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ANALYSIS OF CIRCUITS

**** Questions and Solutions 2013 ****

Information for Candidates:

The following notation is used in this paper:

1. The voltage waveform at node X in a circuit is denoted by x(t), the phasor voltage by X and the
root-mean-square (or RMS) phasor voltage by X̃ = X√

2
.

2. Component and source values in a circuit are normally given in Ohms, Farads, Henrys, Volts or
Amps with the unit symbol omitted. Where an imaginary number is specified, it represents the
complex impedance or phasor value.

3. Times are given in seconds unless otherwise stated.

4. Unless otherwise indicated, frequency response graphs should use a linear axis for phase and log-
arithmic axes for frequency and magnitude.
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*** Questions and Solutions 2013 ***

1. a) Using nodal analysis, calculate the voltages at nodes X and Y of Figure 1.1.
[ 5 ]

The unlabelled node at the -ve end of the 6V source has voltage Y − 6 and
forms a supernode with node Y . KCL at X gives

X−23
2

+
X− (Y −6)

4
+

X−Y
2

= 0

⇒ 5X−3Y = 40

KCL at Y gives

Y −X
2

+
(Y −6)−0

3
+

(Y −6)−X
4

= 0

⇒ −9X +13Y = 42

Combining these gives 65Y −27Y = 210+360 ⇒ Y = 570
38 = 15

form which 5X = 40+45 = 85 ⇒ X = 85
5 = 17

A few people introduced another variable, Z, for the voltage at the unlabelled
node instead of using Y −6; this is not incorrect but complicates the algebra.
Some got sign errors when expanding −(Y − 6). Most people got the equa-
tions right although a few failed to handle the supernode correctly. Several
omitted the term (Y−6)−X

4 and/or (Y−6)−0
3 from the second equation. Several

people assumed that Y = 6. Quite a few made algebra errors when solving
the simultaneous equations, often involving minus signs. I recommend writing
equations consistently in the form aX + bY = c; those who sometimes wrote
them in the other order (e.g. bY +aX = c) frequently made mistakes. This is
especially true if you use the calculator’s built-in simultaneous equation solver.

Figure 1.1 Figure 1.2

b) Use the principle of superposition to find the voltage at node X in Figure 1.2.
[ 5 ]

If we open circuit the current source, we get a potential divider with X1 =
15× 7

10 = 10.5.

If we short circuit the voltage source, the 3Ω and 7Ω resistors are an parallel
and combine to give 3×7

3+7 = 2.1Ω . Thus the voltage due to the current source is
X2 =−2×2.1 =−4.2.
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Combining these gives X = X1 +X2 = 10.5−4.2 = 6.3V.

In most questions, you can use any solution method you like. However in this
question, you are told explicitly to use superposition; so if you solve it using
nodal analysis, you get zero marks.

c) Draw the Thévenin equivalent circuit of the network in Figure 1.3 and find the
value of its components. [ 5 ]

We can find the open circuit voltage by ignoring the 2k resistor and treating the
other two as a potential divider. This gives an open circuit voltage of VAB =
−8+ 6

6+9 × (7− (−8)) =−8+6 =−2.

For the Thévenin resistance, we short circuit the sources to give 6×9
6+9 + 2 =

3.6+2 = 5.6k.

So the complete Thévenin equivalent is:

Some calculated the component values but lost marks because they did not
draw the circuit as required by the question. Several people drew the circuit
wrongly by adding a ground connection, omitting the terminals A and B or
sometimes even short circuiting A to B.

Figure 1.3 Figure 1.4

d) Assuming the opamp in the circuit of Figure 1.4 is ideal, give an expression for
Y in terms of U and V . [ 5 ]

This is an inverting op-amp circuit and so we can write down Y = −20
4 U +

−20
40 V =−5U−0.5V .

Alternatively, assuming node W is a ground and applying KCL at node W gives
0−U

4 + 0−V
40 + 0−Y

20 = 0 from which Y =−5U−0.5V .

