(f_{L}(t)-g_{L}(t)\right) R_{L}$
From this: $g_{L}(t)=\frac{R_{L}-Z_{0}}{R_{L}+Z_{0}} \times f_{L}(t)$
We define the reflection coefficient: $\rho_{L}=\frac{g_{L}(t)}{f_{L}(t)}=\frac{R_{L}-Z_{0}}{R_{L}+Z_{0}}=+0.5$
Substituting $g_{L}(t)=\rho_{L} f_{L}(t)$ gives

$$
v_{L}(t)=\left(1+\rho_{L}\right) f_{L}(t) \text { and } i_{L}(t)=\left(1-\rho_{L}\right) Z_{0}^{-1} f_{L}(t)
$$

At source end: $\quad g_{0}(t)=\rho_{L} f_{0}\left(t-\frac{2 L}{u}\right)$ i.e. delayed by $\frac{2 L}{u}=12 \mathrm{~ns}$. Note that the reflected current has been multiplied by $-\rho$.

Reflection Coefficients

17: Transmission Lines

Transmission Lines

Transmission Line Equations
Solution to

Transmission Line

Equations

Forward Wave

Forward + Backward
Waves
Power Flow
Reflections
Reflection
D Coefficients
Driving a line
Multiple Reflections
Transmission Line Characteristics
Summary
$\rho=\frac{R-Z_{0}}{R+Z_{0}}=\frac{\frac{R}{Z_{0}}-1}{\frac{R}{Z_{0}}+1}$
$\frac{v_{L}(t)}{f(t)}=1+\rho$
$\frac{i_{L}(t) Z_{0}}{f(t)}=1-\rho$
ρ depends on the ratio $\frac{R}{Z_{0}}$.

$\frac{R}{Z_{0}}$	ρ	$\frac{v_{L}(t)}{f(t)}$	$\frac{i_{L}(t) Z_{0}}{f(t)}$	Comment
∞	+1	2	0	Open circuit: $v_{L}=2 f, i_{L} \equiv 0$
3	+0.5	1.5	0.5	$R>Z_{0} \Rightarrow \rho>0$
1	0	1	1	Matched: No reflection at all
$\frac{1}{3}$	-0.5	0.5	1.5	$R<Z_{0} \Rightarrow \rho<0$
0	-1	0	2	Short circuit: $v_{L} \equiv 0, i_{L}=\frac{2 f}{Z_{0}}$

Note: Reverse mapping is $R=\frac{v_{L}}{i_{L}}=\frac{1+\rho}{1-\rho} \times Z_{0}$
Remember: $\quad \rho \in\{-1,+1\}$ and increases with R.

Driving a line

17: Transmission

 LinesTransmission Lines Transmission Line Equations

Solution to

Transmission Line

Equations

Forward Wave
Forward + Backward

Waves

Power Flow
Reflections
Reflection
Coefficients
\triangleright Driving a line
Multiple Reflections
Transmission Line Characteristics
Summary

$$
\begin{aligned}
& v_{x}=f_{x}+g_{x} \\
& i_{x}=\frac{f_{x}-g_{x}}{Z_{0}}
\end{aligned}
$$

From Ohm's law at $x=0$, we have $v_{0}(t)=v_{S}(t)-i_{0}(t) R_{S}$ where R_{S} is the Thévenin resistance of the voltage source.

Substituting $v_{0}(t)=f_{0}+g_{0}$ and $i_{0}(t)=\frac{f_{0}-g_{0}}{Z_{0}}$ leads to:

$$
f_{0}(t)=\frac{Z_{0}}{R_{S}+Z_{0}} v_{S}(t)+\frac{R_{S}-Z_{0}}{R_{S}+Z_{0}} g_{0}(t) \triangleq \tau_{0} v_{S}(t)+\rho_{0} g_{0}(t)
$$

So $f_{0}(t)$ is the superposition of two terms:
(1) Input $v_{S}(t)$ multiplied by $\tau_{0}=\frac{Z_{0}}{R_{S}+Z_{0}}$ which is the same as a potential divider if you replace the line with a [ficticious] resistor Z_{0}.
(2) The incoming backward wave, $g_{0}(t)$, multiplied by a reflection coefficient: $\rho_{0}=\frac{R_{S}-Z_{0}}{R_{S}+Z_{0}}$.
For $R_{S}=20: \tau_{0}=\frac{100}{20+100}=0.83 \quad$ and $\quad \rho_{0}=\frac{20-100}{20+100}=-0.67$.

