18: Phasors and
Transmission Lines

- Phasors and transmision
lines
- Phasor Relationships
- Phasor Reflection
- Standing Waves
- Summary
- Merry Xmas

18: Phasors and Transmission Lines

Phasors and transmision lines

18: Phasors and
Transmission Lines

- Phasors and transmision
lines
- Phasor Relationships
- Phasor Reflection
- Standing Waves
- Summary
- Merry Xmas

For a transmission line:

$$
\begin{aligned}
& v(t, x)=f\left(t-\frac{x}{u}\right)+g\left(t+\frac{x}{u}\right) \quad \text { and } \\
& i(t, x)=Z_{0}^{-1}\left(f\left(t-\frac{x}{u}\right)-g\left(t+\frac{x}{u}\right)\right)
\end{aligned}
$$

Phasors and transmision lines

18: Phasors and
Transmission Lines

- Phasors and transmision
lines
- Phasor Relationships
- Phasor Reflection
- Standing Waves
- Summary
- Merry Xmas

For a transmission line:

$$
\begin{aligned}
& v(t, x)=f\left(t-\frac{x}{u}\right)+g\left(t+\frac{x}{u}\right) \quad \text { and } \\
& i(t, x)=Z_{0}^{-1}\left(f\left(t-\frac{x}{u}\right)-g\left(t+\frac{x}{u}\right)\right)
\end{aligned}
$$

We can use phasors to eliminate t from the equations if $f()$ and $g()$ are sinusoidal with the same ω

Phasors and transmision lines

18: Phasors and
Transmission Lines

- Phasors and transmision
lines
- Phasor Relationships
- Phasor Reflection
- Standing Waves
- Summary
- Merry Xmas

For a transmission line:

$$
\begin{aligned}
& v(t, x)=f\left(t-\frac{x}{u}\right)+g\left(t+\frac{x}{u}\right) \quad \text { and } \\
& i(t, x)=Z_{0}^{-1}\left(f\left(t-\frac{x}{u}\right)-g\left(t+\frac{x}{u}\right)\right)
\end{aligned}
$$

We can use phasors to eliminate t from the equations if $f()$ and $g()$ are sinusoidal with the same $\omega: f(t)=A \cos (\omega t+\phi) \Rightarrow F=A e^{j \phi}$.

Phasors and transmision lines

18: Phasors and
Transmission Lines

- Phasors and transmision
lines
- Phasor Relationships
- Phasor Reflection
- Standing Waves
- Summary
- Merry Xmas

For a transmission line:

$$
\begin{aligned}
& v(t, x)=f\left(t-\frac{x}{u}\right)+g\left(t+\frac{x}{u}\right) \quad \text { and } \\
& i(t, x)=Z_{0}^{-1}\left(f\left(t-\frac{x}{u}\right)-g\left(t+\frac{x}{u}\right)\right)
\end{aligned}
$$

We can use phasors to eliminate t from the equations if $f()$ and $g()$ are sinusoidal with the same $\omega: f(t)=A \cos (\omega t+\phi) \Rightarrow F=A e^{j \phi}$.

Then $f_{x}(t)=f\left(t-\frac{x}{u}\right)=A \cos \left(\omega\left(t-\frac{x}{u}\right)+\phi\right)$

Phasors and transmision lines

18: Phasors and
Transmission Lines

- Phasors and transmision
lines
- Phasor Relationships
- Phasor Reflection
- Standing Waves
- Summary
- Merry Xmas

For a transmission line:

$$
\begin{aligned}
& v(t, x)=f\left(t-\frac{x}{u}\right)+g\left(t+\frac{x}{u}\right) \quad \text { and } \\
& i(t, x)=Z_{0}^{-1}\left(f\left(t-\frac{x}{u}\right)-g\left(t+\frac{x}{u}\right)\right)
\end{aligned}
$$

We can use phasors to eliminate t from the equations if $f()$ and $g()$ are sinusoidal with the same $\omega: f(t)=A \cos (\omega t+\phi) \Rightarrow F=A e^{j \phi}$.

$$
\begin{aligned}
& \text { Then } f_{x}(t)=f\left(t-\frac{x}{u}\right)=A \cos \left(\omega\left(t-\frac{x}{u}\right)+\phi\right) \\
& \qquad \Rightarrow F_{x}=A e^{j\left(-\frac{\omega}{u} x+\phi\right)}
\end{aligned}
$$

Phasors and transmision lines

18: Phasors and
Transmission Lines

- Phasors and transmision
lines
- Phasor Relationships
- Phasor Reflection
- Standing Waves
- Summary
- Merry Xmas

For a transmission line: $\quad v(t, x)=f\left(t-\frac{x}{u}\right)+g\left(t+\frac{x}{u}\right) \quad$ and

$$
i(t, x)=Z_{0}^{-1}\left(f\left(t-\frac{x}{u}\right)-g\left(t+\frac{x}{u}\right)\right)
$$

We can use phasors to eliminate t from the equations if $f()$ and $g()$ are sinusoidal with the same $\omega: f(t)=A \cos (\omega t+\phi) \Rightarrow F=A e^{j \phi}$.

$$
\begin{aligned}
& \text { Then } f_{x}(t)=f\left(t-\frac{x}{u}\right)=A \cos \left(\omega\left(t-\frac{x}{u}\right)+\phi\right) \\
& \Rightarrow F_{x}=A e^{j\left(-\frac{\omega}{u} x+\phi\right)}=A e^{j \phi} e^{-j \frac{\omega}{u} x}
\end{aligned}
$$

Phasors and transmision lines

18: Phasors and
Transmission Lines

- Phasors and transmision
lines
- Phasor Relationships
- Phasor Reflection
- Standing Waves
- Summary
- Merry Xmas

For a transmission line:

$$
\begin{aligned}
& v(t, x)=f\left(t-\frac{x}{u}\right)+g\left(t+\frac{x}{u}\right) \quad \text { and } \\
& i(t, x)=Z_{0}^{-1}\left(f\left(t-\frac{x}{u}\right)-g\left(t+\frac{x}{u}\right)\right)
\end{aligned}
$$

We can use phasors to eliminate t from the equations if $f()$ and $g()$ are sinusoidal with the same $\omega: f(t)=A \cos (\omega t+\phi) \Rightarrow F=A e^{j \phi}$.
Then $f_{x}(t)=f\left(t-\frac{x}{u}\right)=A \cos \left(\omega\left(t-\frac{x}{u}\right)+\phi\right)$

$$
\Rightarrow F_{x}=A e^{j\left(-\frac{\omega}{u} x+\phi\right)}=A e^{j \phi} e^{-j \frac{\omega}{u} x}=F_{0} e^{-j k x}
$$

where the wavenumber is $k \triangleq \frac{\omega}{u}$.