Note that the 15k resistor has no effect on the answer.
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Mostly done correctly. The 15k resistor caused some confusion; several peo-
ple thought that it would affect the voltage at the +ve op-amp input (even
though this is very clearly connected to ground in the circuit). Some did KCL
at the +ve op-amp input and ignored the ground connection to get the wrong
equation Y−V+

15 = 0. Others added an extra term, Y−0
15 onto the KCL at node W.

e) Determine the gain Y
X for the block diagram shown in Figure 1.5. The rectan-

gular blocks are drawn with inputs at the left and outputs at the right and have
gains of F and G respectively. The open circles represent adder/subtractors
whose inputs have the signs indicated on the diagram and whose outputs are V
and W respectively. [ 5 ]

From the block diagram we can write Y =GW =G(FV +Y )=G(F (X−Y )+Y ).

Hence Y = GFX−GFY +GY from which Y (1+GF−G) = GFX and so Y
X =

FG
1−G+FG .

Mostly done correctly. Quite a few people got the adder functionality wrong
when forming the equations and, for example, wrote W = FV +X instead of
W = FV +Y . One or two applied KCL to the adder nodes to form entirely
incorrect equations. Several people had the blocks with inputs on the right and
wrote W = GY instead of Y = GW even though convention (and the question
explicitly) has signals flowing from left to right.

Figure 1.5
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Figure 1.6

f) Using a single 100nF capacitor and appropriate resistors, design a network with
input X and output Y whose transfer function Y

X ( jω) is shown in Fig. 1.6 with
corner frequencies at 103 and 104 rad/s. Give the values of all components used.

[ 5 ]

The network needs a gain of 1 at low frequencies falling to a gain of 0.1
(−20dB) at high frequencies. Therefore we make it a potential divider

The transfer function of this network is
R2+

1
jωC

R1+R2+
1

jωC
= jωR2C+1

jω(R1+R2)C+1 . The LF

and HF asymptotes are 1 and R2
R1+R2

respectively, from which R1 = 9R2. The
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numerator corner frequency is at 104 rad/s (since the gradient increases by 1
at this frequency) and so 1

R2C = 104 from which R2 =
10−4

C = 103. So R1 = 9k
and R2 = 1k.

Several people wrongly multiplied the corner frequencies by 2π . Quite a few
used the wrong corner frequency when calculating the resistor values and so
ended up with resistors that were 10 times their correct values. Quite a lot of
people make R1 = 10k instead of 9k.

g) The circuit of Figure 1.7 shows a 50Hz voltage source with RMS voltage Ṽ =
230 driving a load of impedance ZL = 15+10 j Ω through a line of impedance
ZT = 0.3+1.5 j Ω. Calculate the complex power absorbed by (i) ZT and (ii) ZL.

[ 5 ]

The current phasor is therefore ĨL = 230
ZL+ZT

= 230
15.3+11.5 j = 9.606−7.22 j. From

this
∣∣∣ĨL

∣∣∣= 12.02 and
∣∣∣ĨL

∣∣∣2 = 144.4 .

The complex power absorbed by ZL is∣∣∣ĨL

∣∣∣2 ZL = 144.4(15+10 j) = 2166+1444 j VA = 2603∠33.7◦

.

The complex power absorbed by ZT is∣∣∣ĨL

∣∣∣2 ZT = 144.4(0.3+1.5 j) = 43.3+216.6 j VA = 221∠78.7◦

.

If you want to use the Ṽ × Ĩ∗ formula instead, you must calculate

ṼL = (9.606−7.22 j)(15+10 j) = 216.3−12.2 j

and

ṼT = (9.606−7.22 j)(0.3+1.5 j) = 230−ṼL = 13.7+12.2 j

. From this we get the absorbed powers as

(216.3−12.2 j)(9.606+7.22 j) = 2166+1444 j VA

and
(13.7+12.2 j)(9.606+7.22 j) = 43.3+216.6 j VA.