Multiple Reflections

17: Transmission

Lines

Transmission Lines

 Transmission Line EquationsSolution to

Transmission Line

Equations

Forward Wave

Forward + Backward

Waves

Power Flow
Reflections
Reflection
Coefficients
Driving a line
Multiple
\triangleright Reflections
Transmission Line
Characteristics +
Summary

Each extra bit of f_{0} is delayed by $\frac{2 L}{u}$ (=12 ns) and multiplied by $\rho_{L} \rho_{0}$:
$f_{0}(t)=$

$$
\sum_{i=0}^{\infty} \tau_{0} \rho_{L}^{i} \rho_{0}^{i} v_{S}\left(t-\frac{2 L i}{u}\right)
$$

$$
g_{L}(t)=\rho_{L} f_{0}\left(t-\frac{L}{u}\right)
$$

$$
v_{0}(t)=
$$

$$
f_{0}(t)+g_{L}\left(t-\frac{L}{u}\right)
$$

$$
v_{L}(t)=
$$

$$
f_{0}\left(t-\frac{L}{u}\right)+g_{L}(t)
$$

$$
\begin{aligned}
& \rho_{0}=-\frac{2}{3} \\
& \rho_{L}=\frac{1}{2} \\
& v_{x}=f_{x}+g_{x}
\end{aligned}
$$

Transmission Line Characteristics

17: Transmission Lines

Transmission Lines
Transmission Line
Equations
Solution to
Transmission Line
Equations
Forward Wave
Forward + Backward
Waves
Power Flow
Reflections
Reflection
Coefficients
Driving a line
Multiple Reflections
Transmission Line
Characteristics +

Integrated circuits \& Printed circuit boards
High speed digital or high frequency analog interconnections
$Z_{0} \approx 100 \Omega, u \approx 15 \mathrm{~cm} / \mathrm{ns}$.
Long Cables
Coaxial cable ("coax"): unaffacted by external fields; use for antennae and instrumentation. $Z_{0}=50$ or $75 \Omega, u \approx 25 \mathrm{~cm} / \mathrm{ns}$.
Twisted Pairs: cheaper and thinner than coax and resistant to magnetic fields; use for computer network and telephone cabling. $Z_{0} \approx 100 \Omega, u \approx 19 \mathrm{~cm} / \mathrm{ns}$.

When do you have to bother?
Answer: long cables or high frequencies. You can completely ignore transmission line effects if length $\ll \frac{u}{\text { frequency }}=$ wavelength.

- Audio ($<20 \mathrm{kHz}$) never matters.
- Computers (1 GHz) usually matters.
- Radio/TV usually matters.

[Transmission Line Grounds]

For long coaxial or twisted pair cables, the "ground" wire has significant inductance and so its two ends are not necessarily at the same voltage. This means that $v_{x}(t), f_{x}(t)$ and $g_{x}(t)$ are measured relative to the "ground" at position x as shown. It follows that potential differences like $v_{R}(t)=v_{A}(t)-v_{B}(t)$ make sense but talking about $v_{A}(t)$ on its own is meaningless.

Integrated circuits and printed circuit boards normally have a low impedance "ground plane" covering the entire circuit; in a multilayer printed circuit board this typically forms one entire layer. In this case we have a single ground reference for the whole circuit and it now makes sense to talk about the voltage "at" a node and to say $v_{R}(t)=v_{A}(t)$.

Summary

17: Transmission Lines

Transmission Lines

 Transmission Line Equations Solution to Transmission Line Equations
Forward Wave

Forward + Backward

Waves

Power Flow
Reflections
Reflection Coefficients

Driving a line

Multiple Reflections
Transmission Line Characteristics
\triangleright Summary

- Signals travel at around $u \approx \frac{1}{2} c=15 \mathrm{~cm} / \mathrm{ns}$.

Only matters for high frequencies or long cables.

- Forward and backward waves travel along the line:

$$
f_{x}(t)=f_{0}\left(t-\frac{x}{u}\right) \quad \text { and } \quad g_{x}(t)=g_{0}\left(t+\frac{x}{u}\right)
$$

- Knowing f_{x} and g_{x} at any single x position tells you everything
- Voltage and current are: $v_{x}=f_{x}+g_{x}$ and $i_{x}=\frac{f_{x}-g_{x}}{Z_{0}}$
- Terminating line with R at $x=L$ links the forward and backward waves:
- backward wave is $g_{L}=\rho_{L} f_{L}$ where $\rho_{L}=\frac{R-Z_{0}}{R+Z_{0}}$
- the reflection coefficient, $\rho_{L} \in\{-1,+1\}$ and increases with R
- $R=Z_{0}$ avoids reflections: matched termination.
- Reflections go on for ever unless one or both ends are matched.
- $\quad f$ is infinite sum of copies of the input signal delayed successively by the round-trip delay, $\frac{2 L}{u}$, and multiplied by $\rho_{L} \rho_{0}$.

