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ANALYSIS OF CIRCUITS

Information for Candidates:

• Numerical answers must be given as fully evaluated decimal values and not as unevaluated arith-
metic expressions.

Notation

The following notation is used in this paper:

1. The voltage waveform at node X in a circuit is denoted by x(t), the phasor voltage by X and the
root-mean-square (or RMS) phasor voltage by X̃ = X√

2
. The complex conjugate of X is X∗.

2. Component and source values in a circuit are normally given in Ohms, Farads, Henrys, Volts or
Amps with the unit symbol omitted. Where an imaginary number is specified, it represents the
complex impedance or phasor value.

3. Times are given in seconds unless otherwise stated.

4. Unless otherwise indicated, frequency response graphs should use a linear axis for phase and log-
arithmic axes for frequency and magnitude.

5. The real and imaginary parts of a complex number, X , are written ℜ(X) and ℑ(X) respectively.

Analysis of Circuits c©Imperial College London 1/5



1. a) Using nodal analysis, calculate the voltages at nodes X and Y of Figure 1.1.
[ 4 ]

Figure 1.1 Figure 1.2

b) Use the principle of superposition to find the voltage X in Figure 1.2. [ 4 ]

c) Draw the Thévenin equivalent circuit of the two-terminal network in Figure 1.3
and find the values of its components. [ 4 ]

Figure 1.3 Figure 1.4

d) Assuming the opamp in the circuit of Figure 1.4 is ideal, give an expression for
Z in terms of X and Y . [ 4 ]

e) The diode in the circuit of Figure 1.5 has a forward voltage of 0.7V when
conducting but is otherwise ideal. Determine the output voltage, Y , when
(i) X = 1V,
(ii) X = 5V
(iii) X =−5V. [ 5 ]

Figure 1.5
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f) i) The diagram of Figure 1.6 shows an AC source with r.m.s. voltage
230V driving a load with impedance 50+25 j Ω through a line with
impedance 2Ω .

Determine the complex power, given by S = Ṽ × Ĩ∗, absorbed by the
load and the complex power absorbed by the 2Ω resistor. [ 4 ]

ii) A capacitor with impedance −200 j is now connected across the
load, as indicated in Figure 1.7. Determine the complex power ab-
sorbed by the load and the complex power absorbed by the 2Ω

resistor. [ 4 ]

Figure 1.6 Figure 1.7

g) Determine the gain, Y
X , for the block diagram shown in Figure 1.8. The rect-

angular blocks are drawn with inputs at the left and outputs at the right and have
gains of F , G and H respectively. The open circle represents an adder/subtractor;
its three inputs have the signs indicated on the diagram and its output is V . [ 4 ]

Figure 1.8 Figure 1.9

h) The input voltage in Figure 1.9 is given by

x(t) =

{
0 t < 0
8V t ≥ 0.

i) Determine the time constant of the circuit. [ 2 ]

ii) Determine an expression for y(t) for t > 0. [ 5 ]
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2. The frequency response of a circuit is given by

H( jω) =
a jω

( jω)2 +2ζ ω0 jω +ω2
0

where a, ζ and ω0 are real numbers.

a) i) By dividing the numerator and denominator of H( jω) by jω and
then multiplying the resultant expression by its complex conjugate,

show that |H( jω)|2 = a2

4ζ 2ω2
0 +
(

ω− ω2
0

ω

)2 . [ 3 ]

ii) Explain why the maximum value of |H( jω)|2 occurs when the quan-

tity
(

ω− ω2
0

ω

)
equals zero. Hence show that the maximum occurs at

ω = ω0 and determine |H( jω0)|2 . [ 2 ]

iii) Find expressions for the two positive values of ω for which

|H( jω)|2 = a2

8ζ 2ω2
0

and determine a simplified expression for the

difference between them. [ 4 ]

b) Suppose now that a = 5000s−1, ζ = 0.1 and ω0 = 5000rad/s.