Phasors and transmision lines

18: Phasors and
Transmission Lines

- Phasors and transmision
lines
- Phasor Relationships
- Phasor Reflection
- Standing Waves
- Summary
- Merry Xmas

For a transmission line:

$$
\begin{aligned}
& v(t, x)=f\left(t-\frac{x}{u}\right)+g\left(t+\frac{x}{u}\right) \quad \text { and } \\
& i(t, x)=Z_{0}^{-1}\left(f\left(t-\frac{x}{u}\right)-g\left(t+\frac{x}{u}\right)\right)
\end{aligned}
$$

We can use phasors to eliminate t from the equations if $f()$ and $g()$ are sinusoidal with the same $\omega: f(t)=A \cos (\omega t+\phi) \Rightarrow F=A e^{j \phi}$.
Then $f_{x}(t)=f\left(t-\frac{x}{u}\right)=A \cos \left(\omega\left(t-\frac{x}{u}\right)+\phi\right)$

$$
\Rightarrow F_{x}=A e^{j\left(-\frac{\omega}{u} x+\phi\right)}=A e^{j \phi} e^{-j \frac{\omega}{u} x}=F_{0} e^{-j k x}
$$

where the wavenumber is $k \triangleq \frac{\omega}{u}$.
Units: ω is "radians per second", k is "radians per metre" (note $k \propto \omega$).

Phasors and transmision lines

18: Phasors and
Transmission Lines

- Phasors and transmision
lines
- Phasor Relationships
- Phasor Reflection
- Standing Waves
- Summary
- Merry Xmas

For a transmission line:

$$
\begin{aligned}
& v(t, x)=f\left(t-\frac{x}{u}\right)+g\left(t+\frac{x}{u}\right) \quad \text { and } \\
& i(t, x)=Z_{0}^{-1}\left(f\left(t-\frac{x}{u}\right)-g\left(t+\frac{x}{u}\right)\right)
\end{aligned}
$$

We can use phasors to eliminate t from the equations if $f()$ and $g()$ are sinusoidal with the same $\omega: f(t)=A \cos (\omega t+\phi) \Rightarrow F=A e^{j \phi}$.
Then $f_{x}(t)=f\left(t-\frac{x}{u}\right)=A \cos \left(\omega\left(t-\frac{x}{u}\right)+\phi\right)$

$$
\Rightarrow F_{x}=A e^{j\left(-\frac{\omega}{u} x+\phi\right)}=A e^{j \phi} e^{-j \frac{\omega}{u} x}=F_{0} e^{-j k x}
$$

where the wavenumber is $k \triangleq \frac{\omega}{u}$.
Units: ω is "radians per second", k is "radians per metre" (note $k \propto \omega$).
Similarly $G_{x}=G_{0} e^{+j k x}$.

Phasors and transmision lines

18: Phasors and
Transmission Lines

- Phasors and transmision
lines
- Phasor Relationships
- Phasor Reflection
- Standing Waves
- Summary
- Merry Xmas

For a transmission line:

$$
\begin{aligned}
& v(t, x)=f\left(t-\frac{x}{u}\right)+g\left(t+\frac{x}{u}\right) \quad \text { and } \\
& i(t, x)=Z_{0}^{-1}\left(f\left(t-\frac{x}{u}\right)-g\left(t+\frac{x}{u}\right)\right)
\end{aligned}
$$

We can use phasors to eliminate t from the equations if $f()$ and $g()$ are sinusoidal with the same $\omega: f(t)=A \cos (\omega t+\phi) \Rightarrow F=A e^{j \phi}$.
Then $f_{x}(t)=f\left(t-\frac{x}{u}\right)=A \cos \left(\omega\left(t-\frac{x}{u}\right)+\phi\right)$

$$
\Rightarrow F_{x}=A e^{j\left(-\frac{\omega}{u} x+\phi\right)}=A e^{j \phi} e^{-j \frac{\omega}{u} x}=F_{0} e^{-j k x}
$$

where the wavenumber is $k \triangleq \frac{\omega}{u}$.
Units: ω is "radians per second", k is "radians per metre" (note $k \propto \omega$).
Similarly $G_{x}=G_{0} e^{+j k x}$.
Everything is time-invariant: phasors do not depend on t.

Phasors and transmision lines

18: Phasors and
Transmission Lines

- Phasors and transmision
lines
- Phasor Relationships
- Phasor Reflection
- Standing Waves
- Summary
- Merry Xmas

For a transmission line:

$$
\begin{aligned}
& v(t, x)=f\left(t-\frac{x}{u}\right)+g\left(t+\frac{x}{u}\right) \quad \text { and } \\
& i(t, x)=Z_{0}^{-1}\left(f\left(t-\frac{x}{u}\right)-g\left(t+\frac{x}{u}\right)\right)
\end{aligned}
$$

We can use phasors to eliminate t from the equations if $f()$ and $g()$ are sinusoidal with the same $\omega: f(t)=A \cos (\omega t+\phi) \Rightarrow F=A e^{j \phi}$.
Then $f_{x}(t)=f\left(t-\frac{x}{u}\right)=A \cos \left(\omega\left(t-\frac{x}{u}\right)+\phi\right)$

$$
\Rightarrow F_{x}=A e^{j\left(-\frac{\omega}{u} x+\phi\right)}=A e^{j \phi} e^{-j \frac{\omega}{u} x}=F_{0} e^{-j k x}
$$

where the wavenumber is $k \triangleq \frac{\omega}{u}$.
Units: ω is "radians per second", k is "radians per metre" (note $k \propto \omega$).
Similarly $G_{x}=G_{0} e^{+j k x}$.
Everything is time-invariant: phasors do not depend on t.
Nice things about sine waves:
(1) a time delay is just a phase shift

Phasors and transmision lines

18: Phasors and
Transmission Lines

- Phasors and transmision
lines
- Phasor Relationships
- Phasor Reflection
- Standing Waves
- Summary
- Merry Xmas

For a transmission line:

$$
\begin{aligned}
& v(t, x)=f\left(t-\frac{x}{u}\right)+g\left(t+\frac{x}{u}\right) \quad \text { and } \\
& i(t, x)=Z_{0}^{-1}\left(f\left(t-\frac{x}{u}\right)-g\left(t+\frac{x}{u}\right)\right)
\end{aligned}
$$

We can use phasors to eliminate t from the equations if $f()$ and $g()$ are sinusoidal with the same $\omega: f(t)=A \cos (\omega t+\phi) \Rightarrow F=A e^{j \phi}$.
Then $f_{x}(t)=f\left(t-\frac{x}{u}\right)=A \cos \left(\omega\left(t-\frac{x}{u}\right)+\phi\right)$

$$
\Rightarrow F_{x}=A e^{j\left(-\frac{\omega}{u} x+\phi\right)}=A e^{j \phi} e^{-j \frac{\omega}{u} x}=F_{0} e^{-j k x}
$$

where the wavenumber is $k \triangleq \frac{\omega}{u}$.
Units: ω is "radians per second", k is "radians per metre" (note $k \propto \omega$).
Similarly $G_{x}=G_{0} e^{+j k x}$.
Everything is time-invariant: phasors do not depend on t.
Nice things about sine waves:
(1) a time delay is just a phase shift
(2) sum of delayed sine waves is another sine wave

