
Ver 10342 E1.1 Analysis of Circuits (2018)

E1.1 Circuit Analysis

Problem Sheet 5 - Solutions

1. Each of the circuits may be viewed as a potential divider, so we can write down the transfer function
without doing any nodal analysis. In two cases, one element of the potential divider consists of a par-
allel R||C combination. This parallel combination has the impedance 1

1/R+jωC = R
1+jωRC . Graphs of

the magnitude responses are shown in Fig. 1(i)-(vi) together with their straight-line approximations.

(i) Y
X = R

R+1/jωC
= jωRC

1+jωRC =
jω/500

1+jω/500 where RC = 2 ms. LF asymptote is 0.002jω; HF asymptote

is 1. Denominator corner frequency is 1
RC = 500 rad/s. At the corner, the gain is 1 = 0 dB.

(ii) Y
X =

1/jωC

R+1/jωC
= 1

1+jωRC = 1
1+jω/500 where RC = 2 ms. LF asymptote is 1; HF asymptote is

500 (jω)
−1

. Denominator corner frequency is 1
RC = 500 rad/s. At the corner, the gain is 1 = 0 dB.

(iii) Y
X = jωL

R+jωL = jωL/R
1+jωL/R where L

R = 100µs. LF asymptote is 10−4jω; HF asymptote is 1.

Denominator corner frequency is R
L = 104 rad/s. At the corner, the gain is 1 = 0 dB.

(iv) For convenience, we define R = 1 k. Then Y
X = R+jωL

5R+jωL = 0.2
1+jω L

R

1+jω L
5R

where L
R = 1µs. LF

asymptote is 0.2; HF asymptote is 1. Numerator corner frequency is R
L = 10 krad/s with a gain at

the corner of 0.2 = −14 dB. Denominator corner frequency is 5R
L = 50 krad/s with a gain at the

corner of 1 = 0 dB. As can be seen in Fig. 1(iv), the magnitude response turns up at 10 krad/s and

then flattens out again at 50 krad/s . In between these two frequencies the slope log|H|
logω = +1 or,

equivalently, +6 dB/octave or +20 dB/decade ; all these are the same as saying that |H| ∝ ω; thus
from ω = 10 krad/s to 50 krad/s, the frequency increases by a factor of 5 and the gain also increases
by a factor of 5.

(v) For convenience, we define R = 1 k. Then Y
X = R

2R+ 8R
1+8jωRC

= 1+8jωRC
10+16jωRC = 0.1 1+8jωRC

1+1.6jωRC

where RC = 100µs. LF asymptote is 0.1; HF asymptote is 0.5. Numerator corner frequency is
1

8RC = 1250 rad/s with a gain at the corner of 0.1 = −20 dB. Denominator corner frequency is
1

1.6RC = 6.25 krad/s with a gain at the corner of 0.5 = −6 dB. As in the previous part, both the
frequency and the gain change by a factor of 5 between the corner frequencies.

(vi) For convenience, we defineR = 10 k. Then Y
X =

R
1+jωRC

2R+ 1
jωC + R

1+jωRC

= jωRC
2jωRC(1+jωRC)+(1+jωRC)+jωRC =

jωRC
1+4jωRC+2(jωRC)2

where RC = 1 ms. LF asymptote is 0.001jω; HF asymptote is 500 (jω)
−1

. We

can factorize the denominator to give 1 + 4jωRC + 2 (jωRC)
2

=
(
1 + jω

a

) (
1 + jω

b

)
where a and

b are −1 times the roots of the quadratic equation 2R2C2x2 + 4RCx + 1 or 1±
√
0.5

RC . This gives
denominator corner frequencies a = 293 and b = 1707 rad/s. The gain in between these two fre-
quencies can be obtained by substituting ω = a into the LF asymptote expression to give a value of
aRC = 1−

√
0.5 = 0.293 = −10.7 dB.
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2. For convenience, we define R = 1 k. Then Y
X = R

2R+ 8R
1+8jωRC

= 1+8jωRC
10+16jωRC = 0.1 1+8jωRC

1+1.6jωRC where

RC = 100µs. LF asymptote is 0.1; HF asymptote is 0.5; both of these are real and so have
zero phase shift. The magnitude plot has a numerator corner frequency of 1

8RC = 1250 rad/s
and denominator corner frequency of 1

1.6RC = 6.25 krad/s . Each of these generates a pair of
corner frequencies on the phase plot at 0.1× and 10× the frequency. Thus we have corners at
ω = 125 (+), 625 (−), 12.5 k (−), 62.5 k (+) rad/s where the sign in parentheses indicates the gradi-
ent change ±π4 rad/decade. Between 125 and 625 rad/s the gradient is π

4 rad/decade so the phase
will change by π

4 × log10
625
125 = π

4 × 0.7 = +0.55 rad. This is therefore the phase shift for the flat part
of the phase response. (see Fig. 2).
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3. At ω = 2000π = 6283.2 we know |H(jω)| = 1. Hence k = |jω+a|2|jω+b|2

|jω|2 =
(ω2+a2)(ω2+b2)

ω2 =

3.9495×107×5.9155×109
3.9478×107 = 5.918× 109.