i) Determine the low and high frequency asymptotes of H( jω). [ 2 ]

ii) Draw a dimensioned sketch showing the high and low frequency
asymptotes as well as the true magnitude response, |H( jω)|. In-
dicate on your graph in dB the peak value of |H( jω)| and the value
of the asymptotes at their point of intersection. [ 5 ]

iii) Draw a dimensioned sketch of the straight-line approximation to the
phase response, ∠H( jω). You may assume without proof that the
gradient of the approximation at ω0 is equal to −0.5πζ−1 radians
per decade where “decade” means a factor of 10 in frequency. [ 4 ]

c) i) Show that the frequency response, Y ( jω)
X( jω) of the circuit shown in Fig-

ure 2.1 is given by [ 5 ]

Y ( jω)

X( jω)
=

− jωR2C

( jω)2 R1R2C2 +2 jωR1C+1
.

ii) Determine simplified expressions for a, ζ and ω0 so that the expres-
sion given in part c)i) equals that given above for H( jω). [ 3 ]

iii) Given that C = 10nF, determine the values of R1 and R2 so that
ω0 = 5000rad/s and ζ = 0.1. [ 2 ]

Figure 2.1
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3. Figure 3.1 shows a shows a transmission line of length L = 10m whose characteristic
impedance is Z0 = 120Ω and whose propagation velocity is u = 2×108 m/s. Distance
along the line is denoted by x and the two points x = 0 and x = L are marked in the
figure.

At a point x on the line, the line voltage and current are given by vx(t) = fx(t)+ gx(t)
and ix(t) = Z−1

0 ( fx(t)−gx(t)) where fx(t) = f0(t−u−1x) and gx(t) = g0(t +u−1x) are
the forward and backward waves respectively.

Figure 3.1

a) i) At the position x = L, the backward wave is given by gL(t) = ρL fL(t)
where ρL = 0.75 is the reflection coefficient at x = L.

Show that g0(t) = ρL f0(t−2u−1L). [ 3 ]

ii) At x = 0, show that vs(t) = v0(t)+RSi0(t). Hence show that f0(t)
can be written in the form f0(t) = τ0vs(t)+ ρ0g0(t) and determine
the numerical values of τ0 and ρ0. [ 6 ]

iii) By combining the results of parts i) and ii) show that

f0(t) = τ0vs(t)+ρ0ρL f0(t−2u−1L).

Hence prove, by using induction or otherwise, that

f0(t) = ∑
∞
n=0 τ0ρn

0 ρn
Lvs
(
t−2nu−1L

)
. [ 6 ]

b) If the source is a 30ns pulse given by

vs(t) =

{
25.6V for 0≤ t ≤ 30ns
0 otherwise

,

draw a dimensioned sketch of the waveform vx(t) on the line at the point x= 8m
for the time interval 0≤ t ≤ 150ns. Give the times of all discontinuities and the
values of all horizontal portions of the waveform. [ 6 ]

c) Now assume that all voltages and currents are sinusoidal with angular frequency
ω . The uppercase letter, Vx, denotes the phasor corresponding to vx(t).

i) The waveform f0(t) = Acos(ωt +θ) is represented by the phasor
F0 = Ae jθ . Show that Fx = F0e− jkx where k = u−1ω . [ 3 ]

ii) By converting the first equation given in part a)iii) into phasor form,
determine an expression for F0 in terms of Vs. [ 3 ]

iii) Determine an expression for Vx in terms of Vs. [ 3 ]

Analysis of Circuits c©Imperial College London 5/5



ANALYSIS OF CIRCUITS

**** Solutions 2017 ****

Information for Candidates:

• Numerical answers must be given as fully evaluated decimal values and not as unevaluated arith-
metic expressions.

Notation

The following notation is used in this paper:

1. The voltage waveform at node X in a circuit is denoted by x(t), the phasor voltage by X and the
root-mean-square (or RMS) phasor voltage by X̃ = X√

2
. The complex conjugate of X is X∗.

