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Previously assume that any hange in v0(t) appears instantly at vL(t).

This is not true.

If fat signals travel at around half the speed of light (c = 30 m/ns).

Reason: all wires have apaitane to ground and to neighbouring

ondutors and also self-indutane. It takes time to hange the urrent

through an indutor or voltage aross a apaitor.

A transmission line is a wire with a uniform goemetry along its length: the

apaitane and indutane of any segment is proportional to its length.

We represent as a large number of small indutors and apaitors spaed

along the line.

The signal speed along a transmisison line is preditable.
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A short setion of line δx long:

v(x, t) and i(x, t) depend on both

position and time.

Small δx ⇒ ignore 2nd order derivatives:

∂v(x,t)
∂t

= ∂v(x+δx,t)
∂t

, ∂v
∂t

.

Basi Equations

KVL: v(x, t) = V2 + v(x+ δx, t) + V1

KCL: i(x, t) = iC + i(x+ δx, t)

Capaitor equation: C ∂v
∂t

= iC = i(x, t)− i(x+ δx, t) = − ∂i
∂x

δx

Indutor equation (L1 and L2 have the same urrent):

(L1 + L2)
∂i
∂t

= V1 + V2 = v(x, t)− v(x+ δx, t) = − ∂v
∂x

δx

Transmission Line Equations

C0
∂v
∂t

= − ∂i
∂x

L0
∂i
∂t

= − ∂v
∂x

where C0 = C
δx

is the apaitane per unit length

(Farads/m) and L0 = L1+L2

δx

is the total

indutane per unit length (Henries/m).
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When we di�erentiate a funtion of two variables, we keep one of the variables �xed while di�erentiating

with respet to the other; this is alled a partial derivative and is written with a urly version of the

letter �d�. Thus

∂v

∂x
, lim

δx→0

v(x+ δx, t)− v(x, t)

δx
and

∂v

∂t
, lim

δt→0

v(x, t+ δt)− v(x, t)

δt
.

Higher order derivatives may be obtained by di�erentiating the partial derivatives again to give

∂2v

∂x2
,

∂

∂x

(

∂v

∂x

)

,
∂2v

∂t2
,

∂

∂t

(

∂v

∂t

)

and
∂2v

∂x∂t
,

∂

∂x

(

∂v

∂t

)

.

Provided the seond order partial derivatives are ontinuous, the order of di�erentiation doesn't matter

so that

∂2v
∂x∂t

= ∂2v
∂t∂x

.

If we take the normal Taylor series with respet to x, v(x + δx, t) = v(x, t) +
∂v(x,t)

∂x
δx + O

(

δx2
)

,

and di�erentiate eah term with respet to t, we get

∂v(x+ δx, t)

∂t
=

∂v(x, t)

∂t
+

∂2v(x, t)

∂t∂x
δx+O

(

δx2
)

.

If δx → 0, then we get

∂v(x+δx, t)
∂t

→
∂v(x,t)

∂t

as assumed on the previous slide.
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This note provides slightly more detail about how we derive the transmission line equations. By ex-

panding v(x+ δx, t) and i(x+ δx, t) as Taylor Series in x, we an write

v(x+ δx, t) = v(x, t) + δx
∂v

∂x
(x, t) +O(δx2) and i(x+ δx, t) = i(x, t) + δx

∂i

∂x
(x, t) +O(δx2).

From the diagram on the previous page, the voltage aross the apaitor is v(x + δx, t) and so the

apaitor equation is

C
∂v

∂t
(x+ δx, t) = i(x, t)− i(x+ δx, t).

Substituting in the Taylor series expansions for v(x + δx, t) and i(x + δx, t) and also substituting

C = C0δx results in

C0δx

(

∂v

∂t
(x, t) + δx

∂2v

∂x∂t
(x, t) + O(δx2)

)

= −δx
∂i

∂x
(x, t)−O(δx2)

⇒ C0

(

∂v

∂t
(x, t) + δx

∂2v

∂x∂t
(x, t) + O(δx2)

)

= −
∂i

∂x
(x, t)−O(δx).

Finally, we let δx → 0 and so all the terms that are O(δx) or smaller disappear whih leaves

C0
∂v

∂t
(x, t) = −

∂i

∂x
(x, t).

The indutor equation, L0
∂i
∂t

= −
∂v
∂x

, an be derived in a similar way.
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Transmission Line Equations: C0
∂v
∂t

= − ∂i
∂x

L0
∂i
∂t

= − ∂v
∂x

General solution: v(t, x) = f(t− x
u
) + g(t+ x

u
)

i(t, x) =
f(t− x

u
)−g(t+ x

u
)

Z0

where u =
√

1
L0C0

and Z0 =
√

L0

C0

.

u is the propagation veloity and Z0 is the harateristi impedane.

f() and g() an be any di�erentiable funtions.