4. (i) This is the same low-pass filter as Fig. 1(ii) but with a corner frequency of 50 rad/s. So we want
RC = 1

50 = 20 ms. One possible choice is shown in Fig. 4(i).

(ii) This is the same high-pass filter as Fig. 1(i) but with a corner frequency of 1000 rad/s and a high
frequency gain of 0.5 = −6 dB. So we want RC = 1

1000 = 1 ms. One possible choice is shown in Fig.
4(ii); the two resistors give the correct high frequency gain.

(iii) We want a circuit whose gain decreases from 1
2 at low frequencies to 1

8 at high frequencies. We
can do this by using a capacitor to short out part of the vertical limb of the potential divider at
high frequencies as shown in Fig. 4(iii). This design has a gain of 1

8 when the capacitor is a short
circuit; with the capacitor open circuit (low frequencies), we add in an additional 6R which gives a

gain of 1
2 . The impedance of 6R||C is

R+ 6R
1+6jωRC

8R+ 6R
1+6jωRC

= 7+6jωRC
14+48jωRC which, as a check, we see has the

correct LF and HF asymptotes. The numerator corner frequency is at ω = 7
6RC which needs to be

at 1000 rad/s. From this, RC = 1.17 ms so one possible set of value is C = 100 nF and R = 12 kΩ.

500n

40kX Y 100n

5k

X Y
5k X Y7R

C
6R

R

Fig. 4(i) Fig. 4(ii) Fig. 4

5. (a) −2ω
2−2jω3

1−2ω2+ω4 = 2(jω)2(jω+1)

((jω)2+1)((jω)2+1)
.

(b)
−2(1+ω2)

(1−ω2)+2jω = 2(jω+1)(jω−1)
(jω+1)(jω+1) = 2(jω−1)

(jω+1)

(c) 10(jω)2+2jω+10

(jω)2+2jω+1
=

10((jω)2+0.2jω+1)
(jω+1)(jω+1)

(d) 1
jω+6(jω)−1+5

= jω
(jω)2+5jω+6

= jω
(jω+2)(jω+3)
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6. To find the low frequency asymptote, you take the lowest power of jω in each of the numerator and
denominator factors and multiply them together. Likewise, for the high frequency asymptote, you
take the highest power of jω in each of the factors. There is no need (or indeed advantage) to do
any factorization or to multiply out existing factors.

(a) HLF = −2ω2

1 = 2(jω)2, HHF = −2jω3

ω4 = 2(jω)−1

(b) HLF = 3
1 = 3, HHF = 2(jω)3

4(jω)4 = 0.5(jω)−1

(c) HLF = jω×3×3
2×1×5 = 0.9jω, HHF = jω×2(jω)6×5(jω)3

2×(jω)5×(jω)5 = 5

(d) HLF = 12
6(jω)−1 = 2jω, HHF = 12

jω = 12(jω)−1

7. We must have α ≥ 0 because, if α were negative, (jω)
α

would increase without limit as ω → 0
and the transfer function would exceed G at some point. Similarly, we must have β ≤ 0 because
otherwise (jω)βwould increase without limit as ω → ∞. A consequence of this is that the order of
the numerator can never exceed that of the denominator in a transfer function whose magnitude is
bounded.

8. Graphs of the transfer functions are shown in Fig. 8(a)-(c).

(a) We have a LF asymptote of 5 = 14 dB. We have corner frequencies at ω = 100 (−), 500 (+), 2000 (−)
where the sign in parentheses indicates the polarity of gradient change. To estimate the gain at
ω = 1000, we assume that a factor

∣∣1 + jω
a

∣∣ is equal to 1 if ω < a or else ω
a if ω > a. This gives

|H(1000j)| '
∣∣∣ 5(ω/500)
(ω/100)(1)

∣∣∣ = 1 = 0 dB.

(b) We have a LF asymptote of 2 = 6 dB. We have corner frequencies at ω = 100 (−), 5000 (+).

Using the same technique as in part (a), |H(1000j)| '
∣∣∣ 2(1)
(ω/100)

∣∣∣ =
∣∣ 200
1000

∣∣ = 0.2 = −14 dB.