2. Component and source values in a circuit are normally given in Ohms, Farads, Henrys, Volts or
Amps with the unit symbol omitted. Where an imaginary number is specified, it represents the
complex impedance or phasor value.

3. Times are given in seconds unless otherwise stated.

4. Unless otherwise indicated, frequency response graphs should use a linear axis for phase and log-
arithmic axes for frequency and magnitude.

5. The real and imaginary parts of a complex number, X , are written ℜ(X) and ℑ(X) respectively.

Key: B=bookwork, U=unseen example
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1. a) Using nodal analysis, calculate the voltages at nodes X and Y of Figure 1.1.
[ 4 ]

[U] KCL at node X gives

X−18
4

+
X
3
+

X−Y
2

= 0

⇒ 3X−54+4X +6X−6Y = 0

⇒ 13X−6Y = 54

KCL at node Y gives

Y −X
2

+
Y
1
−3 = 0

⇒ −X +3Y = 6

Solving these simultaneous equations gives

X = 6, Y = 4.

Most people got this right. The most common mistake was to multiply one of
the terms in an equation by the wrong factor when removing the fractions (e.g.
the final term in the top equation above sometimes became 3X − 3Y or even
X−Y instead of 6X−6Y ).

Figure 1.1 Figure 1.2

b) Use the principle of superposition to find the voltage X in Figure 1.2. [ 4 ]

[U] If we short circuit the 18V source, the 2Ω and 4Ω resistors are inparallel
and are equivalent to a 2×4

2+4 = 8
6 = 1.333Ω resistor. The circuit is now a poten-

tial divider and the voltage at X is given by X1 =
1.333

4+1.333 ×−4 = 1.333
5.333 ×−4 =

−1V.

If we now short circuit the 4V voltage source, the two 4Ω resistors are in
parallel and equal 2Ω . The voltage at X is then X2 =

2
2+2×18 = 1

2×18 = 9V.

By superposition, the total voltage is therefore X = X1 +X2 =−1+9 = 8V.

Most people got this question right except for the occasional arithmetic error.
Learning how to use the simultaneous equation function in the calculator is
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recommended; it saves a lot of time and reduces arithmetic errors. You do
however need to be careful to enter the information in the correct form. Quite
a few people used the wrong section of the potential divider, e.g. writing X1 =

4
4+1.333 ×−4; if you want to calculate the voltage at node X, you need to find
the voltage across the resistor between X and ground.

c) Draw the Thévenin equivalent circuit of the two-terminal network in Figure 1.3
and find the values of its components. [ 4 ]

[U] We can find the Thévenin resistance by short-circuiting the voltage source
and open-circuiting the current source. This leaves two resistors in parallel
with an equivalent resistance of RT hev =

2×3
2+3 = 1.2kΩ.

We can find the open circuit voltage by nodal analysis or by superposition.

(i) Using nodal analysis (and grounding node B): A−5
2 + A

3 −3 = 0 from which
VT hev = A = 33

5 = 6.6V.

(ii) By superposition: V5V = 3
3+2 × 5 = 3V and V3m = 2×3

2+3 × 3 = 3.6V from
which VT hev = 3+3.6 = 6.6V.

Either way, we get the diagram on the left below. Alternatively we can ground
node B and append a current source, I, as shown in the rightmost diagram
below. Now doing KCL at node A gives A−5

2 + A
3 − 3− I = 0 from which A =

6.6+1.2I which gives VT hev and RT hev directly.

Another, trixier, method of solving this question is to convert the 5Vand 2kΩ

into their Norton equivalent: 2kΩ in parallel with 5
2 = 2.5mA upwards. Now

combine the parallel resistors and the parallel current sources to get 1.2kΩ in
parallel with 5.5mA. Finally, convert back from Norton to Thévenin to give
1.2kΩ and 1.2×5.5 = 6.6V.