Phasor Relationships

Time Domain	Phasor	Notes
$f(t)=A \cos (\omega t+\phi)$	$F=A e^{j \phi}$	F indep of t

Phasor Relationships

Time Domain	Phasor	Notes
$f(t)=A \cos (\omega t+\phi)$	$F=A e^{j \phi}$	F indep of t
$f_{x}(t)=f\left(t-\frac{x}{u}\right)$		

Phasor Relationships

Time Domain	Phasor	Notes
$f(t)=A \cos (\omega t+\phi)$	$F=A e^{j \phi}$	F indep of t
$=A \cos \left(\omega t+\phi-\frac{\omega}{u} x\right)$		

Phasor Relationships

Time Domain	Phasor	Notes
$f(t)=A \cos (\omega t+\phi)$	$F=A e^{j \phi}$	F indep of t
$f_{x}(t)=f\left(t-\frac{x}{u}\right)$	$F_{x}=A e^{j\left(\phi-\frac{\omega}{u} x\right)}$	
$A \cos \left(\omega t+\phi-\frac{\omega}{u} x\right)$		

Phasor Relationships

Time Domain	Phasor	Notes
$f(t)=A \cos (\omega t+\phi)$	$F=A e^{j \phi}$	F indep of t
$=A \cos \left(\omega t+\phi-\frac{\omega}{u} x\right)$	$F_{x}=A e^{j\left(\phi-\frac{\omega}{u} x\right)}$	

Phasor Relationships

Time Domain	Phasor	Notes
$f(t)=A \cos (\omega t+\phi)$	$F=A e^{j \phi}$	F indep of t
$f_{x}(t)=f\left(t-\frac{x}{u}\right)$	$F_{x}=A e^{j\left(\phi-\frac{\omega}{u} x\right)}$	$\left\|F_{x}\right\| \equiv\|F\|$
$=A \cos \left(\omega t+\phi-\frac{\omega}{u} x\right)$	indep of x	

Phasor Relationships

Time Domain	Phasor	Notes
$f(t)=A \cos (\omega t+\phi)$	$F=A e^{j \phi}$	F indep of t
$f_{x}(t)=f\left(t-\frac{x}{u}\right)$	$F_{x}=A e^{j\left(\phi-\frac{\omega}{u} x\right)}$	$\left\|F_{x}\right\| \equiv\|F\|$
$=A \cos \left(\omega t+\phi-\frac{\omega}{u} x\right)$	$F_{y}=F_{x} e^{-j k(y-x)}$	indep of x
$f_{y}(t)=f_{x}\left(t-\frac{(y-x)}{u}\right)$		

Phasor Relationships

Time Domain	Phasor	Notes
$f(t)=A \cos (\omega t+\phi)$	$F=A e^{j \phi}$	F indep of t
$f_{x}(t)=f\left(t-\frac{x}{u}\right)$	$F_{x}=A e^{j\left(\phi-\frac{\omega}{u} x\right)}$	$\left\|F_{x}\right\| \equiv\|F\|$
$=A \cos \left(\omega t+\phi-\frac{\omega}{u} x\right)$	$F_{y}=F_{x} e^{-j k(y-x)}$	indep of x
$f_{y}(t)=f_{x}\left(t-\frac{(y-x)}{u}\right)$	Delayed by $\frac{y-x}{u}$	

Phasor Relationships

Time Domain	Phasor	Notes
$f(t)=A \cos (\omega t+\phi)$	$F=A e^{j \phi}$	F indep of t
$f_{x}(t)=f\left(t-\frac{x}{u}\right)$	$F_{x}=A e^{j\left(\phi-\frac{\omega}{u} x\right)}$	$\left\|F_{x}\right\| \equiv\|F\|$
$=A \cos \left(\omega t+\phi-\frac{\omega}{u} x\right)$	indep of x	
$f_{y}(t)=e_{x}\left(t-\frac{(y-x)}{u}\right)$	$F_{y}=F_{x} e^{-j k x(y-x)}$	Delayed by $\frac{y-x}{u}$
$g_{y}(t)=g_{x}\left(t+\frac{(y-x)}{u}\right)$	$G_{y}=G_{x} e^{+j k(y-x)}$	Advanced by $\frac{y-x}{u}$

Phasor Relationships

Time Domain	Phasor	Notes
$f(t)=A \cos (\omega t+\phi)$	$F=A e^{j \phi}$	F indep of t
$f_{x}(t)=f\left(t-\frac{x}{u}\right)$	$F_{x}=A e^{j\left(\phi-\frac{\omega}{u} x\right)}$	$\left\|F_{x}\right\| \equiv\|F\|$
$=A \cos \left(\omega t+\phi-\frac{\omega}{u} x\right)$	$=F e^{-j k x}$	indep of x
$f_{y}(t)=f_{x}\left(t-\frac{(y-x)}{u}\right)$	$F_{y}=F_{x} e^{-j k(y-x)}$	Delayed by $\frac{y-x}{u}$
$g_{y}(t)=g_{x}\left(t+\frac{(y-x)}{u}\right)$	$G_{y}=G_{x} e^{+j k(y-x)}$	Advanced by $\frac{y-x}{u}$
$v_{x}(t)=f_{x}(t)+g_{x}(t)$	$V_{x}=F_{x}+G_{x}$	

Phasor Relationships

Time Domain	Phasor	Notes
$f(t)=A \cos (\omega t+\phi)$	$F=A e^{j \phi}$	F indep of t
$f_{x}(t)=f\left(t-\frac{x}{u}\right)$	$F_{x}=A e^{j\left(\phi-\frac{\omega}{u} x\right)}$	$\left\|F_{x}\right\| \equiv\|F\|$
$=A \cos \left(\omega t+\phi-\frac{\omega}{u} x\right)$	$=F e^{-j k x}$	indep of x
$f_{y}(t)=f_{x}\left(t-\frac{(y-x)}{u}\right)$	$F_{y}=F_{x} e^{-j k(y-x)}$	Delayed by $\frac{y-x}{u}$
$g_{y}(t)=g_{x}\left(t+\frac{(y-x)}{u}\right)$	$G_{y}=G_{x} e^{+j k(y-x)}$	Advanced by $\frac{y-x}{u}$
$v_{x}(t)=f_{x}(t)+g_{x}(t)$	$V_{x}=F_{x}+G_{x}$	
$i_{x}(t)=\frac{f_{x}(t)-g_{x}(t)}{Z_{0}}$	$I_{x}=\frac{F_{x}-G_{x}}{Z_{0}}$	