(c) We have corner frequencies at ω = 100 (−), 500 (+), 2000 (−), 5000 (−). We have a LF asymptote
of 3jω = 6 dB which at the first corner (ω = 100) is 300j = 50 dB. Using the same technique as in

part (a), |H(1000j)| '
∣∣∣ 3×ω(ω/500)
(ω/100)(1)(1)

∣∣∣ =
∣∣ 3000

5

∣∣ = 600 = 55.6 dB. To obtain this expression from the

transfer function, any term whose corner frequency is > ω has been replaced by (1).
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9. The corner frequency is p = 1
ζRC = 2π × 1000. Rearranging this gives R = 1

2000πζC = 22508 Ω.

The upper resistor therefore has a value ζ2R = 0.5R = 11254 Ω. The complete circuit is shown in
Fig. 9. At ω = 100 Hz, 1 kHz and 10 kHz the value of jω

p = 0.1j, j and 10j respectively. From the

question, the transfer function is given by
( jω

p )
2

( jω
p )

2
+2ζ( jω

p )+1
. Substituting for jω

p and ζ =
√

0.5, this

equals −0.01
−0.01+0.1414j+1 = −0.0099 + 0.0014j = 0.01∠172◦, −1

−1+1.414j+1 = 0.707j = 0.707∠90◦ and
−100

−100+14.14j+1 = 0.9899 + 0.1414j = 1∠8◦ respectively.
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10. For a 4th order filter, we need N = 2 and from the formula given in the question, we use ζ1 =
cos
(
π
8

)
= 0.924 and ζ2 = cos

(
3π
8

)
= 0.383. If we stick to C = 10 nF as in Q9, we obtain R1 =

1
2000πζ1C

= 17.2 kΩ and R2 = 1
2000πζ2C

= 41.6 kΩ with ζ21R1 = 14.7 kΩ and ζ22R2 = 6.1 kΩ. This gives

the circuit shown in Fig. 10(a). The transfer function isH(jω) =
( jω

p )
4(

( jω
P )

2
+2ζ1( jω

p )+1
)(

( jω
P )

2
+2ζ2( jω

p )+1
)

; this is plotted in Fig. 10(b).

11. To shift the frequency response up by a factor of 5, we need to divide the value of each C or L
component by 5. This gives the circuit of Fig. 11(a). We could also, if we wanted, multiply all the
capacitor values by k and divide all the resistor values by k for any scale factor k without changing
the transfer function. For this particular circuit, it would be a bad idea to use a value of k > 1
because, at 3 kΩ the feedback resistor is already a little on the low side for many op-amps (which
have a limited current output capability).

To reflect the magnitude response in the line ωm = 10000, we need to convert resistors into capacitors
and vice-versa. From the notes, the formulae are: R′ = k

ωmC
, C ′ = 1

ωmkR
. For the circuit of

Fig. 11(b), I have chosen k = 3.33 in order to get reasonable component values but other choices are
also possible. A full analysis of this low-pass filter circuit is the subject of question 15.

C1X

R1

ZC2

R2

2n 2n
120k

3k

X R1 ZR2

C1

C2

250p

10n

33k 33k

Fig. 11(a) Fig. 11(b)

12. (a) The parallel combination of C||(R+ L) has an impedance Z =
1

jωC (R+jωL)
1

jωC +R+jωL
= R+jωL

1+jωRC+(jω)2LC
.

We want to find the value of ω that makes this real. The easiest way to do this is to insist that the
ratio of imaginary to real part is the same for the numerator and denominator (this implies that they
have the same argument). Thus ωrL

R = ωrRC
1−ω2

rLC
from which cross multiplying (after dividing both

numerators by ωr) gives L−ω2
rL

2C = R2C from which ωr =
√

L−R2C
L2C = 9 950 rad/s. Note that this

is close, but not exactly equal to, ω0 = 10 000 where the capacitor and inductor impedances have
the same magnitude. The value of Z at resonance can now be found as the ratio between the real
(or equivalently the imaginary) parts of the numerator and denominator of the previous expression.
Thus Z = R+jωL

1+jωRC+(jω)2LC
= R

1−ω2LC = jωL
jωRC = 1000.

