E1.1 Circuit Analysis

Problem Sheet 6 (Lectures 14, 15 \& 16)

Key: $[\mathrm{A}]=$ easy ... $[\mathrm{E}]=$ hard
Note: A tilde-superscript on a phasor denotes division by $\sqrt{2}$, i.e. $\widetilde{V}=\frac{1}{\sqrt{2}} V$. This means that $|\widetilde{V}|$ equals the RMS value of a phasor V.

1. [A] Say which of the following waveforms include negative exponentials and which include positive exponentials: (a) $2-4 e^{-3 t}$, (b) $2+4 e^{3 t}$, (c) $2+4 e^{-3 t}$, (d) $-2-4 e^{3 t}$, (e) $2+4 e^{-t /-3}$.
2. [B] Suppose $v(t)=5+2 e^{-100 t}$.
(a) Determine the time constant, τ, of the negative exponential.
(b) Determine the time at which $v(t)=5.5 \mathrm{~V}$.
(c) Give an expression for the time taken for $v(t)$ to fall from A to B where $5<B<A<7$.
3. [B] If $V=-200 j$ in Fig. 3, find the phasor value of I and the complex power absorbed by each of the components including the voltage source.
4. [B] If $v(t)=\left\{\begin{array}{ll}0 & t<0 \\ 5 & t \geq 0\end{array}\right.$ in Fig. 4 (below),
(a) find an expression for $x(t)$ for $t \geq 0$.
(b) Sketch a graph of $x(t)$ for $-R C \leq t \leq 3 R C$.
(c) Determine the time at which $x(t)=4.5$.
5. [C] For each of the circuits shown in Fig. 5(i)-(vi) determine (a) the time constant (b) the DC gain $\left.\frac{Y}{X}\right|_{\omega=0}$ and (c) the high frequency gain $\left.\frac{Y}{X}\right|_{\omega=\infty}$. In each case, determine these in two ways: directly from the circuit and via the transfer function.

Fig. 3

Fig. 4

Fig. 5(i)

Fig. 5(iv)

Fig. 5(ii)

Fig. 5(v)

Fig. 5(iii)

Fig. 5(vi)
6. [C] For each of the periodic waveforms shown in Fig. 6(i)-(iii) determine (a) the mean value and (b) the rms value.

Fig. 6(i)

Fig. 6(ii)

Fig. 6(iii)
7. [C] If $v(t)=\left\{\begin{array}{ll}0 & t<0 \\ 5 & t \geq 0\end{array}\right.$ in Fig. 7, determine an expression for $x(t)$ for $t \geq 0$ and sketch its graph.

Fig. 7

Fig. 8

Fig. 9

Fig. 10
8. [C] If $v(t)=\left\{\begin{array}{ll}2 & t<0 \\ 6 & t \geq 0\end{array}\right.$ in Fig. 8, determine an expression for $x(t)$ for $t \geq 0$ and sketch its graph.
9. [C] If $v(t)=\left\{\begin{array}{ll}4 & t<0 \\ 1 & t \geq 0\end{array}\right.$ in Fig. 9, find an expression for $x(t)$ for $t \geq 0$ and sketch a graph of $x(t)$ for the time interval $-R C \leq t \leq 3 R C$.
10. [C] Fig. 10 shows a simplified circuit diagram for an oscilloscope probe which includes an adjustable capacitor of value $k C$.
(a) Determine the transfer function, $\frac{Y}{X}(j \omega)$ and determine its value at $\omega=0$ and $\omega=\infty$.
(b) The variable capacitance, $k C$, is adjusted to the value that results in the same magnitude gain at $\omega=0$ and $\omega=\infty$. Determine the value of k that achieves this.
(c) Simplify the expression for $\frac{Y}{X}(j \omega)$ when k has the value calculated in the previous part.
11. [C] In the diagram of Fig. 11 power is being transmitted from a source to a load via two transformers having turns ratios of $1: n$ and $n: 1$ respectively.
(a) If $\widetilde{V}_{L}=240 \mathrm{~V}$ and the average power dissipated in R_{L} is 10 kW , calculate the value of R_{L}.
(b) If $R_{S}=0.5 \Omega$, calculate the power dissipated in R_{S} when (i) $n=1$ and (ii) $n=5$.

Fig. 11

Fig. 12
12. [C] The circuit in Fig. 12 represents a microphone connected to an amplifier via a transformer and a long cable.
(a) Determine the Thévenin output impedance of the microphone+transformer combination when $n=4$.
(b) The cable is subject to 50 Hz interference capacitively coupled from the mains, $\widetilde{V}_{N}=230 \mathrm{~V}$, via a capacitor of value 100 pF . If the RMS microphone signal amplitude is $\widetilde{V}_{S}=1 \mathrm{~V}$, calculate the ratio of the signal and the noise at the amplifier in dB if (i) $n=1$ and (ii) $n=4$.
13. [C] In the circuit of Fig. 13, the transformer may be assumed to be ideal.
(a) Calculate the average power dissipated in each of R_{1} and R_{2} if $\widetilde{V}_{s}=1, n_{1}=2, n_{2}=3, R_{1}=10$ and $R_{2}=20$.
(b) Calculate, in terms of n_{1}, n_{2}, R_{1} and R_{2}, the effective resistance seen by the voltage source.

Fig. 13

Fig. 14
14. [C] In the circuit of Fig. 14, $\widetilde{V}_{S}=230$ at $50 \mathrm{~Hz}, L=8 \mathrm{mH}$ and $R=1.6 \Omega$.
(a) If $C=0$ (i.e. the capacitor is omitted), calculate the apparent power, average power and reactive power absorbed by the load (shaded region) and also its power factor.
(b) Determine the value of C needed to increase the power factor to 0.9 . Using this value, recalculate the quantities from part (a).
15. [D] Calculate the waveform $y(t)$ in Fig. 15(i) when,
(a) $v(t)=\left\{\begin{array}{ll}0 & t \leq 0 \\ 5 \sin 2000 \pi t & t>0\end{array}\right.$ as shown in Fig. 15(ii).
(b) $v(t)= \begin{cases}0 & t \leq 0 \\ 5 \sin 2000 \pi t & 0<t \leq 1 \mathrm{~ms} \text { as shown in Fig. 15(iii) } \\ 0 & t>1 \mathrm{~ms}\end{cases}$

Fig. 15(i)

Fig. 15(ii)

Fig. 15(iii)
16. [D] If the switch in Fig. 16 is $\left\{\begin{array}{ll}\text { open } & t<0 \\ \text { closed } & 0 \leq t<2 \mathrm{~ms} \\ \text { open } & t \geq 2 \mathrm{~ms}\end{array}\right.$, determine expressions for $i(t)$ for each of these periods and sketch graphs of $i(t)$ and $v(t)$ for $-1 \mathrm{~ms} \leq t \leq 4 \mathrm{~ms}$.

Fig. 16

Fig. 17(i)

Fig. 17(ii)
17. [E] In Fig. 17(i), $v(t)=\left\{\begin{array}{ll}0 & t<0 \\ 3 & 0 \leq t<1 \mathrm{~ms} \\ 2 & t \geq 1 \mathrm{~ms}\end{array}\right.$ as shown in Fig. 17(ii). If the diode has a forward voltage drop of 0.7 V , find expressions for $x(t)$ for $t \geq 0$.