Several people ignored the current source when calculating the open-circuit
voltage. A few people calculated the component values but did not draw the
circuit despite the first word of the question being “Draw”; a few people did
draw the circuit but put the resister and voltage source in parallel rather than
in series.
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Figure 1.3 Figure 1.4

d) Assuming the opamp in the circuit of Figure 1.4 is ideal, give an expression for
Z in terms of X and Y . [ 4 ]

[U] There is no current flowing through the 12kΩ resistor, so V+ = X. The
circuit has negative feedback and so we also have V− = X. Now, doing KCL at
V− gives

X−Y
20

+
X−Z

30
= 0

⇒ 5X−3Y −2Z = 0

⇒ Z = 2.5X−1.5Y

“An expression for Z” means an equation of the form “Z = . . .”; the answer
2Z = 5X−3Y is not what was requested so it only received full marks because
the examiner was feeling generous. Quite a common mistake was to say V− =
(Z−Y ) 20

20+30 ; this expression uses the potential divider formula to calculate
the voltage across the 20kΩ resistor. However, since the leftmost end of the
resistor is connected to Y rather than to 0, the correct expresion is V− = Y +
(Z−Y ) 20

20+30 .

e) The diode in the circuit of Figure 1.5 has a forward voltage of 0.7V when
conducting but is otherwise ideal. Determine the output voltage, Y , when
(i) X = 1V,
(ii) X = 5V
(iii) X =−5V. [ 5 ]

[U] If the diode is not conducting, then the circuit is a potential divider and
Y = 0.75X and the voltage across the diode is 0.25X. Thus, the diode will be off
when 0.25X < 0.7 ⇒ X < 2.8V. If the diode is conducting, then Y = X−0.7.

(i) when X = 1V, the diode is off and Y = 0.75X = 0.75V. (ii) when X = 5V,
the diode is conducting and Y = X − 0.7 = 4.3V. (iii) when X = −5V, the
diode is off and Y = 0.75X =−3.75V.

Several people thought the diode was conducting in part (i) and gave the incor-
rect answer of Y = 0.3. In fact, the diode is not conducting and its voltage is
+0.25 which, although positive, is less than the 0.7 required to make the diode
conduct (as stated in the question). Quite a few people inverted the sign of
the diode voltage to give Y = X +0.7; this would mean that the diode supplies
energy when a current flows through it in the direction of the arrow.
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Figure 1.5
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f) i) The diagram of Figure 1.6 shows an AC source with r.m.s. voltage
230V driving a load with impedance 50+25 j Ω through a line with
impedance 2Ω .

Determine the complex power, given by S = Ṽ × Ĩ∗, absorbed by the
load and the complex power absorbed by the 2Ω resistor. [ 4 ]

[U] The current phasor is Ĩ = Ṽ
52+25 j = 3.593− 1.727 j. The com-

plex power absorbed by an impedance is S = Ṽ × Ĩ∗ =
∣∣∣Ĩ∣∣∣2 Z =

15.891Z. So the power absorbed by the resistor is SR = 15.891×
2 = 31.781W. The power absorbed by the load is SL = 15.891×
(50+25 j) = 794.5+397.3 j VA.

Learning how to use the complex arithmetic functions in the cal-
culator is recommended; it saves a lot of time and reduces arith-
metic errors. The complex power absorbed by an impedance, Z, is

S = Ṽ × Ĩ∗ =
∣∣∣Ĩ∣∣∣2 Z =

|Ṽ |2
Z∗ ; however it is essential to use the cor-

rect Ṽ and/or Ĩ. Some people used |Ṽ |
2

Z∗ with Ṽ = 230 but this is
incorrect because 230 is not the voltage across either the load or the
resistor. Quite a lot of people used an incorrect formula for S such

as: |Ṽ |
2

Z , Ĩ2Z, Ĩ2

Z , Ṽ
Z∗

2
or Ṽ

Z

2
. Several of these incorrect expressions

wrongly give a complex value for S even when Z is real. The com-
plex power absorbed by a resistor is always real; indeed, for any
impedance, the argument of S equals the argument of Z as is obvious

from S =
∣∣∣Ĩ∣∣∣2 Z. Rounding errors mant that several people gave an-

swers like SR = Ṽ × Ĩ∗ = 31.781+0.0003 j which was awarded full
marks but is nevertheless a bit weird.