Most people did this correctly. Many people wrote the correct formula S =∣∣Ĩ∣∣2 Z but actually used the formula S = Ĩ2Z instead. A few used the correct

formula S =
|Ṽ |2
Z∗ but either forgot to square the voltage, forgot to take mag-

nitude or assumed it equaled 230Ṽ . Several people used the incorrect (and

dimensionally wrong) formula S =
|Ĩ|2
Z . Some said the currents through the two

impedances were different: 230
0.3+1.5 j and 230

15+10 j respectively.
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Figure 1.7

h) Figure 1.9 shows a transmission line of length 100m that is terminated in a
resistive load, R, with reflection coefficient ρ = −0.6. The line has a propa-
gation velocity of u = 2× 108 m/s. At time t = 0, a forward-travelling (i.e.
left-to-right) pulse arrives at X with amplitude 5V and duration 1 µs as shown
in Figure 1.8.

Draw a dimensioned sketch of the waveform at Y, a point 40m from the end of
the line, for 0≤ t ≤ 2 µs. Assume that no reflections occur at point X. [ 5 ]

Figure 1.8 Figure 1.9

The forward wave takes 0.3 µs to reach Y and a further 0.4 µs to reflect from the
end and return to Y . Therefore the waveform at Y is the sum of two overlapping
waves: (i) a pulse of amplitude 5V beginning at t = 0.3 µs and a pulse of
5ρ = −3V beginning at t = 0.7 µs. Where the pulses overlap, their combined
voltage is 5−3 = 2V.

0 0.5 1 1.5 2

-2

0

2

4

Time (µs)

A few people got the adder correctly worked out the waveforms of the forward
and backward waves at point Y but did not add them together to give the actual
voltage waveform.
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2.

Figure 2.1

a) Assuming that the op-amp in the circuit of Figure 2.1 is ideal, show that its
transfer function is given by [ 5 ]

Y
X
( jω) =

− jωR2C1

( jωR1C1 +1)( jωR2C2 +1)
.

This is an inverting amplifier whose gain is therefore Y
X = −Z2

Z1
. Alternatively,

using nodal analysis, KCL at W and assuming W = 0 we can derive 0−X
Z1

+
0−Y
Z2

= 0 ⇒ Y
X = −Z2

Z1
.

For this circuit, Z1 = R1 +
1

jωC1
= jωR1C1+1

jωC1
and Z2 = 1

1
R2

+ jωC2
= R2

jωR2C2+1 .

Hence Y
X ( jω) = −Z2

Z1
= − jωR2C1

( jωR1C1+1)( jωR2C2+1) .

Almost everyone got this right although sometimes requiring several pages of
algebra. Surprisingly, a few “proved” the wrong expression, with − jωR2C2
in the numerator. Others omitted the minus sign in the result. Some people
multiplied out the denominator and then factorized it again to get the required
answer which is a lot of unnecessary effort. Some introduced an additional
unknown node voltage between C1 and R1 rather than treating these as a
single complex impedance; this makes the nodal analysis more complicated.

b) Assuming that R1C1 � R2C2, sketch straight-line approximations of (i) the
magnitude response and (ii) the phase response of the circuit.

Indicate on the plots the frequency and value at each point where the gradient
changes. [ 6 ]

The LF and HF asymptotes are − jωR2C1 and −1
jωR1C2

respectively and the cor-
ner frequencies are 1

R1C1
and 1

R2C2
(they are in that order since you are told

R1C1�R2C2). Between the two corner frequencies, the gain is −R2
R1

; this can be
obtained by substituting ω = 1

R1C1
into the LF asymptote (or ω = 1

R2C2
into the

HF asymptote). The phases of the asymptotes are −90◦ and +90◦ (or −270◦)
respectively with a mid-frequency phase of ±180◦.

Several people thought that since R1C1� R2C2 you could completely ignore
the ( jωR2C2 +1) factor leading to a high frequency asymptote of −R2

R1
(or oc-
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casionally ignore the other factor giving an asymptote of −C1
C2

). The grounds
for this seemed to be an incorrect belief that R1C1 � R2C2 ⇒ ωR2C2 � 1.
Several thought the low frequency asymptote phase was +90◦ due to the fac-
tor j but ignored the minus sign which changes the phase by ±180◦. Some
gave the corner frequencies as the dimensionally incorrect R1C1 and R2C2.

