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E1.1 Circuit Analysis

Problem Sheet 6 - Solutions

1. (a) Negative, (b) Positive, (c) Negative, (d) Positive, (e) Positive.

2. (a) The time constant is 1
100 = 10 ms. (b) We need to solve 5.5 = 5 + 2e−100t ⇒ e−100t = 0.25 ⇒

−100t = ln 0.25 = −1.386 ⇒ t = 13.86 ms. Alternatively, we can use the standard formula, derived

in lectures, t = τ ln
(

7−5
5.5−5

)
= 10× ln 4 = 13.86 ms. (iii) The general formula, derived in lectures, is

TA→B = τ ln
(
A−5
B−5

)
.

3. The current is I = −200j
4+5j−2j = −200j

4+3j = −24 − 32j = 40∠ − 127◦. So
∣∣∣Ĩ∣∣∣2 = 402

2 = 800. The

complex power absorbed by each of the passive components is
∣∣∣Ĩ∣∣∣2 Z; this gives

∣∣∣Ĩ∣∣∣2R = 3.2 kW,∣∣∣Ĩ∣∣∣2 ZL = 4000j = 4 kVAR and
∣∣∣Ĩ∣∣∣2 ZC = −1600j = −1.6 kVAR. The current through the source

(following the passive sign convention) is −I = 24 + 32j and the complex power absorbed by it is

Ṽ
(
−Ĩ
)∗

= −141j (17− 22.6j) = (−3.2− 2.4j) kVA. As expected, the total complex power sums to
zero.

4. (a) The DC gain of the circuit is 1, so the steady state output is xSS(t) =

{
0 t < 0

5 t ≥ 0
. Because x

is the voltage across a capacitor, it must be continuous, so x(0+) = x(0−) = 0. So the complete

expression is x(t) = xSS(t) + (x(0+)− xSS(0+)) e
−t
τ = 5− 5e

−t
τ where τ = RC. (b) x(t) is plotted

in Fig. 4.

(c) Using the standard formula, t = τ ln
(

0−5
4.5−5

)
= τ ln (10) = 2.3RC.
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5. (i) From the circuit, the time constant is RC = 2 ms. The DC gain may be obtained by treating C as
an open circuit and is 0; the HF gain may be obtained by treating C as a short-circuit and is therefore
1. The transfer function (using potential divider formula) is Y

X (jω) = jωRC
1+jωRC which happily gives

the same values: Y
X (0) = 0, Y

X (∞) = 1, τ = 1
denominator corner frequency = RC. The importance of

Y
X (∞) is that it gives the gain for a step input discontinuity, i.e. Y

X (∞) = output discontinuity
input discontinuity .

(ii) From the circuit: τ = RC = 2 ms, DC gain (C open-circuit) = 1, HF gain (C short-circuit) = 0.
The transfer function (using potential divider formula) is Y

X (jω) = 1
1+jωRC which gives the same

values.

(iii) From the circuit: τ = L
R = 0.1 ms, DC gain (L short-circuit) = 0, HF gain (L open-circuit) = 1.

The transfer function (using potential divider formula) is Y
X (jω) = jωL

R+jωL which gives the same

values. Note that if the denominator is (p+ jωq), the time constant is q
p and the corner frequency

is p
q .

(iv) To obtain the time constant, we need to determine the Thévenin resistance seen by the inductor.
To do this, we set the input voltage, X, to zero (thereby shorting node X to ground) and find
the resistance between the inductor terminals (with the inductor removed). The two resistors are
in series, so we get RTh = 1 + 4 = 5 k. From this, τ = L

R = 200 ns, DC gain (L short-circuit)
= 0.2 (potential divider), HF gain (L open-circuit) = 1. The transfer function (using potential
divider formula) is Y

X (jω) = R+jωL
5R+jωL where R = 1 k. This gives the same values and is, perhaps, a

marginally easier way to determine them.
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(v) To determine the Thévenin resistance seen by the capacitor, we set X = 0 and measure the
resistance at the capacitor terminals. Since X is connected to ground, the two 1 k resistors are in
series and so we have 8 k in parallel with 2 k which gives 1.6 k. From this, τ = RC = 0.16 ms, DC gain
(C open-circuit) = 0.1 (potential divider), HF gain (C short-circuit) = 0.5. The transfer function
(using potential divider formula) is Y

X (jω) = R
2R+ 8R

1+8jωRC

= 1+8jωRC
10+16jωRC where R = 1 k and we used

the formula for Z8R||C = 8R
1+jω8RC .