Phasor Reflection

18: Phasors and
Transmission Lines

- Phasors and transmision
lines
- Phasor Relationships
- Phasor Reflection
- Standing Waves
- Summary
- Merry Xmas

Phasors obey Ohm's law: $\frac{V_{L}}{I_{L}}=R_{L}$

Phasor Reflection

18: Phasors and
Transmission Lines

- Phasors and transmision
lines
- Phasor Relationships
- Phasor Reflection
- Standing Waves
- Summary
- Merry Xmas

Phasors obey Ohm's law: $\frac{V_{L}}{I_{L}}=R_{L}=\frac{F_{L}+G_{L}}{Z_{0}^{-1}\left(F_{L}-G_{L}\right)}$

Phasor Reflection

18: Phasors and
Transmission Lines

- Phasors and transmision
lines
- Phasor Relationships
- Phasor Reflection
- Standing Waves
- Summary
- Merry Xmas

Phasors obey Ohm's law: $\frac{V_{L}}{I_{L}}=R_{L}=\frac{F_{L}+G_{L}}{Z_{0}^{-1}\left(F_{L}-G_{L}\right)}$
So $G_{L}=\rho_{L} F_{L}$ where $\rho_{L}=\frac{R_{L}-Z_{0}}{R_{L}+Z_{0}}$

Phasor Reflection

18: Phasors and
Transmission Lines

- Phasors and transmision
lines
- Phasor Relationships
- Phasor Reflection
- Standing Waves
- Summary
- Merry Xmas

Phasors obey Ohm's law: $\frac{V_{L}}{I_{L}}=R_{L}=\frac{F_{L}+G_{L}}{Z_{0}^{-1}\left(F_{L}-G_{L}\right)}$
So $G_{L}=\rho_{L} F_{L}$ where $\rho_{L}=\frac{R_{L}-Z_{0}}{R_{L}+Z_{0}}$
At any $x, \frac{G_{x}}{F_{x}}=\frac{G_{L} e^{-j k(L-x)}}{F_{L} e^{+j k(L-x)}}$

Phasor Reflection

18: Phasors and
Transmission Lines

- Phasors and transmision
lines
- Phasor Relationships
- Phasor Reflection
- Standing Waves
- Summary
- Merry Xmas

Phasors obey Ohm's law: $\frac{V_{L}}{I_{L}}=R_{L}=\frac{F_{L}+G_{L}}{Z_{0}^{-1}\left(F_{L}-G_{L}\right)}$
So $G_{L}=\rho_{L} F_{L}$ where $\rho_{L}=\frac{R_{L}-Z_{0}}{R_{L}+Z_{0}}$
At any $x, \frac{G_{x}}{F_{x}}=\frac{G_{L} e^{-j k(L-x)}}{F_{L} e^{+j k(L-x)}}=\rho_{L} e^{-2 j k(L-x)}$

Phasor Reflection

18: Phasors and
Transmission Lines

- Phasors and transmision
lines
- Phasor Relationships
- Phasor Reflection
- Standing Waves
- Summary
- Merry Xmas

Phasors obey Ohm's law: $\frac{V_{L}}{I_{L}}=R_{L}=\frac{F_{L}+G_{L}}{Z_{0}^{-1}\left(F_{L}-G_{L}\right)}$
So $G_{L}=\rho_{L} F_{L}$ where $\rho_{L}=\frac{R_{L}-Z_{0}}{R_{L}+Z_{0}}$
At any $x, \frac{G_{x}}{F_{x}}=\frac{G_{L} e^{-j k(L-x)}}{F_{L} e^{+j k(L-x)}}=\rho_{L} e^{-2 j k(L-x)}$
Ohm's law at the load determines the ratio $\frac{G_{x}}{F_{x}}$ everywhere on the line.

Phasor Reflection

18: Phasors and
Transmission Lines

- Phasors and transmision
lines
- Phasor Relationships
- Phasor Reflection
- Standing Waves
- Summary
- Merry Xmas

Phasors obey Ohm's law: $\frac{V_{L}}{I_{L}}=R_{L}=\frac{F_{L}+G_{L}}{Z_{0}^{-1}\left(F_{L}-G_{L}\right)}$
So $G_{L}=\rho_{L} F_{L}$ where $\rho_{L}=\frac{R_{L}-Z_{0}}{R_{L}+Z_{0}}$
At any $x, \frac{G_{x}}{F_{x}}=\frac{G_{L} e^{-j k(L-x)}}{F_{L} e^{+j k(L-x)}}=\rho_{L} e^{-2 j k(L-x)}$
Ohm's law at the load determines the ratio $\frac{G_{x}}{F_{x}}$ everywhere on the line.
Note that $\left|\frac{G_{x}}{F_{x}}\right| \equiv\left|\rho_{L}\right|$ has the same value for all x.

Phasor Reflection

18: Phasors and
Transmission Lines

- Phasors and transmision
lines
- Phasor Relationships
- Phasor Reflection
- Standing Waves
- Summary
- Merry Xmas

Phasors obey Ohm's law: $\frac{V_{L}}{I_{L}}=R_{L}=\frac{F_{L}+G_{L}}{Z_{0}^{-1}\left(F_{L}-G_{L}\right)}$
So $G_{L}=\rho_{L} F_{L}$ where $\rho_{L}=\frac{R_{L}-Z_{0}}{R_{L}+Z_{0}}$
At any $x, \frac{G_{x}}{F_{x}}=\frac{G_{L} e^{-j k(L-x)}}{F_{L} e^{+j k(L-x)}}=\rho_{L} e^{-2 j k(L-x)}$
Ohm's law at the load determines the ratio $\frac{G_{x}}{F_{x}}$ everywhere on the line.
Note that $\left|\frac{G_{x}}{F_{x}}\right| \equiv\left|\rho_{L}\right|$ has the same value for all x.
$V_{x}=F_{x}+G_{x}$

Phasor Reflection

18: Phasors and
Transmission Lines

- Phasors and transmision
lines
- Phasor Relationships
- Phasor Reflection
- Standing Waves
- Summary
- Merry Xmas

Phasors obey Ohm's law: $\frac{V_{L}}{I_{L}}=R_{L}=\frac{F_{L}+G_{L}}{Z_{0}^{-1}\left(F_{L}-G_{L}\right)}$
So $G_{L}=\rho_{L} F_{L}$ where $\rho_{L}=\frac{R_{L}-Z_{0}}{R_{L}+Z_{0}}$
At any $x, \frac{G_{x}}{F_{x}}=\frac{G_{L} e^{-j k(L-x)}}{F_{L} e^{+j k(L-x)}}=\rho_{L} e^{-2 j k(L-x)}$
Ohm's law at the load determines the ratio $\frac{G_{x}}{F_{x}}$ everywhere on the line.
Note that $\left|\frac{G_{x}}{F_{x}}\right| \equiv\left|\rho_{L}\right|$ has the same value for all x.
$V_{x}=F_{x}+G_{x}=F_{x}\left(1+\rho_{L} e^{-2 j k(L-x)}\right)$

