## E1.1 Circuit Analysis

## Problem Sheet 2 (Lectures 3 \& 4)

Key: $[\mathrm{A}]=$ easy $. . .[\mathrm{E}]=$ hard

1. [B] Calculate $V_{X}$ and $I_{X}$ in the following circuit using (a) nodal analysis and (b) simplifying the circuit by combining parallel resistors.

2. [B] Calculate $V_{X}$ and $I_{X}$ in the following circuit using (a) nodal analysis and (b) simplifying the circuit by combining parallel resistors.

3. [C] Calculate $V_{X}$ in the following circuit using (a) nodal analysis and (b) superposition.

4. $[\mathrm{C}]$ Calculate $V_{X}$ in the following circuit.

5. [C] Calculate $V_{X}$ in the following circuit.

6. [C] Calculate $V_{X}$ in the following circuit.

7. [C] Calculate $V_{X}$ in the following circuit. The value of the dependent current source is 99 time the current flowing through the 1 V voltage source.

8. [C] In the following circuit calculate $V_{X}$ in terms of $V$ and $I$ using (a) nodal analysis and (b) superposition.

9. [C] Calculate $V_{X}$ and $I_{X}$ in the following circuit using (a) nodal analysis and (b) superposition.

10. [C] Determine an expression for $I_{X}$ in terms of $V$ in the following circuit. Determine the value of $V$ that will make $I_{X}=0$.

11. [C] Calculate $V_{X}$ in the following circuit using (a) nodal analysis and (b) superposition.

12. [C] Calculate $V_{X}$ in the following circuit which includes a dependent voltage source.

13. [C] Find the equivalent resistance of the network shown below.

14. [D] Prove that if $V_{A B}=0$, then $R=4 \mathrm{k} \Omega$ in the following circuit. The circuit is used to detect small changes in $R$ from its nominal value of $4 \mathrm{k} \Omega$. Find an expression for $V_{A B}$ as a function of $R$. If changes in $V_{A B}$ of 10 mV can be detected, what is the smallest detectable change in $R$.

15. [D] Calculate $V_{X}$ in the following circuit. You can either use nodal analysis directly or else simplify the circuit a little to reduce the number of nodes.

16. [D] Calculate $V_{X}$ in the following circuit which includes a floating dependent voltage source.