With the values from part (c), the magnitude and phase plots therefore look like
this:

10 100 1k 10k 100k 1M 10M
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For the magnitude plot the corners are at
(

1
R1C1

, R2
R1

)
and

(
1

R2C2
, R2

R1

)
.

Several people got the corner frequencies in the wrong order: R1C1�R2C2 ⇔
1

R1C1
� 1

R2C2
. Some introduced a third corner frequency at ω = 1

R2C1
presum-

ably because of the numerator − jωR2C1; you only get corner frequencies

from factors like (a jω +b) or
(

a( jω)2 +b jω + c
)

. Some said the gain in the
flat portion was proportional to ω which is self-contradictory; others had a va-
riety of dimensionally incorrect values (e.g. R1C1 or R2C1); a voltage gain must
always be dimensionless.

For the phase plot, the corners are at
(

0.1
R1C1

,−90◦ =−π

2

)
,
(

10
R1C1

,−180◦ =−π

)
,(

0.1
R2C2

,−180◦ =−π

)
and

(
10

R2C2
,−270◦ =−3π

2

)
. The condition R1C1� R2C2

ensures the corner frequencies are in the order given above and that there is
therefore a flat portion in the middle of the phase plot for 10

R1C1
< ω < 0.1

R2C2
.

Each sloping portion of the graph goes down by 90◦ (or π

2 radians) over the
space of two decades in frequency (= a factor of 100); thus the gradient is 45◦

per decade. The low and high frequency asymptotes in the phase plot always
have zero gradient.

Some added a sudden jump of 2π at the end of the phase plot to make the
final phase equal to +π

2 . This is not incorrect, but it is unnecessary: phase
shifts of +π

2 and −3π

2 mean the same thing. Others, possibly for the same
reason, had the entire phase graph inverted. Many people put no labels on
the vertical axes of one or both graphs. Quite a few made the phase plot bend
up at 0.1

R2C2
instead of down; if the coefficients in a linear factor have the same

sign as each other, the first bend is up for the numerator and down for the
denominator.

c) If R2 = 40kΩ, determine values for R1, C1 and C2 to give corner frequencies at
1krad/s and 200krad/s and a magnitude gain of 40 in the horizontal portion of
the magnitude response. [ 5 ]

The mid-frequency magnitude gain is R2
R1

= 40 ⇒ R1 =
R2
40 = 1kΩ.

Some took the question to mean a magnitude gain of 40dB instead of 40.
Many found it difficult to determine the formula for the mid-frequency gain; you
can get it by substituting the first corner frequency, 1

R1C1
, into the LF asymptote
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or the second corner frequency, 1
R2C2

, into the HF asymptote.

The LF corner is 1
R1C1

= 1000 ⇒ C1 =
1

1000R1
= 1 µF.

The HF corner is 1
R2C2

= 200000 ⇒ C2 =
10−6

0.2R2
= 125pF.

Many people got the corner frequencies in the wrong order even if they had
shown them correctly on the graph earlier: R1C1� R2C2 ⇔ 1

R1C1
� 1

R2C2
.

Calculate the actual gain in dB at each of the two corner frequencies and com-
pare these with the values predicted by the straight-line approximation. [ 3 ]

From part (a) we know Y
X ( jω)= − jωR2C1

( jωR1C1+1)( jωR2C2+1) =
−(4×10−2) jω

(10−3 jω+1)((5×10−6) jω+1) .

At ω = 1000, Y
X ( jω) = −40 j

(1+ j)(1+0.005 j) = −20.1− 19.9 j = 28.3∠− 135.3◦ =
29dB.

At ω = 2× 105, Y
X ( jω) = −8000 j

(1+200 j)(1+ j) = −20.1 + 19.9 j = 28.3∠135.3◦ =
29dB.

The straight-line approximation predicts a gain of 40 = 32dB so the error is
−3dB in each case.