Phasor Reflection

18: Phasors and
Transmission Lines

- Phasors and transmision
lines
- Phasor Relationships
- Phasor Reflection
- Standing Waves
- Summary
- Merry Xmas

Phasors obey Ohm's law: $\frac{V_{L}}{I_{L}}=R_{L}=\frac{F_{L}+G_{L}}{Z_{0}^{-1}\left(F_{L}-G_{L}\right)}$
So $G_{L}=\rho_{L} F_{L}$ where $\rho_{L}=\frac{R_{L}-Z_{0}}{R_{L}+Z_{0}}$
At any $x, \frac{G_{x}}{F_{x}}=\frac{G_{L} e^{-j k(L-x)}}{F_{L} e^{+j k(L-x)}}=\rho_{L} e^{-2 j k(L-x)}$
Ohm's law at the load determines the ratio $\frac{G_{x}}{F_{x}}$ everywhere on the line.
Note that $\left|\frac{G_{x}}{F_{x}}\right| \equiv\left|\rho_{L}\right|$ has the same value for all x.

$$
\begin{aligned}
& V_{x}=F_{x}+G_{x}=F_{x}\left(1+\rho_{L} e^{-2 j k(L-x)}\right) \\
& I_{x}=Z_{0}^{-1}\left(F_{x}-G_{x}\right)
\end{aligned}
$$

Phasor Reflection

18: Phasors and
Transmission Lines

- Phasors and transmision
lines
- Phasor Relationships
- Phasor Reflection
- Standing Waves
- Summary
- Merry Xmas

Phasors obey Ohm's law: $\frac{V_{L}}{I_{L}}=R_{L}=\frac{F_{L}+G_{L}}{Z_{0}^{-1}\left(F_{L}-G_{L}\right)}$
So $G_{L}=\rho_{L} F_{L}$ where $\rho_{L}=\frac{R_{L}-Z_{0}}{R_{L}+Z_{0}}$
At any $x, \frac{G_{x}}{F_{x}}=\frac{G_{L} e^{-j k(L-x)}}{F_{L} e^{+j k(L-x)}}=\rho_{L} e^{-2 j k(L-x)}$
Ohm's law at the load determines the ratio $\frac{G_{x}}{F_{x}}$ everywhere on the line.
Note that $\left|\frac{G_{x}}{F_{x}}\right| \equiv\left|\rho_{L}\right|$ has the same value for all x.

$$
\begin{aligned}
& V_{x}=F_{x}+G_{x}=F_{x}\left(1+\rho_{L} e^{-2 j k(L-x)}\right) \\
& I_{x}=Z_{0}^{-1}\left(F_{x}-G_{x}\right)=Z_{0}^{-1} F_{x}\left(1-\rho_{L} e^{-2 j k(L-x)}\right)
\end{aligned}
$$

Phasor Reflection

18: Phasors and
Transmission Lines

- Phasors and transmision
lines
- Phasor Relationships
- Phasor Reflection
- Standing Waves
- Summary
- Merry Xmas

Phasors obey Ohm's law: $\frac{V_{L}}{I_{L}}=R_{L}=\frac{F_{L}+G_{L}}{Z_{0}^{-1}\left(F_{L}-G_{L}\right)}$
So $G_{L}=\rho_{L} F_{L}$ where $\rho_{L}=\frac{R_{L}-Z_{0}}{R_{L}+Z_{0}}$
At any $x, \frac{G_{x}}{F_{x}}=\frac{G_{L} e^{-j k(L-x)}}{F_{L} e^{+j k(L-x)}}=\rho_{L} e^{-2 j k(L-x)}$
Ohm's law at the load determines the ratio $\frac{G_{x}}{F_{x}}$ everywhere on the line.
Note that $\left|\frac{G_{x}}{F_{x}}\right| \equiv\left|\rho_{L}\right|$ has the same value for all x.
$V_{x}=F_{x}+G_{x}=F_{x}\left(1+\rho_{L} e^{-2 j k(L-x)}\right)$
$I_{x}=Z_{0}^{-1}\left(F_{x}-G_{x}\right)=Z_{0}^{-1} F_{x}\left(1-\rho_{L} e^{-2 j k(L-x)}\right)$
The exponent $-2 j k(L-x)$ is the phase delay from travelling from x to L and back again (hence the factor 2).

Standing Waves

Standing Waves

Forward wave phasor: $F_{x}=F e^{-j k x}$

Standing Waves

Forward wave phasor: $F_{x}=F e^{-j k x}$
Backward wave phasor: $G_{x}=\rho_{L} F_{x} e^{-2 j k(L-x)}$

Standing Waves

Forward wave phasor: $F_{x}=F e^{-j k x}$
Backward wave phasor: $G_{x}=\rho_{L} F_{x} e^{-2 j k(L-x)}=\rho_{L} F e^{-2 j k L} e^{+j k x}$

Standing Waves

Forward wave phasor: $F_{x}=F e^{-j k x}$
Backward wave phasor: $G_{x}=\rho_{L} F_{x} e^{-2 j k(L-x)}=\rho_{L} F e^{-2 j k L} e^{+j k x}$

Standing Waves

Forward wave phasor: $F_{x}=F e^{-j k x}$
Backward wave phasor: $G_{x}=\rho_{L} F_{x} e^{-2 j k(L-x)}=\rho_{L} F e^{-2 j k L} e^{+j k x}$

Standing Waves

Forward wave phasor: $F_{x}=F e^{-j k x}$
Backward wave phasor: $G_{x}=\rho_{L} F_{x} e^{-2 j k(L-x)}=\rho_{L} F e^{-2 j k L} e^{+j k x}$

Standing Waves

Forward wave phasor: $F_{x}=F e^{-j k x}$
Backward wave phasor: $G_{x}=\rho_{L} F_{x} e^{-2 j k(L-x)}=\rho_{L} F e^{-2 j k L} e^{+j k x}$

Standing Waves

Forward wave phasor: $F_{x}=F e^{-j k x}$
Backward wave phasor: $G_{x}=\rho_{L} F_{x} e^{-2 j k(L-x)}=\rho_{L} F e^{-2 j k L} e^{+j k x}$

Standing Waves

Forward wave phasor: $F_{x}=F e^{-j k x}$
Backward wave phasor: $G_{x}=\rho_{L} F_{x} e^{-2 j k(L-x)}=\rho_{L} F e^{-2 j k L} e^{+j k x}$

Standing Waves

Forward wave phasor: $F_{x}=F e^{-j k x}$
Backward wave phasor: $G_{x}=\rho_{L} F_{x} e^{-2 j k(L-x)}=\rho_{L} F e^{-2 j k L} e^{+j k x}$