Verify by substitution:

− ∂i
∂x

= −
(

−f ′(t− x

u
)−g′(t+ x

u
)

Z0

× 1
u

)

= C0

(

f ′(t− x
u
) + g′(t+ x

u
)
)

= C0
∂v
∂t
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Suppose:

u = 15 cm/ns

and g(t) ≡ 0
⇒ v(x, t) = f

(

t− x
u

)

• At x = 0 m [N℄,

vS(t) = f(t− 0
u
)

• At x = 45 m [N℄,

v(45, t) = f(t− 45
u
)

0 2 4 6 8 10
Time (ns)

f(t-0/u) f(t-45/u) f(t-90/u)

f(t− 45
u
) is exatly the same as f(t) but delayed by

45
u

= 3 ns.

• At x = 90 m [N℄, vR(t) = f(t− 90
u
); now delayed by 6 ns.

Waveform at x = 0 ompletely determines the waveform everywhere else.

Snapshot at t0 = 4ns:

the waveform has just

arrived at the point

x = ut0 = 60 m. 0 20 40 60 80
Position (cm)

f(4-x/u)t = 4 ns

f(t− x
u
) is a wave travelling forward (i.e. towards +x) along the line.
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Similarly g(t+ x
u
) is a wave travelling bakwards, i.e. in the −x diretion.

v(x, t) =
f(t− x

u
) + g(t+ x

u
)

At x = 0 m [N℄,

vS(t) = f(t) + g(t)

At x = 45 m [N℄, g is only 1 ns behind f and they add together.

At x = 90 m [N℄, g starts at t = 1 and f starts at t = 6.

A vertial line on the diagram

gives a snapshot of the entire

line at a time instant t.

f and g �rst meet at t = 3.5

and x = 52.5.

Magially, f and g pass

through eah other entirely

unaltered.
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De�ne fx(t) = f
(

t− x
u

)

and gx(t) = g
(

t+ x
u

)

to be the forward and

bakward waveforms at any point, x.

i is always

measured in the

+ve x diretion.

Then vx(t) = fx(t) + gx(t) and ix(t) = Z−1
0 (fx(t)− gx(t)).

Note: Knowing the waveform fx(t) or gx(t) at any position x, tells you it at

all other positions: fy(t) = fx
(

t− y−x
u

)

and gy(t) = gx
(

t+ y−x
u

)

.

Power Flow

The power transferred into the shaded region aross the boundary at x is

Px(t) = vx(t)ix(t) = Z−1
0 (fx(t) + gx(t)) (fx(t)− gx(t))

=
f2

x
(t)

Z0

−
g2

x
(t)

Z0

fx arries power into shaded area and gx arries power out independently.

Power travels in the same diretion as the wave.

The same power as would be absorbed by a [�tiious℄ resistor of value Z0.
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vx = fx + gx
ix = Z−1

0 (fx − gx)

From Ohm's law at x = L, we have vL(t) = iL(t)RL

Hene (fL(t) + gL(t)) = Z−1
0 (fL(t)− gL(t))RL

From this: gL (t) = RL−Z0

RL+Z0

× fL (t)

We de�ne the re�etion oe�ient: ρL = gL(t)
fL(t) =

RL−Z0

RL+Z0

= +0.5

Substituting gL (t) = ρLfL (t) gives
vL(t) = (1 + ρL) fL(t) and iL(t) = (1− ρL)Z

−1
0 fL(t)

0 2 4 6 8 10 12 14 16 18
Time (ns)

v
0
(t)

0 2 4 6 8 10 12 14 16 18
Time (ns)

i
0
(t)

At soure end: g0(t) = ρLf0
(

t− 2L
u

)

i.e. delayed by

2L
u

= 12 ns.

Note that the re�eted urrent has been multiplied by −ρ.
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ρ = R−Z0

R+Z0

=
R

Z0
−1

R

Z0
+1

vL(t)
f(t) = 1 + ρ
iL(t)Z0

f(t) = 1− ρ 0 1 2 3 4 5
-1

0

1

RZ
0
-1

ρ

ρ depends on the ratio

R
Z0

.