Many people omitted this part completely. Very many people just ignored j
when evaluating arithmetic expressions. You cannot do this even if you only
want the absolute value of the expression because, for example, |1+ j| =
1.414 but 1+ | j| = 2. Others misread the numerator as − jωR2C2 and got
answers that were too low by a factor of 200.

d) Determine the transfer function Y
X of the circuit of Fig. 2.2 under the assumption

that the op-amp has a finite gain, A =− Y
W , but is otherwise ideal.

[ 3 ]

KCL at node W gives W−X
Z1

+ W−Y
Z2

= 0 ⇒ W (Z1 +Z2)−XZ2−Y Z1 = 0.
If the opamp has gain A, then Y =−AWwhich gives W = −Y

A . Substituting this
into the previous expression gives−Y (Z1 +Z2)−XAZ2−YAZ1 = 0 from which
Y (Z1 (1+A)+Z2) =−AZ2X and so Y

X = −AZ2
Z1(1+A)+Z2

.

Figure 2.2

1 10 100 1k 10k 100k
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40
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Frequency (rad/s)
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Figure 2.3

With a finite gain A we have Y =−AW. We can apply KCL at node W and take
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W = −Y
A to obtain −Y−AX

Z1
+ −Y−AY

Z2
= 0 ⇒ Y (Z1 (1+A)+Z2) = −XAZ2

from which Y
X = −AZ2

Z1(1+A)+Z2
.

Note that assuming V+ = V− is the same as assuming the op-amp gain is
infinite. Many people assumed this and obtained the solution for an ideal op-
amp: Y

X = −Z2
Z1

thereby missing the entire point of the question. Quite a few
people made an algebraic error in the final stage and ended up with the gain
expression inverted.

e) The op-amp magnitude response is |A( jω)|=
∣∣∣ A0ω0

jω+ω0

∣∣∣ and is plotted in decibels
in Fig. 2.3. Estimate the values of A0 and ω0 from the plot. [ 3 ]

The low frequency asymptote is A0 = 80dB = 104.

Many people took the gain to be 80 rather than 80 dB; 80 is a very low DC gain
for an op-amp. Alternatively, they tried to do the algebra while keeping A0 in
dB deliberately; this doesn’t work - you must convert decibel values into actual
gains when doing algebra on transfer functions. A few took the LF asymptote
to be A0ω0.

The high frequency asymptote is A0ω0
jω = 104ω0

jω . From the graph we see that
A( j104) = 40dB = 100. Substituting this into the asymptote expression gives
104ω0
j104 = 100 from which ω0 = 100.

Some found this very easy and just wrote down the answers; others got in-
volved in loads of horrible simultaneous equations and usually ended up with
the wrong answer. The advantage of using straight line approximations (in-
cluding the low and high frequency asymptotes) is that you avoid all the hor-
rible algebra. Some did not notice that the frequency axis was in rad/s and
gave ω0 = 2π × 100. Some wrote equations in which the gains were in dB,

e.g. A = 40 =
∣∣∣ 80ω0

jω+ω0

∣∣∣ when ω = 10000; you must convert dB values to true
gains before using them in algebraic expressions. As elsewhere, people fre-
quently ignored the j in complex-valued expressions. A few ended up with
complex values for A0 and/or ω0 because they omitted the modulus signs in
an expression.

f) Determine the gain in dB of the circuit of Fig. 2.1 at (i) ω = 1 krad/s and (ii)
ω = 200 krad/s if the opamp open loop gain is A( jω) = A0ω0

jω+ω0
with the values

of A0 and ω0 as determined in part (e). [ 5 ]

From the answer to part (d)) we know Y
X = −AZ2

Z1(1+A)+Z2
and from (e) A( jω) =

106

jω+100 .

We also have Z1 = jωR1C1+1
jωC1

= 1+10−3 jω
10−6 jω = 1000+ 1000

jω and Z2 = R2
jωR2C2+1 =

4×104

1+5 jω×10−6 .