Standing Waves

Forward wave phasor: $F_{x}=F e^{-j k x}$
Backward wave phasor: $G_{x}=\rho_{L} F_{x} e^{-2 j k(L-x)}=\rho_{L} F e^{-2 j k L} e^{+j k x}$

Standing Waves

Forward wave phasor: $F_{x}=F e^{-j k x}$
Backward wave phasor: $G_{x}=\rho_{L} F_{x} e^{-2 j k(L-x)}=\rho_{L} F e^{-2 j k L} e^{+j k x}$
Line Voltage phasor: $V_{x}=F_{x}+G_{x}$

Standing Waves

Forward wave phasor: $F_{x}=F e^{-j k x}$
Backward wave phasor: $G_{x}=\rho_{L} F_{x} e^{-2 j k(L-x)}=\rho_{L} F e^{-2 j k L} e^{+j k x}$
Line Voltage phasor: $V_{x}=F_{x}+G_{x}=F e^{-j k x}\left(1+\rho_{L} e^{-2 j k(L-x)}\right)$

Standing Waves

Forward wave phasor: $F_{x}=F e^{-j k x}$
Backward wave phasor: $G_{x}=\rho_{L} F_{x} e^{-2 j k(L-x)}=\rho_{L} F e^{-2 j k L} e^{+j k x}$
Line Voltage phasor: $V_{x}=F_{x}+G_{x}=F e^{-j k x}\left(1+\rho_{L} e^{-2 j k(L-x)}\right)$

Standing Waves

Forward wave phasor: $F_{x}=F e^{-j k x}$
Backward wave phasor: $G_{x}=\rho_{L} F_{x} e^{-2 j k(L-x)}=\rho_{L} F e^{-2 j k L} e^{+j k x}$
Line Voltage phasor: $V_{x}=F_{x}+G_{x}=F e^{-j k x}\left(1+\rho_{L} e^{-2 j k(L-x)}\right)$

Standing Waves

Forward wave phasor: $F_{x}=F e^{-j k x}$
Backward wave phasor: $G_{x}=\rho_{L} F_{x} e^{-2 j k(L-x)}=\rho_{L} F e^{-2 j k L} e^{+j k x}$
Line Voltage phasor: $V_{x}=F_{x}+G_{x}=F e^{-j k x}\left(1+\rho_{L} e^{-2 j k(L-x)}\right)$

Standing Waves

Forward wave phasor: $F_{x}=F e^{-j k x}$
Backward wave phasor: $G_{x}=\rho_{L} F_{x} e^{-2 j k(L-x)}=\rho_{L} F e^{-2 j k L} e^{+j k x}$
Line Voltage phasor: $V_{x}=F_{x}+G_{x}=F e^{-j k x}\left(1+\rho_{L} e^{-2 j k(L-x)}\right)$

Standing Waves

Forward wave phasor: $F_{x}=F e^{-j k x}$
Backward wave phasor: $G_{x}=\rho_{L} F_{x} e^{-2 j k(L-x)}=\rho_{L} F e^{-2 j k L} e^{+j k x}$
Line Voltage phasor: $V_{x}=F_{x}+G_{x}=F e^{-j k x}\left(1+\rho_{L} e^{-2 j k(L-x)}\right)$

Standing Waves

Forward wave phasor: $F_{x}=F e^{-j k x}$
Backward wave phasor: $G_{x}=\rho_{L} F_{x} e^{-2 j k(L-x)}=\rho_{L} F e^{-2 j k L} e^{+j k x}$
Line Voltage phasor: $V_{x}=F_{x}+G_{x}=F e^{-j k x}\left(1+\rho_{L} e^{-2 j k(L-x)}\right)$

Standing Waves

Forward wave phasor: $F_{x}=F e^{-j k x}$
Backward wave phasor: $G_{x}=\rho_{L} F_{x} e^{-2 j k(L-x)}=\rho_{L} F e^{-2 j k L} e^{+j k x}$
Line Voltage phasor: $V_{x}=F_{x}+G_{x}=F e^{-j k x}\left(1+\rho_{L} e^{-2 j k(L-x)}\right)$

Standing Waves

Forward wave phasor: $F_{x}=F e^{-j k x}$
Backward wave phasor: $G_{x}=\rho_{L} F_{x} e^{-2 j k(L-x)}=\rho_{L} F e^{-2 j k L} e^{+j k x}$
Line Voltage phasor: $V_{x}=F_{x}+G_{x}=F e^{-j k x}\left(1+\rho_{L} e^{-2 j k(L-x)}\right)$

Standing Waves

Forward wave phasor: $F_{x}=F e^{-j k x}$
Backward wave phasor: $G_{x}=\rho_{L} F_{x} e^{-2 j k(L-x)}=\rho_{L} F e^{-2 j k L} e^{+j k x}$
Line Voltage phasor: $V_{x}=F_{x}+G_{x}=F e^{-j k x}\left(1+\rho_{L} e^{-2 j k(L-x)}\right)$

Standing Waves

Forward wave phasor: $F_{x}=F e^{-j k x}$
Backward wave phasor: $G_{x}=\rho_{L} F_{x} e^{-2 j k(L-x)}=\rho_{L} F e^{-2 j k L} e^{+j k x}$
Line Voltage phasor: $V_{x}=F_{x}+G_{x}=F e^{-j k x}\left(1+\rho_{L} e^{-2 j k(L-x)}\right)$
Line Voltage Amplitude: $\left|V_{x}\right|=|F|\left|1+\rho_{L} e^{-2 j k(L-x)}\right|$

Standing Waves

Forward wave phasor: $F_{x}=F e^{-j k x}$
Backward wave phasor: $G_{x}=\rho_{L} F_{x} e^{-2 j k(L-x)}=\rho_{L} F e^{-2 j k L} e^{+j k x}$
Line Voltage phasor: $V_{x}=F_{x}+G_{x}=F e^{-j k x}\left(1+\rho_{L} e^{-2 j k(L-x)}\right)$
Line Voltage Amplitude: $\left|V_{x}\right|=|F|\left|1+\rho_{L} e^{-2 j k(L-x)}\right| \quad$ varies with x but not t

Standing Waves

Forward wave phasor: $F_{x}=F e^{-j k x}$
Backward wave phasor: $G_{x}=\rho_{L} F_{x} e^{-2 j k(L-x)}=\rho_{L} F e^{-2 j k L} e^{+j k x}$
Line Voltage phasor: $V_{x}=F_{x}+G_{x}=F e^{-j k x}\left(1+\rho_{L} e^{-2 j k(L-x)}\right)$
Line Voltage Amplitude: $\left|V_{x}\right|=|F|\left|1+\rho_{L} e^{-2 j k(L-x)}\right| \quad$ varies with x but not t

