## E1.1 Circuit Analysis

## Problem Sheet 2 (Lectures 3 & 4)

Key:  $[A] = easy \dots [E] = hard$ 

1. [B] Calculate  $V_X$  and  $I_X$  in the following circuit using (a) nodal analysis and (b) simplifying the circuit by combining parallel resistors.



2. [B] Calculate  $V_X$  and  $I_X$  in the following circuit using (a) nodal analysis and (b) simplifying the circuit by combining parallel resistors.



3. [C] Calculate  $V_X$  in the following circuit using (a) nodal analysis and (b) superposition.



4. [C] Calculate  $V_X$  in the following circuit.



5. [C] Calculate  $V_X$  in the following circuit.



6. [C] Calculate  $V_X$  in the following circuit.



Problem Sheet 2 Page 1 of 3

Page 2 of 3

7. [C] Calculate  $V_X$  in the following circuit. The value of the dependent current source is 99 time the current flowing through the 1 V voltage source.



8. [C] In the following circuit calculate  $V_X$  in terms of V and I using (a) nodal analysis and (b) superposition.



9. [C] Calculate  $V_X$  and  $I_X$  in the following circuit using (a) nodal analysis and (b) superposition.



10. [C] Determine an expression for  $I_X$  in terms of V in the following circuit. Determine the value of V that will make  $I_X = 0$ .



11. [C] Calculate  $V_X$  in the following circuit using (a) nodal analysis and (b) superposition.



12. [C] Calculate  $V_X$  in the following circuit which includes a dependent voltage source.



Problem Sheet 2

13. [C] Find the equivalent resistance of the network shown below.



14. [D] Prove that if  $V_{AB}=0$ , then  $R=4\,\mathrm{k}\Omega$  in the following circuit. The circuit is used to detect small changes in R from its nominal value of  $4\,\mathrm{k}\Omega$ . Find an expression for  $V_{AB}$  as a function of R. If changes in  $V_{AB}$  of  $10\,\mathrm{mV}$  can be detected, what is the smallest detectable change in R.



15. [D] Calculate  $V_X$  in the following circuit. You can either use nodal analysis directly or else simplify the circuit a little to reduce the number of nodes.



16. [D] Calculate  $V_X$  in the following circuit which includes a floating dependent voltage source.



Problem Sheet 2 Page 3 of 3