(i) At ω = 1000, A= 106

100+1000 j = 99−990 j = 995∠−84◦= 60dB, Z1 = 1000+
1000
1000 j = 1000−1000 j, Z2 =

4×104

1+5 j×10−3 = 4×104−200 j.
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Substituting these values in give

−(99−990 j)
(
4×104−200 j

)
(1000−1000 j)(100−990 j)+4×104−200 j

=
(−3.76+39.6)×106

(−0.85−1.09)×106

= −20.93−19.77 j

= 28.79∠−136◦ = 29.2dB

which is slightly more than the ideal op-amp value.

(ii) At ω = 2× 105, A = 106

100+2 j×105 = 0.0025− 5 j = 5∠− 89.97◦ = 14dB,

Z1 = 1000+ 1000
2 j×105 = 1000−5 j, Z2 =

4×104

1+ j = (2−2 j)×104.

Substituting these values in give

−(0.0025−5 j)(2−2 j)×104

(1000−5 j)(1.0025−5 j)+(2−2 j)×104 =
(0.999+1 j)×105

(2.1−2.5)×104

= −0.38+4.32 j

= 4.33∠95◦ = 12.7dB

which is much less than the ideal op-amp value.

Although not requested, the finite-A curve is plotted below along with the ideal
curve and the straight line approximation.
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Several people just worked out the gain of the op-amp rather than the gain of
the circuit in Fig. 2.1. Some used the value of A in dB within the equations
instead of its numerical value of 10000. If you are not systematic, this part
involves a lot of complex arithmetic and many people did not attempt it.
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3. In the circuit shown in Fig. 3.1, the switch is turned rapidly on and off in order to
control the average inductor current, IL. In the switch waveform illustrated in Fig. 3.2,
the switch is repeatedly closed for TC = 0.5 and then opened for TO = 1 where, in this
question, all times are in milliseconds.

Figure 3.1

0 0.5 1 1.5 2 2.5

open

closed

Time (ms)

Figure 3.2

a) For intervals when the switch is closed, determine the time constant, τC, in
milliseconds and the steady-state inductor current, IC. [ 3 ]

When the switch is closed, node Y is grounded and the diode and RD do not
affect iL at all. The time constant is τC = L

RL
= 0.5ms.

The steady state current can be obtained by taking the inductor to be a short
circuit. This gives a current of IC = 500mA.

A few people took VS = 10 to be a phasor and then wrote the phasor equation
IC = 10

RL+ jωL usually going on to assume that ω = 1 or else ω = 2000π

1.5 . You
cannot possibly use phasors in this problem because every time the switch
operates, the circuit itself changes. Note too that this circuit does not have an
input signal and so does not have a “gain”.

b) If the switch is closed at time t = 0 and opened again at t = 0.5 as shown in
Fig. 3.2, determine an expression for iL(t) for 0 < t < 0.5 given that iL(0) = 0.

[ 5 ]

The current is given by iL(t) = IC +Ae−
t

τC where A is determined by the initial
condition iL(0) = 0. Substituting this in gives 0 = IC +A ⇒ A =−IC.

Putting this together gives iL(t) = 0.5
(
1− e−2t

)
where t is in ms.

A few people took iL(0) = 10
70 = 0.143A as the [incorrect] steady state when

the switch was open even thought he question explicitly says iL(0) = 0.

c) Show that when the switch is open and the diode is forward biased, the steady
state inductor current, IO, is equal to−10mA. Assume that the forward voltage
drop of the diode is 0.7V. [ 2 ]

Determine the time constant, τO, when the switch is open and the diode is
forward biased. [ 3 ]
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If the diode is forward biased, it acts as a voltage source and so, when the
switch is open, the circuit becomes

The time constant is therefore τO = L
RL+RD

= 0.143ms and the steady state cur-
rent is IO = −0.7

RL+RD
= −0.7

70 =−10mA.

Note that the steady state current flows in the direction opposite to the arrow;
several people got the diode voltage the wrong way around. Several peo-
ple “proved” that the steady state current was +10mA by being rather vague
about which direction they were measuring current. A very small number of
people calculated a super-accurate time constant as L

RL+RD+rd
where the small

signal diode resistance was rd = VT
iL

. The only difficulty with this is that the
value of iL and hence of rd will not vary with time. Luckily rd makes rather little
difference: at the peak current of 0.316A, rd = 0.79Ω .

d) If the switch waveform is as shown in Fig. 3.2, determine the time, TZ , when
iL(t) first reaches zero after the switch opens at t = 0.5 and determine an ex-
pression for iL(t) over the interval 0.5 < t < TZ . [ 6 ]

From the answer to part (b), iL(0.5) = 0.5
(
1− e−1

)
= 0.316.