Standing Waves

Forward wave phasor: $F_{x}=F e^{-j k x}$
Backward wave phasor: $G_{x}=\rho_{L} F_{x} e^{-2 j k(L-x)}=\rho_{L} F e^{-2 j k L} e^{+j k x}$
Line Voltage phasor: $V_{x}=F_{x}+G_{x}=F e^{-j k x}\left(1+\rho_{L} e^{-2 j k(L-x)}\right)$
Line Voltage Amplitude: $\left|V_{x}\right|=|F|\left|1+\rho_{L} e^{-2 j k(L-x)}\right| \quad$ varies with x but not t

Standing Waves

Forward wave phasor: $F_{x}=F e^{-j k x}$
Backward wave phasor: $G_{x}=\rho_{L} F_{x} e^{-2 j k(L-x)}=\rho_{L} F e^{-2 j k L} e^{+j k x}$
Line Voltage phasor: $V_{x}=F_{x}+G_{x}=F e^{-j k x}\left(1+\rho_{L} e^{-2 j k(L-x)}\right)$
Line Voltage Amplitude: $\left|V_{x}\right|=|F|\left|1+\rho_{L} e^{-2 j k(L-x)}\right| \quad$ varies with x but not t

Standing Waves

Forward wave phasor: $F_{x}=F e^{-j k x}$
Backward wave phasor: $G_{x}=\rho_{L} F_{x} e^{-2 j k(L-x)}=\rho_{L} F e^{-2 j k L} e^{+j k x}$
Line Voltage phasor: $V_{x}=F_{x}+G_{x}=F e^{-j k x}\left(1+\rho_{L} e^{-2 j k(L-x)}\right)$
Line Voltage Amplitude: $\left|V_{x}\right|=|F|\left|1+\rho_{L} e^{-2 j k(L-x)}\right| \quad$ varies with x but not t

Standing Waves

Forward wave phasor: $F_{x}=F e^{-j k x}$
Backward wave phasor: $G_{x}=\rho_{L} F_{x} e^{-2 j k(L-x)}=\rho_{L} F e^{-2 j k L} e^{+j k x}$
Line Voltage phasor: $V_{x}=F_{x}+G_{x}=F e^{-j k x}\left(1+\rho_{L} e^{-2 j k(L-x)}\right)$
Line Voltage Amplitude: $\left|V_{x}\right|=|F|\left|1+\rho_{L} e^{-2 j k(L-x)}\right| \quad$ varies with x but not t

Standing Waves

Forward wave phasor: $F_{x}=F e^{-j k x}$
Backward wave phasor: $G_{x}=\rho_{L} F_{x} e^{-2 j k(L-x)}=\rho_{L} F e^{-2 j k L} e^{+j k x}$
Line Voltage phasor: $V_{x}=F_{x}+G_{x}=F e^{-j k x}\left(1+\rho_{L} e^{-2 j k(L-x)}\right)$
Line Voltage Amplitude: $\left|V_{x}\right|=|F|\left|1+\rho_{L} e^{-2 j k(L-x)}\right| \quad$ varies with x but not t

Standing Waves

Forward wave phasor: $F_{x}=F e^{-j k x}$
Backward wave phasor: $G_{x}=\rho_{L} F_{x} e^{-2 j k(L-x)}=\rho_{L} F e^{-2 j k L} e^{+j k x}$
Line Voltage phasor: $V_{x}=F_{x}+G_{x}=F e^{-j k x}\left(1+\rho_{L} e^{-2 j k(L-x)}\right)$
Line Voltage Amplitude: $\left|V_{x}\right|=|F|\left|1+\rho_{L} e^{-2 j k(L-x)}\right| \quad$ varies with x but not t

Standing Waves

Forward wave phasor: $F_{x}=F e^{-j k x}$
Backward wave phasor: $G_{x}=\rho_{L} F_{x} e^{-2 j k(L-x)}=\rho_{L} F e^{-2 j k L} e^{+j k x}$
Line Voltage phasor: $V_{x}=F_{x}+G_{x}=F e^{-j k x}\left(1+\rho_{L} e^{-2 j k(L-x)}\right)$
Line Voltage Amplitude: $\left|V_{x}\right|=|F|\left|1+\rho_{L} e^{-2 j k(L-x)}\right| \quad$ varies with x but not t

Standing Waves

Forward wave phasor: $F_{x}=F e^{-j k x}$
Backward wave phasor: $G_{x}=\rho_{L} F_{x} e^{-2 j k(L-x)}=\rho_{L} F e^{-2 j k L} e^{+j k x}$
Line Voltage phasor: $V_{x}=F_{x}+G_{x}=F e^{-j k x}\left(1+\rho_{L} e^{-2 j k(L-x)}\right)$
Line Voltage Amplitude: $\left|V_{x}\right|=|F|\left|1+\rho_{L} e^{-2 j k(L-x)}\right| \quad$ varies with x but not t

Standing Waves

Forward wave phasor: $F_{x}=F e^{-j k x}$
Backward wave phasor: $G_{x}=\rho_{L} F_{x} e^{-2 j k(L-x)}=\rho_{L} F e^{-2 j k L} e^{+j k x}$
Line Voltage phasor: $V_{x}=F_{x}+G_{x}=F e^{-j k x}\left(1+\rho_{L} e^{-2 j k(L-x)}\right)$
Line Voltage Amplitude: $\left|V_{x}\right|=|F|\left|1+\rho_{L} e^{-2 j k(L-x)}\right| \quad$ varies with x but not t
Max amplitude equals $1+\left|\rho_{L}\right|$ at values of x where F_{x} and G_{x} are in phase. This occurs every $\frac{\lambda}{2}$ away from L

Standing Waves

Forward wave phasor: $F_{x}=F e^{-j k x}$
Backward wave phasor: $G_{x}=\rho_{L} F_{x} e^{-2 j k(L-x)}=\rho_{L} F e^{-2 j k L} e^{+j k x}$
Line Voltage phasor: $V_{x}=F_{x}+G_{x}=F e^{-j k x}\left(1+\rho_{L} e^{-2 j k(L-x)}\right)$
Line Voltage Amplitude: $\left|V_{x}\right|=|F|\left|1+\rho_{L} e^{-2 j k(L-x)}\right| \quad$ varies with x but not t
Max amplitude equals $1+\left|\rho_{L}\right|$ at values of x where F_{x} and G_{x} are in phase. This occurs every $\frac{\lambda}{2}$ away from L where λ is the wavelength, $\lambda=\frac{2 \pi}{k}=\frac{u}{f}$.

Standing Waves

Forward wave phasor: $F_{x}=F e^{-j k x}$
Backward wave phasor: $G_{x}=\rho_{L} F_{x} e^{-2 j k(L-x)}=\rho_{L} F e^{-2 j k L} e^{+j k x}$
Line Voltage phasor: $V_{x}=F_{x}+G_{x}=F e^{-j k x}\left(1+\rho_{L} e^{-2 j k(L-x)}\right)$
Line Voltage Amplitude: $\left|V_{x}\right|=|F|\left|1+\rho_{L} e^{-2 j k(L-x)}\right| \quad$ varies with x but not t
Max amplitude equals $1+\left|\rho_{L}\right|$ at values of x where F_{x} and G_{x} are in phase. This occurs every $\frac{\lambda}{2}$ away from L where λ is the wavelength, $\lambda=\frac{2 \pi}{k}=\frac{u}{f}$.