(vi) To determine the Thévenin resistance at the capacitor terminals is not trivial because of the
dependent voltage source that is the opamp. If we set X = 0 and replace the capacitor with a voltage
source V as in Fig. 5(i), we can use nodal analysis to determine I and then calculate RTh = V

I . Since

the op-amp is a unit-gain buffer, Y = V . KCL at node W gives: W
10 + W−V

10 + W−V
10 = 0 ⇒ W =

2
3V ⇒ I = V−W

10 ==
1
3V

10 = V
30 ⇒ RTh = 30 k. So, finally, we get τ = RThC = 3 ms. For the DC

gain, we make C an open-circuit as in Fig. 5(ii). Negative feedback means V+ = Y and, since there
is no current through the resistor connected to V+, we must also have W = Y . KCL at node W
then gives W = Y = X, so the DC gain is 1. For the HF gain, the capacitor acts a a short circuit
so V+ = 0 which in turn means that Y = 0 so the gain is 0.

Rather easier is the transfer function approach. We know V+ = Y and V+ is determined from W

by an RC potential divider giving: Y
W = V+

W = 1
1+jωRC . KCL at W gives W−X

R + W−Y
R + W−Y

R =

0 ⇒ 3W − 2Y = X. We now substitute for W using the previous equation Y
W = 1

1+jωRC to get

3Y (1 + jωRC) − 2Y = X⇒ Y
X = 1

1+3jωRC . From this we can easily get: τ = 3RC, Y
X (0) = 1 and

Y
X (∞) = 0.
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6. (i) v(t) equals 6 for 1
3 of the time and−2 for 2

3 of the time. So its average value is v = 1
3×6+2

3×(−2) =
2
3 . Similarly, the average value of v2 is v2 = 1

3 × 36+2
3 × 4 = 142

3 . So Vrms =
√

14.67 = 3.83. This is
higher than the average value v.

(ii) During the first period (0 ≤ t ≤ 2), the formula for v can be derived as v = 2t. To find
the average value, we integrate over one period, and divide by the length of the period. So v =
1
2

∫ 2

t=0
2tdt = 1

2

[
t2
]2
0

= 2. This is also pretty obvious from looking at the waveform. In the same

way, v2 = 1
2

∫ 2

t=0
(2t)

2
dt = 1

2

[
4
3 t

3
]2
0

= 5 1
3 giving Vrms =

√
5.33 = 2.31.

(iii) This is the same as the previous waveform but shifted up by +2. You can perform integrations
similar to the previous part or, easier, just modify the previous answers. v (which previously equalled
2) will be increased by 2 to become v = 4. Adding a constant onto a random variable does not affect

its variance, so v2 − (v)
2

will be unchanged at 5 1
3 − 22 = 1 1

3 . It follows that v2 = (v)
2

+ 11
3 = 17 1

3 .

Taking the square root gives Vrms =
√

17.33 = 4.16.

7. Method 1 (inductor current continuity): For t < 0, x = 0 and the current through the inductor
is i = v−x

R = 0. It follows that at time t = 0+, the current through the resistor (which equals
the current through the inductor) will still be zero and x(0+) = v(0+) = 5. From this value is
will decay to a steady state value xSS = 0 since the inductor is a short circuit for DC. Thus,
x(t) = xSS(t) + (x(0+)− xSS(0+)) e

−t
τ = 0 + 5e

−t
τ where τ = L

R . This is plotted in Fig. 7.

Method 2 (transfer function): The transfer function of the circuit is (from potential divider equation)
X
V = jωL

R+jωL . From this we get the DC gain, GDC = 0, the HF gain, GHF = 1, and the time constant

is L
R . The DC gain allows us to calculate the steady state xSS(t) = GDCv(t) ≡ 0. The output

discontinuity at t = 0 is given by ∆x = GHF∆v = 1×5 = 5. So x(0+) = xSS(0−)+∆x = 0+5 = 5.