Some mixed up different time units using seconds for the time constant but
milliseconds for the time e.g. e−

0.5
0.0005 ; this is asking for trouble.

When the switch is open, the current is given by iL(t) = IO +Be−
t−0.5

τO where B
is determined by the initial condition iL(0.5) = 0.316. Substituting this in gives
0.316 = IO +B =−0.01+B ⇒ B = 0.326.

Several people added 10mA to 0.316A by calculating 10+ 0.316 = 10.316
in somewhat vague output units; I strongly recommend that you convert all
voltages, currents and impedances into the same units before doing arithmetic
on them. Some got the sign wrong and ended up with a transient amplitude
of 0.316− 10 = 0.306mA. If you substitute t = 0.5 into the final expression
(below), you should obtain the expected value of iL(0.5) = 0.316; this is a good
check. Several people calculated I0 correctly in part (c) but then inexplicably
used the value I0 = 0 in this part.

Putting this together gives iL(t) = 0.326e−7(t−0.5)−0.01 where t is in ms. You
can also write this as iL(t) = 10.8e−7t − 0.01 where 10.8 = 0.326e−7×−0.5 al-
though it is less illuminating.

This equals zero when

t = 0.5+ 1
7 ln
(0.326

0.01

)
= 0.5+ 3.484

7 = 0.5+0.498 = 0.998ms.
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Although not requested, a plot of iL(t) is shown below:
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Many people thought the current would go negative and almost reach the
steady state of −10mA. In fact, as soon as the current reaches zero, the
diode turns off and the current stays at zero.

e) Draw a dimensioned sketch showing the voltage waveform, y(t), at node Y over
the interval 0 < t < 2.1. Determine the peak value of y(t). [ 6 ]

There are three separate situations to consider:

(i) when the switch is closed, y(t) = 0,

(ii) when the switch is open and the diode is forward biased, y(t) = 10.7+
50iL(t) from the equivalent circuit above and

(iii) when the switch is open and the diode is off, then iL = 0 and y(t) =VS = 10.

At t = 0.5 therefore, iL = 0.316 and so the peak voltage is 10.7+50×0.316 =
26.5V. The complete waveform of y(t) looks like this and includes an abrupt
jump from 10.7 to 10V when the diode turns off at t = 0.998.
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Quite a few people misread the question and drew a graph of iL(t) instead.
When the switch is open, you can calculate the voltage at Y relative to the
10V supply in two ways (i) the sum of the voltages across the diode and the
50Ω resistor or (ii) the sum of the voltages across the inductor and the 20Ω

resistor. The second way is much more effort because it depends on the
derivative of the current; some people tried to do it this way nevertheless.

f) Suppose now that TO = 0.2 as shown in Fig. 3.3. The current, iL(t) will now
oscillate between the values IA at t = 0, 0.7, · · · and IB at t = 0.5, 1.2, · · ·.

Determine the values of IA and IB. [ 5 ]
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Figure 3.3

When the switch is closed, we now have iL(t) = IC + (IA− IC)e−2t and so
iL(0.5) = IB = IC +(IA− IC)e−1 = 0.316+0.368IA.

When the switch is opened, we have iL(t) = IO + (IB− IO)e−7(t−0.5) and so
iL(0.7) = IA = IO +(IB− IO)e−1.4 =−0.0075+0.2466IB.

Substituting the first equation into the second gives

IA =−0.0075+0.07793+0.0907IA ⇒ IA = 0.0704
0.9093 = 0.0774A

Hence IB = 0.316+0.368IA = 0.316+0.0285 = 0.3445A.

Although not requested, the waveforms are
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Only a few people understood the concept of this question. Most assumed
that iL(0) = 0 even thought the question stated otherwise.
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