Min amplitude equals $1-\left|\rho_{L}\right|$ at values of x where F_{x} and G_{x} are out of phase.

Standing Waves

Forward wave phasor: $F_{x}=F e^{-j k x}$
Backward wave phasor: $G_{x}=\rho_{L} F_{x} e^{-2 j k(L-x)}=\rho_{L} F e^{-2 j k L} e^{+j k x}$
Line Voltage phasor: $V_{x}=F_{x}+G_{x}=F e^{-j k x}\left(1+\rho_{L} e^{-2 j k(L-x)}\right)$
Line Voltage Amplitude: $\left|V_{x}\right|=|F|\left|1+\rho_{L} e^{-2 j k(L-x)}\right| \quad$ varies with x but not t
Max amplitude equals $1+\left|\rho_{L}\right|$ at values of x where F_{x} and G_{x} are in phase. This occurs every $\frac{\lambda}{2}$ away from L where λ is the wavelength, $\lambda=\frac{2 \pi}{k}=\frac{u}{f}$.

Min amplitude equals $1-\left|\rho_{L}\right|$ at values of x where F_{x} and G_{x} are out of phase.
Standing waves arise whenever a periodic wave meets its reflection: e.g. ponds, musical instruments, microwave ovens.

Summary

18: Phasors and
Transmission Lines

- Phasors and transmision
lines
- Phasor Relationships
- Phasor Reflection
- Standing Waves
- Summary
- Merry Xmas
- Use phasors if forward and backward waves are sinusoidal with the same ω.

Summary

18: Phasors and
Transmission Lines

- Phasors and transmision
lines
- Phasor Relationships
- Phasor Reflection
- Standing Waves
- Summary
- Merry Xmas
- Use phasors if forward and backward waves are sinusoidal with the same ω.

$$
\begin{aligned}
& \circ \quad f_{x}(t)=f\left(t-\frac{x}{u}\right) \quad \rightarrow \quad F_{x}=F_{0} e^{-j k x} \\
& \circ \quad g_{x}(t)=g\left(t+\frac{x}{u}\right) \quad \rightarrow \quad G_{x}=G_{0} e^{+j k x}
\end{aligned}
$$

Summary

18: Phasors and
Transmission Lines

- Phasors and transmision
lines
- Phasor Relationships
- Phasor Reflection
- Standing Waves
- Summary
- Merry Xmas
- Use phasors if forward and backward waves are sinusoidal with the same ω.
- $f_{x}(t)=f\left(t-\frac{x}{u}\right) \quad \rightarrow \quad F_{x}=F_{0} e^{-j k x}$
- $g_{x}(t)=g\left(t+\frac{x}{u}\right) \quad \rightarrow \quad G_{x}=G_{0} e^{+j k x}$
$\triangleright k=\frac{\omega}{u}$ is the wavenumber in "radians per metre"

Summary

18: Phasors and
Transmission Lines

- Phasors and transmision
lines
- Phasor Relationships
- Phasor Reflection
- Standing Waves
- Summary
- Merry Xmas
- Use phasors if forward and backward waves are sinusoidal with the same ω.
- $f_{x}(t)=f\left(t-\frac{x}{u}\right) \quad \rightarrow \quad F_{x}=F_{0} e^{-j k x}$
- $g_{x}(t)=g\left(t+\frac{x}{u}\right) \quad \rightarrow \quad G_{x}=G_{0} e^{+j k x}$
$\triangleright k=\frac{\omega}{u}$ is the wavenumber in "radians per metre"
- Time delays \simeq phase shifts: $F_{y}=F_{x} e^{-j k(y-x)}$

Summary

18: Phasors and
Transmission Lines

- Phasors and transmision
lines
- Phasor Relationships
- Phasor Reflection
- Standing Waves
- Summary
- Merry Xmas
- Use phasors if forward and backward waves are sinusoidal with the same ω.

$$
\begin{aligned}
\circ & f_{x}(t) \\
\circ \quad g_{x}(t) & =g\left(t-\frac{x}{u}\right) \quad \rightarrow \quad F_{x}=F_{0} e^{-j k x} \\
\quad \triangleright \quad k & =\frac{\omega}{u} \text { is the wavenumber in "radians per metre" }
\end{aligned}
$$

- Time delays \simeq phase shifts: $F_{y}=F_{x} e^{-j k(y-x)}$
- When a periodic wave meets its reflection you get a standing wave:

Summary

18: Phasors and
Transmission Lines

- Phasors and transmision
lines
- Phasor Relationships
- Phasor Reflection
- Standing Waves
- Summary
- Merry Xmas
- Use phasors if forward and backward waves are sinusoidal with the same ω.

$$
\begin{aligned}
& \circ \quad f_{x}(t)=f\left(t-\frac{x}{u}\right) \quad \rightarrow \quad F_{x}=F_{0} e^{-j k x} \\
& \circ \quad g_{x}(t)=g\left(t+\frac{x}{u}\right) \quad \rightarrow \quad G_{x}=G_{0} e^{+j k x} \\
& \quad \triangleright \quad k=\frac{\omega}{u} \text { is the wavenumber in "radians per metre" }
\end{aligned}
$$

- Time delays \simeq phase shifts: $F_{y}=F_{x} e^{-j k(y-x)}$
- When a periodic wave meets its reflection you get a standing wave:
- Oscillation amplitude varies with $x: \propto\left|1+\rho_{L} e^{-2 j k(L-x)}\right|$

Summary

18: Phasors and
Transmission Lines

- Phasors and transmision
lines
- Phasor Relationships
- Phasor Reflection
- Standing Waves
- Summary
- Merry Xmas
- Use phasors if forward and backward waves are sinusoidal with the same ω.
- $f_{x}(t)=f\left(t-\frac{x}{u}\right) \quad \rightarrow \quad F_{x}=F_{0} e^{-j k x}$

○ $g_{x}(t)=g\left(t+\frac{x}{u}\right) \quad \rightarrow \quad G_{x}=G_{0} e^{+j k x}$
$\triangleright \quad k=\frac{\omega}{u}$ is the wavenumber in "radians per metre"

- Time delays \simeq phase shifts: $F_{y}=F_{x} e^{-j k(y-x)}$
- When a periodic wave meets its reflection you get a standing wave:
- Oscillation amplitude varies with $x: \propto\left|1+\rho_{L} e^{-2 j k(L-x)}\right|$
- Max amplitude of $\left(1+\left|\rho_{L}\right|\right)$ occurs every $\frac{\lambda}{2}$

Merry Xmas

Phasors and Transmission Lines: 18-7/7