R
Z0

ρ vL(t)
f(t)

iL(t)Z0

f(t) Comment

∞ +1 2 0 Open iruit: vL = 2f , iL ≡ 0
3 +0.5 1.5 0.5 R > Z0 ⇒ ρ > 0
1 0 1 1 Mathed: No re�etion at all

1
3 −0.5 0.5 1.5 R < Z0 ⇒ ρ < 0

0 −1 0 2 Short iruit: vL ≡ 0, iL = 2f
Z0

Note: Reverse mapping is R = vL
iL

= 1+ρ
1−ρ

× Z0

Remember: ρ ∈ {−1,+1} and inreases with R.
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vx = fx + gx
ix = fx−gx

Z0

From Ohm's law at x = 0, we have v0(t) = vS(t)− i0(t)RS where RS is

the Thévenin resistane of the voltage soure.

Substituting v0(t) = f0 + g0 and i0(t) =
f0−g0
Z0

leads to:

f0(t) =
Z0

RS+Z0

vS(t) +
RS−Z0

RS+Z0

g0(t), τ0vS(t) + ρ0g0(t)

So f0(t) is the superposition of two terms:

(1) Input vS(t) multiplied by τ0 = Z0

RS+Z0

whih is the same as a

potential divider if you replae the line with a [�tiious℄ resistor Z0.

(2) The inoming bakward wave, g0(t), multiplied by a re�etion

oe�ient: ρ0 = RS−Z0

RS+Z0

.

For RS = 20: τ0 = 100
20+100 = 0.83 and ρ0 = 20−100

20+100 = −0.67.
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ρ0 = − 2
3

ρL = 1
2

vx = fx + gx

Eah extra bit of f0 is

delayed by

2L
u

(=12 ns)

and multiplied by ρLρ0 :

f0(t) =
∑

∞

i=0 τ0ρ
i
Lρ

i
0vS

(

t− 2Li
u

)

gL(t) = ρLf0
(

t− L
u

)

v0(t) =
f0(t) + gL

(

t− L
u

)

vL(t) =
f0

(

t− L
u

)

+ gL(t)

0 5 10 15 20 25 30
Time (ns)

f
0
(t)

0 5 10 15 20 25 30
Time (ns)

g
L
(t)

0 5 10 15 20 25 30
Time (ns)

v
0
(t)

0 5 10 15 20 25 30
Time (ns)

v
L
(t)
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Integrated iruits & Printed iruit boards

High speed digital or high frequeny analog

interonnetions

Z0 ≈ 100Ω, u ≈ 15 m/ns.

Long Cables

Coaxial able (�oax�): una�ated by external �elds;

use for antennae and instrumentation.

Z0 = 50 or 75Ω, u ≈ 25 m/ns.

Twisted Pairs: heaper and thinner than oax and

resistant to magneti �elds; use for omputer network

and telephone abling. Z0 ≈ 100Ω, u ≈ 19 m/ns.

When do you have to bother?

Answer: long ables or high frequenies. You an ompletely ignore

transmission line e�ets if length ≪ u
frequency = wavelength.

• Audio (< 20 kHz) never matters.

• Computers (1GHz) usually matters.

• Radio/TV usually matters.
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For long oaxial or twisted pair ables, the �ground� wire has signi�ant indutane and so its two ends

are not neessarily at the same voltage. This means that vx(t), fx(t) and gx(t) are measured relative

to the �ground� at position x as shown. It follows that potential di�erenes like vR(t) = vA(t)− vB(t)

make sense but talking about vA(t) on its own is meaningless.

Integrated iruits and printed iruit boards normally have a low impedane �ground plane� overing

the entire iruit; in a multilayer printed iruit board this typially forms one entire layer. In this ase

we have a single ground referene for the whole iruit and it now makes sense to talk about the voltage

�at� a node and to say vR(t) = vA(t).
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• Signals travel at around u ≈ 1
2c = 15 m/ns.

Only matters for high frequenies or long ables.

• Forward and bakward waves travel along the line:

fx(t) = f0
(

t− x
u

)

and gx(t) = g0
(

t+ x
u

)

◦ Knowing fx and gx at any single x position tells you everything

• Voltage and urrent are: vx = fx + gx and ix = fx−gx
Z0

• Terminating line with R at x = L links the forward and bakward waves:

◦ bakward wave is gL = ρLfL where ρL = R−Z0

R+Z0

◦ the re�etion oe�ient, ρL ∈ {−1,+1} and inreases with R

◦ R = Z0 avoids re�etions: mathed termination.

◦ Re�etions go on for ever unless one or both ends are mathed.

◦ f is in�nite sum of opies of the input signal delayed suessively

by the round-trip delay,

2L
u

, and multiplied by ρLρ0.
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