Finally we put everything together to get: x(t) = xSS(t)+(x(0+)− xSS(0+)) e
−t
τ = 0+(5− 0) e

−t
τ .
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8. Method 1 (capacitor voltage continuity): The time constant of the circuit is obtained by setting
v = 0 and finding the Thévenin resistance across the capacitor terminals. Since v is connected to
ground, the two resistors are in parallel and RTh=1

2R giving τ = 1
2RC. The DC gain of the circuit

is 0.5, so xSS(t) = 0.5v(t) =

{
1 t < 0

3 t ≥ 0
. For t < 0, the capacitor voltage is v − x = 2− 1 = 1. This

must remain continuous and so v(0+) − x(0+) = 1 ⇒ x(0+) = v(0+) − 1 = 5. Putting everything

together, we get x(t) = xSS(t) + (x(0+)− xSS(0+)) e
−t
τ = 3 + (5− 3) e

−t
τ = 3 + 2e

−t
τ . This is

plotted in Fig. 8.

Method 2 (transfer function): The transfer function of the circuit is (from potential divider equation)
X
V = R

R+ R
1+jωRC

= 1+jωRC
2+jωRC . From this we get the DC gain, GDC = 0.5, the HF gain, GHF = 1, and

the time constant is 0.5RC. The DC gain allows us to calculate the steady state as above. The output
discontinuity at t = 0 is given by ∆x = GHF∆v = 1×4 = 4. So x(0+) = xSS(0−)+∆x = 1+4 = 5.

Finally we put everything together to get: x(t) = xSS(t)+(x(0+)− xSS(0+)) e
−t
τ = 3+(5− 3) e

−t
τ =

3 + 2e
−t
τ .
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9. For opamp circuits, it is easiest to use the transfer function to determine the relevant circuit para-

meters. This is a non-inverting amplifier with a gain of X
V = 1 +

R
1+jωRC

R = 2+jωRC
1+jωRC . Thus we

have a DC gain, GDC = 2, a high frequency gain GHF = 1 and a time constant τ = RC.
At t = 0, the input discontinuity is ∆V = v(0+) − v(0−) = −3 and so the ouput discontinu-
ity is ∆X = x(0+) − x(0−) = GHF∆V = 1 × −3 = −3. The steady state output is given by

xSS(t) = GDCv(t) =

{
8 t < 0

2 t ≥ 0
. So this gives x(0+) = −3 + x(0−) = −3 + 8 = 5.

Putting everything together, we get x(t) = xSS(t) + (x(0+)− xSS(0+)) e
−t
τ = 2 + (5− 2) e

−t
τ =

2 + 3e
−t
RC .

10. (a) The impedance of R||C is R
1+jωRC . We can regard the circuit as a potential divider and so the

gain is Y
X = H(jω) =

R
1+jωRC

9R
1+j9kωRC+ R

1+jωRC

which simplifies to H(jω) = 1+j9kωRC
10+j9(k+1)ωRC . The DC gain is

H(0) = 0.1 and the high frequency gain is H(∞) = k
k+1 .

(b) The value of k that makes |H(∞)| = |H(0)| is k = 1
9 since then H(∞) = 0.1.

(c) If k = 1
9 then H(jω) = 0.1 for all ω.

11. (a) Average power is Ṽ 2

RL
, so RL = Ṽ 2

10 k = 5.76 Ω. (b) Current through RL is ĨL = Ṽ
R = 41.7 A. The

current through RS is ĨL
n so the power dissipation is

Ĩ2LRS
n2 . This gives (i) 868 W and (ii) 34.8 W.

12. (a) Impedances are transformed by the square of the turns ratio because the voltage decreases by n
and the current increases by n so that the ratio of voltage over current decreases by n2. So when
n = 4, the impedance at the output of the secondary is 2400

16 = 150 Ω.

