E1.1 Circuit Analysis

Problem Sheet 1 - Solutions

1. Circuit (a) is a parallel circuit: there are only two nodes and all four components are connected between them.

Circuit (b) is a series circuit: each node is connected to exactly two components and the same current must flow through each.

2. For subcircuit B the voltage and current correspond to the passive sign convention (i.e. the current arrow in the opposite direction to the voltage arrow) and so the power absorbed by B is given by $V \times I = 20$ W.

For device A we need to reverse the direction of the current to conform to the passive sign convention. Therefore the power absorbed by A is $V \times -I = -20$ W.

As must always be true, the total power absorbed by all components is zero.

- 3. The power absorbed is positive if the voltage and current arrows go in opposite directions and negative if they go in the same direction. So we get: (a) $P_V = +4$, $P_I = -4$, (b) $P_V = +4$, $P_I = -4$, (c) $P_V = -4$, $P_I = +4$, (a) $P_V = -4$, $P_I = +4$. In all cases, the total power absorbed is $P_V + P_I = 0$.
- 4. We can find a path (shown highlighted below) from the bottom to the top of the V_X arrow that passes only through voltage sources and so we just add these up to get the total potential difference: $V_X = (-3) + (+2) + (+9) = +8$ V.

5. If we add up the currents flowing <u>out of</u> the region shown highlighted below, we obtain $I_X - 5 - 1 + 2 = 0$. Hence $I_X = 4$ A.

- 6. The three series resistors are equivalent to a single resistor with a value of $1 + 5 + 2 = 8 \text{ k}\Omega$.
- 7. The three series resistors are equivalent to a single resistor with a value of $\frac{1}{1/1+1/5+1/2} = \frac{1}{1.7} = 0.588 \text{ k}\Omega$.
- 8. We can first combine the parallel 2 k and 3 k resistors to give $\frac{2 \times 3}{2+3} = 1.2$ k. This is then in series with the 4 k resistor which makes 5.2 k in all. Now we just have three resistors in parallel to give a total of $\frac{1}{\frac{1}{1+1}+5+1} = \frac{1}{1.39} = 0.718$ kΩ.
- 9. The resistance is $\frac{1}{8 \times 10^{-6}} = 125 \, \mathrm{k}\Omega$

10. [Method 1]: The resistors are in series and so form a potential divider. The total series resistance is 7 k, so the voltages across the three resistors are $14 \times \frac{1}{7} = 2 \text{ V}$, $14 \times \frac{2}{7} = 4 \text{ V}$ and $14 \times \frac{4}{7} = 8 \text{ V}$. The power dissipated in a resistor is $\frac{V^2}{R}$, so for the three resistors, this gives $\frac{2^2}{1} = 4 \text{ mW}$, $\frac{4^2}{2} = 8 \text{ mW}$ and $\frac{8^2}{4} = 16 \text{ mW}$.

[Method 2]: The total resistance is is 7 k so the current flowing in the circuit is $\frac{14}{7} = 2$ mA. The voltage across a resistor is IR which, in for these resistors, gives $2 \times 1 = 2$ V, $2 \times 2 = 4$ V and $2 \times 4 = 8$ V. The power dissipated is VI which gives $2 \times 2 = 4$ mW, $4 \times 2 = 8$ mW and $8 \times 2 = 16$ mW. The current through the voltage source is 2 mA, so the power it is supplying is $VI = 14 \times 2 = 28$ mW. This is, inevitably, equal to the sum of the power dissipated by the three resistors: 4+8+16=28.

- 11. [Method 1]: The resistors are in parallel and so form a current divider: the 21 mA will divide in proportion to the conductances: 1 mS, 0.5 mS and 0.25 mS. The total conductance is 1.75 mS, so the three resistor currents are $21 \times \frac{1}{1.75} = 12 \text{ mA}$, $21 \times \frac{0.5}{1.75} = 6 \text{ mA}$ and $21 \times \frac{0.25}{1.75} = 3 \text{ mA}$. The power dissipated in a resistor is I^2R which gives $12^2 \times 1 = 144 \text{ mW}$, $6^2 \times 2 = 72 \text{ mW}$ and $3^2 \times 4 = 36 \text{ mW}$. [Method 2]: The equivalent resistance of the three resistors is $\frac{1}{1/1+1/2+1/4} = \frac{4}{7} \text{ k}\Omega$. Therefore the voltage across all components in the parallel circuit is $21 \times \frac{4}{7} = 12 \text{ V}$. The current through a resistor is $\frac{V}{R}$ which gives $\frac{12}{1} = 12 \text{ mA}, \frac{12}{2} = 6 \text{ mA}$ and $\frac{12}{4} = 3 \text{ mA}$. The power dissipated in a resistor is VI which gives $12 \times 12 = 144 \text{ mW}, 12 \times 6 = 72 \text{ mW}$ and $12 \times 3 = 36 \text{ mW}$. The power supplied by the current source is $12 \times 21 = 252 \text{ mW}$ which as expected equals 144 + 72 + 36.
- 12. The resistors form a potential divider, so $\frac{Y}{X} = \frac{4}{R_1+4}$. So we want $\frac{4}{R_1+4} = \frac{1}{4} \Rightarrow R_1 + 4 = 16 \Rightarrow R_1 = 12 \text{ k.}$
- 13. The resistors form a potential divider, so $\frac{Y}{X} = \frac{R_2}{R_1 + R_2}$. So we want $\frac{R_2}{R_1 + R_2} = \frac{1}{10}$ and $R_1 + R_2 = 10 \text{ M}\Omega$. Substituting one into the other and cross-multiplying gives $10R_2 = 10 \text{ M}\Omega \Rightarrow R_2 = 1 \text{ M}\Omega$. Substituting this into the simpler of the two initial equations gives $R_1 = 10 1 = 9 \text{ M}\Omega$.
- 14. (a) 3 k = 1.5 k + 1.5 k = 3.3 k || 33 k, (b) 4 k = 3.9 k + 100, (c) 3.488 k = 3.9 k || 33 k.

To make an exhaustive search for creating a resistance of R, you need to consider two possibilities: (i) for two resistors in series, the largest of the two resistors must be in the range $[\frac{1}{2}R, R]$ or (ii) for two resistors in parallel, the smallest resistor must be in the range [R, 2R]. In both cases there are at most four possibilities, so you need to consider up to eight possibilities in all. So, for example, for R = 3.5 k, we would consider the following possibilities: (i) 1.5 k + 1.8 k = 3.3 k, 1.8 k + 1.8 k = 3.6 k, 2.2 k + 1.2 k = 3.4 k, 2.7 k + 0.82 k = 3.52 k and (ii) 3.9 k ||33 k = 3.488 k, 4.7 k ||15 k = 3.579 k, 5.6 k ||10 k = 3.59 k, 6.8 k ||6.8 k = 3.4 k. The choice with least error is the one given above.

Since we are interested in % errors, we need to consider the ratio between resistor values. The largest ratio between successive resistors is the series is $\frac{15}{12} = 1.25$ (this includes the wraparound ratio of $\frac{100}{82} = 1.22$). The worst-case percentage error will arise if our target resistance is the mean of these two values, 13.5. The percentage error in choosing either one is then $\frac{1.5}{13.5} = 11.1\%$.