(b) By definition Q equals ωr times the average stored energy divided by the average power loss. If

the input voltage phasor is V , then the peak energy stored in the capacitor is 1
2C |V |

2
and its average

stored energy is half this, namely 1
4C |V |

2
. The current through the resistor is IR = V

R+jωrL
. The

peak energy stored in the inductor is 1
2L |IR|

2
= 1

2L
|V |2

R2+ω2
rL

2 = 1
2L

|V |2

R2+L−R2C

L2C
L2

= 1
2L

C|V |2
R2C+L−R2C =

1
2C |V |

2
which is the same as the peak capacitor energy; likewise, the average energy stored in the

inductor is 1
4C |V |

2
. The average power loss in the resistor is 1

2R |IR|
2

= RC
2L |V |

2
. Calculating Q

from its definition gives Q = ωr
1
4C|V |

2+ 1
4C|V |

2

RC
2L |V |

2 = ωrL
R = 9.95. Since the capacitor and inductor store

the same amount of energy on average, the Q can be determined more simply as Q = ωr
1
2L|IR|

2

1
2R|IR|

2 =
ωrL
R = 9.95 .

(c) Note that the capacitor is unchanged in the two networks, so we can ignore it when matching
their impedances. When choosing components to make two networks have the same impedance,
your have a choice: you can either match their impedances or their admittances. You get the same
answer in either case, but the algebra can sometimes be much simpler in one case than the other.
In this question, it is easiest to use admittances because the components whose values are unknown
are in parallel and so their admittances add: the total admittance of RP and LP in parallel is
1
RP
− j

ωrLP
and RP and LP remain unentangled in this expression. The admittance of RS + LS is
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1
RS+jωrLS

= RS−jωrLS

R2
S+ω2

rL
2
S

= 1
RP
− j

ωrLP
. Equating the real and imaginary parts of this equation gives,

RP =
R2

S+ω2
rL

2
S

RS
= 1 kΩ and LP =

R2
S+ω2

rL
2
S

ω2
rLS

= LS + R2

ω2
rLS

= 10.1 mH.

13. (a) At ω = 10 000, ZL = 100j and ZC = −100j. Therefore the currents in L and C are equal and
opposite. So the peak power supplied by V is the peak power absorbed by the resistor which equals
|V |2
R = 100 mW.

(b) The energy stored in the capacitor at time t is WC = 1
2Cv(t)2. So the power absorbed by the

capacitor is dWC

dt = Cv dvdt . Since you are told that the phasor V = 10, you know that the waveform

v(t) = 10 cos(ωt) and, differentiating gives dv
dt = −10ω sin(ωt). Multiplying everything out gives

Cv dvdt = −100ωC cos (ωt) sin (ωt) = −50ωC sin (2ωt). This has a peak value of 50ωC = 500 mW. As
is common in resonant circuits, this is 5 times greater than the answer to part (a).
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14. (i) This is an inverting amplifier: Y
X = −ZF

R = − 1
R ×

2R
1+2jωRC = − 2

1+2jωRC .

(ii) This is a non-inverting amplifier: Y
X = 1 + ZF

R = 1 + 2
1+2jωRC = 3+2jωRC

1+2jωRC .

(iii) This is the same as the previous circuit, but with an additional CR circuit at the input. Y
X =

4jωRC
1+4jωRC ×

3+2jωRC
1+2jωRC . This has corner frequencies at ωRC = 1

4 (−), 1
2 (−), 3

2 (+).

(iv) The circuit has negative feedback so we can assume V+ = V− = 0. KCL @ V− gives: 0−X
R +

0−Y
R + 0−Z

R = 0 from which −Z = X + Y . Now KCL @ Z gives: (Z − 0)jωC + Z−Y
R + Z

R = 0 from
which Y − Z (2 + jωRC) = 0. Substituting −Z = X + Y gives Y + (X + Y ) (2 + jωRC) = 0 from
which Y

X = − 2+jωRC
3+jωRC .
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15. In this circuit, the output, Y , is fed back to both V+ and V− so it is not immediately obvious that
the overall feedback is negative. However, we see that V− = Y whereas |V+| will be attenuated by
the network and will be < Y , so all is well. We can therefore assume that Z = V+ = V− = Y .

(a) Z
W is just a potential divider, so Z

W = Y
W =

1
jωC1

R2+
1

jωC1

= 1
1+jωR2C1

. Y = Z as noted above. From

this we get W = Y (1 + jωR2C1).

(b) KCL @ W gives: W−X
R1

+ W−Z
R2

+ (W − Y ) jωC2 = 0 from which (substituting Z = Y ),

W (R1 +R2 + jωR1R2C2)− Y (R1 + jωR1R2C2)−XR2 = 0.

Substituting the expression for W above gives

Y (1 + jωR2C1) (R1 +R2 + jωR1R2C2)− Y (R1 + jωR1R2C2) = XR2

from which Y
(
R2 + jωR2 (R1 +R2)C1 + (jω)

2
R1R

2
2C1C2

)
= XR2.