(b) At 50 Hz, the capacitor impedance is ZC = 1
j2π50×100 p = −j31.8 MΩ . With the transformed

source impedance from part (a), we get the equivalent circuit shown in Fig. 12. Using superposition,

ṼA = ṼN× Rn−2

Rn−2+ZC
+ ṼSn

−1 × ZC
Rn−2+ZC

= n−1ZC ṼS+Rn
−2ṼN

Rn−2+ZC
. The ratio of the signal and noise

voltages is equal to the ratio of the two terms in the numerator, so the ratio of the signal and noise

voltage magnitudes is
n−1|ZC ||ṼS|
Rn−2|ṼN | = 31.8M×1

2400×230 × n = 57.66 × n. Converting this to decibels gives

20 log10 57.66 + 20 log10 n = 35.2 + 20 log10 n. This gives (i) 35.2 dB for n = 1 and (ii) 47.3 dB for
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n = 4. So, slightly surprisingly, using a transfomer to reduce the voltage coming from the microphone
actually makes the signal-to-noise ratio better.

VS/n A
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pVN

R/n2

-j31.8M
VA

1:n1+n2
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R1

R2

I1

I2IS

Fig. 12 Fig. 13

13. (a) Ṽ1 = n1ṼS = 2 so the average power dissipated in R1 is
Ṽ 2
1

R1
= 400 mW. Similarly, Ṽ2 = n2ṼS = 3,

so the average power dissipated in R2 is
Ṽ 2
2

R2
= 450 mW.

(b) From the ideal transformer equations, 1× IS +n1× (−I1)+n2× (−I2) = 0 (the minus signs arise
because in Fig. 13 I1 and I2 are defined as coming out of the transformer). Rearranging this and

using Ohm’s law gives IS = n1I1+n2I2 = n1V1

R1
+ n2V2

R2
=

n2
1VS
R1

+
n2
2VS
R2

. So Reff = VS
IS

= 1
1

n
−2
1 R1

+ 1

n
−2
2 R2

.

This is the same as the parallel combination of n−21 R1 and n−22 R2 , i.e. the parallel combination of
the individual winding resistances transferred from the secondaries to the primary.

14. (a) The inductor impedance is jωL = j × 100π × 0.008 = 2.51 Ω. So the current is I = VS
R+jωL =

41.5−65.1j. So S = V I∗ = P+jQ = 9.54+14.98j kVA. So the apparent power is |S| = 17.8 kVAand
the average and reactive powers are P and Q given earlier. The power factor is cosφ = P

|S| = 0.54.

(b) Adding the capacitor will not consume any average power and so will not affect P at all. We
need to reduce Q to P tan (arccos 0.9) = 4.62 kVAR since tanφ = Q

P and we want cosφ = 0.9. It

follows that QC = 4.62− 14.98 = −10.36 kVAR = −|VS |2
|ZC | = −2302ωC. This gives C = 623µF. Now

S = P + jQ = 9.54 + 4.62j kVA. So the apparent power is |S| = 10.6 kVA and the average and
reactive powers are P and Q given earlier. The power factor is cosφ = P

|S| = 0.9.

15. Notice first that since there are no input discontinuities, there will be no output discontinuities
either. The circuit transfer function is X

V = jωRC
1+jωRC . The gain at ω = 2000π is G = 0.503 +

0.5j = 0.709∠44.8◦. The phasor corresponding to v(t) = 5 sinωt is V = −5j and so the steady
state output will be X = GV = 2.5 − 2.51j = 3.54∠ − 45.2◦ which corresponds to a waveform
xSS(t) = 2.5 cosωt+ 2.51 sinωt. The time constant is RC = 0.16 ms.

(a) At time t = 0+ we have xSS(0+) = 2.5 V. Since there is no output discontinuity, x(0+) =

x(0−) = 0. Putting this together gives x(t) = xSS(t) + (x(0+)− xSS(0+)) e
−t
τ = 2.5 cosωt +

2.51 sinωt+ (0− 2.5) e
−t
RC . This is plotted in Fig. 15(i).

