18: Phasors and ▷ Transmission Lines Phasors and transmision lines Phasor Relationships Phasor Reflection Standing Waves Summary Merry Xmas

18: Phasors and Transmission Lines

 18: Phasors and Transmission Lines
 Phasors and
 ▷ transmision lines

 Phasor Relationships
 Phasor Reflection
 Standing Waves
 Summary
 Merry Xmas

For a transmission line: $v(t,x) = f\left(t - \frac{x}{u}\right) + g\left(t + \frac{x}{u}\right)$ and $i(t,x) = Z_0^{-1} \left(f(t - \frac{x}{u}) - g(t + \frac{x}{u}) \right)$ We can use phasors to eliminate t from the equations if f() and g() are sinusoidal with the same ω : $f(t) = A \cos(\omega t + \phi) \Rightarrow F = Ae^{j\phi}$. Then $f_x(t) = f(t - \frac{x}{u}) = A\cos\left(\omega\left(t - \frac{x}{u}\right) + \phi\right)$ $\Rightarrow F_x = Ae^{j\left(-\frac{\omega}{u}x + \phi\right)} = Ae^{j\phi}e^{-j\frac{\omega}{u}x} = F_0e^{-jkx}$ where the *wavenumber* is $k \triangleq \frac{\omega}{u}$. Units: ω is "radians per second", k is "radians per metre" (note $k \propto \omega$). Similarly $G_x = G_0 e^{+jkx}$. Everything is time-invariant: phasors do not depend on t. Nice things about sine waves: (1) a time delay is just a phase shift

(2) sum of delayed sine waves is another sine wave

Time Domain	Phasor	Notes
$f(t) = A\cos\left(\omega t + \phi\right)$	$F = A e^{j\phi}$	F indep of t
$f_x(t) = f\left(t - \frac{x}{u}\right)$ $= A\cos\left(\omega t + \phi - \frac{\omega}{u}x\right)$	$F_x = Ae^{j(\phi - \frac{\omega}{u}x)}$ $= Fe^{-jkx}$	$ F_x \equiv F $ indep of x
$f_y(t) = f_x\left(t - \frac{(y-x)}{u}\right)$	$F_y = F_x e^{-jk(y-x)}$	Delayed by $\frac{y-x}{u}$
$g_y(t) = g_x\left(t + \frac{(y-x)}{u}\right)$	$G_y = G_x e^{+jk(y-x)}$	Advanced by $\frac{y-x}{u}$
$v_x(t) = f_x(t) + g_x(t)$	$V_x = F_x + G_x$	
$i_x(t) = \frac{f_x(t) - g_x(t)}{Z_0}$	$I_x = \frac{F_x - G_x}{Z_0}$	

Phasor Reflection

18: Phasors and Transmission Lines
Phasors and transmision lines
Phasor Relationships
▷ Phasor Reflection
Standing Waves
Summary
Merry Xmas

Phasors obey Ohm's law: $\frac{V_L}{I_L} = R_L = \frac{F_L + G_L}{Z_0^{-1}(F_L - G_L)}$ So $G_L = \rho_L F_L$ where $\rho_L = \frac{R_L - Z_0}{R_L + Z_0}$ At any x, $\frac{G_x}{F} = \frac{G_L e^{-jk(L-x)}}{F_L e^{+jk(L-x)}} = \rho_L e^{-2jk(L-x)}$ Ohm's law at the load determines the ratio $\frac{G_x}{F_x}$ everywhere on the line. Note that $\left|\frac{G_x}{F_x}\right| \equiv |\rho_L|$ has the same value for all x. $V_x = F_x + G_x = F_x \left(1 + \rho_L e^{-2jk(L-x)}\right)$ $I_x = Z_0^{-1} (F_x - G_x) = Z_0^{-1} F_x (1 - \rho_L e^{-2jk(L-x)})$ The exponent -2jk(L-x) is the phase delay from travelling from x to L and back again (hence the factor 2).

Forward wave phasor: $F_x = Fe^{-jkx}$ Backward wave phasor: $G_x = \rho_L F_x e^{-2jk(L-x)} = \rho_L Fe^{-2jkL} e^{+jkx}$

Line Voltage phasor: $V_x = F_x + G_x = Fe^{-jkx} (1 + \rho_L e^{-2jk(L-x)})$ Line Voltage Amplitude: $|V_x| = |F| |1 + \rho_L e^{-2jk(L-x)}|$ varies with x but not t

Max amplitude equals $1 + |\rho_L|$ at values of x where F_x and G_x are in phase. This occurs every $\frac{\lambda}{2}$ away from L where λ is the *wavelength*, $\lambda = \frac{2\pi}{k} = \frac{u}{f}$.

Min amplitude equals $1 - |\rho_L|$ at values of x where F_x and G_x are out of phase.

Standing waves arise whenever a periodic wave meets its reflection: e.g. ponds, musical instruments, microwave ovens.

E1.1 Analysis of Circuits (2017-10116)

Summary

18: Phasors and Transmission Lines
Phasors and transmision lines
Phasor Relationships
Phasor Reflection
Standing Waves
▷ Summary
Merry Xmas

- Use phasors if forward and backward waves are sinusoidal with the same ω .
 - $\circ \quad f_x(t) = f\left(t \frac{x}{u}\right) \quad \to \quad F_x = F_0 e^{-jkx}$
 - $\circ \quad g_x(t) = g\left(t + \frac{x}{u}\right) \quad \to \quad G_x = G_0 e^{+jkx}$
 - $\triangleright \quad k = \frac{\omega}{u}$ is the wavenumber in "radians per metre"
- Time delays \simeq phase shifts: $F_y = F_x e^{-jk(y-x)}$
- When a periodic wave meets its reflection you get a standing wave: • Oscillation amplitude varies with $x: \propto |1 + \rho_L e^{-2jk(L-x)}|$
 - Max amplitude of $(1 + |\rho_L|)$ occurs every $\frac{\lambda}{2}$