Hence Y
X (jω) = 1

R1R2C1C2(jω)
2+(R1+R2)C1jω+1

.

(c) Squaring the expression for ζ gives ζ2 =
p2(R1+R2)

2C2
1

4 =
(R1+R2)

2C2
1

4R1R2C1C2
which gives 4R1R2

(R1+R2)
2 = C1

ζ2C2
.

Using quite a common algebraic trick, we can write the numerator as the difference of two squares:

4R1R2

(R1+R2)
2 = (R1+R2)

2−(R1−R2)
2

(R1+R2)
2 = 1−

(
R1−R2

R1+R2

)2
= 1−

(
2R1

R1+R2
− 1
)2

= 1−
(

2

1+
R2
R1

− 1

)2

.

Rearranging C1

ζ2C2
= 1−

(
2

1+
R2
R1

− 1

)2

gives 2

1+
R2
R1

= 1 +
√

1− C1

ζ2C2
from which(

1 + R2

R1

)(
1 +

√
1− C1

ζ2C2

)
= 2.

The usefulness of this relationship is that it allows you to determine the resistor ratio, R2

R1
, if you

know the capacitor ratio C2

C1
. For the square root to be a real number, we must have 1 − C1

ζ2C2
≥ 0

which implies C1 ≤ ζ2C2.
(d) We must have C2

C1
≥ 1

ζ2 = 4. Given our restricted choice of capacitor value, we must therefore

choose C2 = 47 nF and C1 = 10 nF. So, substituting C1

ζ2C2
= 0.851 into the expression from the

Solution Sheet 5 Page 6 of 7



Ver 10342 E1.1 Analysis of Circuits (2018)

previous part, we find
(

1 + R2

R1

)
× 1.386 = 2 from which R2

R1
= 0.443. From the expression for

p2, we can write 0.443R2
1 = R1R2 = 1

p2C1C2
= 53.9 × 106. Hence R1 =

√
53.9×106

0.443 = 11 kΩ and

R2 = 0.443R1 = 4.9 kΩ.
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16. (a) This circuit is a potential divider, so (setting R = 20) we can write down the transfer function:

Y
X = 4R

5R+jωL+ 1
jωC

= 4jωRC
1+5jωRC+(jω)2LC

=
2ζ( jω

a )
1+2ζ( jω

a )+( jω
a )

2 where a =
√

1
LC = 5000 and ζ = 2.5aRC =

0.1.

(b) To find the maximum of
∣∣ Y
X

∣∣ it is easiest to find instead the maximum of
∣∣ Y
X

∣∣2 = Y×Y ∗

X×X∗ where
the * denotes the complex conjugate. Note that (i) a number multiplied by its complex conjugate
is just the sum of the squares of its real and imaginary parts and that (ii) the magnitude of a
complex fraction is the magnitude of the numerator divided by the magnitude of the denominator;
very rarely is it necessary to multiply the top and bottom of a fraction by the complex conjugate of
the denominator.

The difficult way to find the maximum is to differentiate the expression
∣∣ Y
X

∣∣2 =
∣∣∣ 4jωRC
1+5jωRC+(jω)2LC

∣∣∣2 =

(4ωRC)2

(1−ω2LC)2+(5ωRC)2
and set the derivative to zero. Much easier is to take the first expression above:∣∣ Y

X

∣∣2 =
∣∣∣ 4R
5R+jωL+ 1

jωC

∣∣∣2 = 16R2

25R2+(ωL− 1
ωC )

2 . This is clearly maximized by making
(
ωL− 1

ωC

)
= 0

which means ω0 =
√

1
LC . At this frequency Y

X = 0.8 = −1.9 dB.

(c) The 3dB bandwidth is when
∣∣ Y
X

∣∣2 has fallen by a factor of 2. This will happen when
(
ωL− 1

ωC

)2
=

25R2 or ωL− 1
ωC = ±5R. So we need to solve the quadratic equation LCω2 ± 5RCω − 1 = 0. The

solution is ω = ±5RC±
√
25R2C2+4LC
2LC of which the positive solutions are ω = ±5RC+

√
25R2C2+4LC
2LC .

This gives ω3dB = {4525, 5525}. The bandwidth is the difference between these which is 10RC
LC =

1000 rad/s. Notice that ω0 is the geometric mean of the two 3dB frequencies but is not the arithmetic
mean which is 5025 rad/s. The Q (quality factor) of the resonance is Q = 1

2ζ = 5. This also equals
the ratio of ω0to the bandwidth and the height of the peak above the intersection of the asymptotes.

The circles in Fig. 16 indicate ω0 and the two 3dB frequencies.
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