(b) Substituting t = 1 into the previous expression gives x(1−) = x(1+) = 2.495 (very close to the
steady state value since it has had 6 1

4 time constants to converge). For t > 1, the steady state is

xSS(t) ≡ 0. Therefore we get x(t) = 2.495e
−(t−1)
τ . This is plotted in Fig. 15(ii).
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16. For the steady state when t < 0, we can treat the inductor as a short circuit and so i = 10
R = 100 mA.

When the switch is closed, there is a constant 10 V across the inductor and so di
dt = V

L = 100 V/s.
Therefore the current through the inductor will increase linearly at this rate for 2 ms (from an initial
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value of 100 mA) and will reach a value of 300 mA. Since there is no resistor in series with the
inductor, the current increases linearly rather than exponentially; you can, if you wish, regard this
as a limiting case of a negative exponential that has an infinite time constant.

When the switch is opened at t = 2 ms, the current will decay from its peak value of 300 mA back
down to its steady state value of 100 mA with a time constant of L

R = 1 ms. Thus for t > 2 ms, we

have i(t) = 100 + (300− 100) e
−(t−2)

1 (in units of mA and ms). All this is plotted in Fig. 16(i).

When the switch is open, v(t) = Ri(t). However, when the switch is closed, v(t) ≡ 0. We therefore
get the voltage waveform plotted in Fig. 16(v).
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17. In this question, we have two different circuits according to whether the diode is off or on. These are
shown in Fig. 17(off),(on). When the diode is off, we have a DC steady state xSS(t) = 0 and a time
constant τOff = RC = 1.6 ms. On the other hand, when the diode is on, we can get the DC steady
state by doing KCL for the shaded supernode: x+0.7−v

2 + x
8 = 0 ⇒ xSS = 4

5 (v − 0.7). We obtain
the time constant by setting all voltage sources to zero and finding the Thévenin resistance and the
capacitor terminals: this is RTh = 2 k||8 k = 1.6 k; this gives a time constant τOn = 0.32 ms.

For t < 0, v = x = 0 and so, since v− x < 0.7, the diode will be off. When v changes to 3, the diode
will turn on and will charge the capacitor up to a steady state voltage of 4

5 (3− 0.7) = 1.84. When
v now changes to 2 V, the diode will turn off and x will fall towards the “off” steady state of 0 V.
However, it will never reach this value, because when x reaches v − 0.7 = 1.3 V the diode will turn
on again resulting in a new steady state of 4

5 (2− 0.7) = 1.04 V. So this means we actually have four
distinct time segments: t < 0, 0 ≤ t < 1, 1 ≤ t < Tx, t ≥ Tx wher Tx is the, as yet unknown, time
at which the diode turns on for the last time.

Segment 1 (Diode Off, t < 0, x = v = 0).

Segment 2 (Diode On, 0 ≤ t < 1, v = 3, xSS = 4
5 (3− 0.7) = 1.84, τOn = 0.32 ms): x(t) =

xSS(t) + (x(0+)− xSS(0+)) e
−t
τ = 1.84 + (0− 1.84) e

−t
τ = 1.84 − 1.84e

−t
τOn . At t = 1 this gives

x(1) = 1.76.

Segment 3 (Diode Off, 1 ≤ t < Tx, v = 2, xSS = 0, τOff = 1.6 ms): Capacitor voltage continuity

means that x(1+) = 1.76. So x(t) = xSS(t) + (x(1+)− xSS(1+)) e
−t
τ = 0 + (1.76− 0) e

−t
τ =

1.76e
−(t−1)
τOff . We need to know when the voltage x reaches 1.3 V (t = Tx) because that is when the

diode will turn on again. Solving 1.76e
−(Tx−1)
τOff = 1.3⇒ Tx = 1.48 ms.

Segment 4 (Diode On, t ≥ 1.48 ms, v = 2, xSS = 4
5 (2− 0.7) = 1.04, τOn = 0.32 ms): x(t) =

xSS(t) + (x(Tx+)− xSS(Tx+)) e
−t
τ = 1.04 + (1.3− 1.04) e

−t
τ = 1.04 + 0.26e

−(t−Tx)
τOn .

All four segments are plotted in Fig. 17(iii).
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