ii) A capacitor with impedance −200 j is now connected across the
load, as indicated in Figure 1.7. Determine the complex power ab-
sorbed by the load and the complex power absorbed by the 2Ω

resistor. [ 4 ]

[U] The combined load+capacitor impedance is now ZLC = −200 j(50+25 j)
50+25 j−200 j =

60.38+11.32 j Ω . The source current is now ĨR =
V

2+ZLC
= 230

62.38+11.32 j =
3.570− 0.648 j which means that the voltage across the resistor is
ṼR =(3.570−0.648 j)×2= 7.1393−1.2957 j. So the voltage across
the load+capacitor is ṼLC = Ṽ − ṼR = 222.86+1.2957 j or, via an-
other route, ṼLC = ZLC

2+ZLC
×Ṽ = (60.38+11.32 j)230

62.38+11.32 j = 222.86+1.2957 j.

So the power absorbed by the resistor is SR =
∣∣ĨR
∣∣2×R= |3.570−0.648 j|2×

2 = 13.162×2 = 26.32W, a decrease of 17%. The power absorbed

by the load is SL =
|ṼL|2

Z∗L
= |222.86+129.57 j|2

50−25 j = 49669
50−25 j = 794.7+397.3 j VA

which is almost exactly the same as before.

Generally people found this much harder than the previous part and
quite a lot of people did not even attempt the question. Some took the
capacitor impedance as 1

−200 j instead of 200 j (presumably thinking

Analysis of Circuits c©Imperial College London 6/22



of 1
jωC ).This gave a combined impedance of around 0.005 j which

is so small that it should have rung alarm bells. Many people cal-
culated the source current correctly but then used Ĩ2Z to calculate
the complex power absorbed by the load forgetting that not all the
current flows throught he load. Surprisingly many people calculated
the power assuming that Ṽ = 230 was the voltage across the resistor
and/or the load. Several people thought that, because a capacitor
does not absorb and energy on average, the overall power consump-
tion of the circuit would remain unchanged and/or the load volt-
age would remain unchanged: this is not true because the currents
through the other components change in both phase and magnitude.
Some people left their answers as complicated arithmetic expres-
sions rather than as decimal numbers despite the “Instructions for
Candidates” at the start of the paper.

Figure 1.6 Figure 1.7

g) Determine the gain, Y
X , for the block diagram shown in Figure 1.8. The rect-

angular blocks are drawn with inputs at the left and outputs at the right and have
gains of F , G and H respectively. The open circle represents an adder/subtractor;
its three inputs have the signs indicated on the diagram and its output is V . [ 4 ]

[U] We can write down the following equations from the block diagram:

V = X−Y −FHV

Y = FGV

We need to eliminate V from these equations:

V =
Y

FG

⇒ 1
FG

Y = X−Y − H
G

Y

⇒
(

1
FG

+1+
H
G

)
Y = X

1+FG+FH
FG

Y = X

Y
X

=
FG

1+F (G+H)
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An even easier derivation, if you spot it is to write

V = X−FGV −FHV

⇒ X =V +FGV +FHV

⇒ Y
X

=
FGV

V +FGV +FHV
=

FG
1+FG+FH

Some people did not have a clear goal when doing their algebra and ended up
with an answer that included V . You start with two equations and two unknowns
(V and Y ) and the entire purpose of the algebra is to eliminate V . Soe gave an
additional label, W, to the node joining F and G; this is not wrong but it results
in three simultaneous equations instead of only two.

Figure 1.8 Figure 1.9

h) The input voltage in Figure 1.9 is given by

x(t) =

{
0 t < 0
8V t ≥ 0.

i) Determine the time constant of the circuit. [ 2 ]

[U] The time constant is given by τ = RT hevC where RT hev is the
Thévenin resistance across the terminals of the capacitor. If we short
circuit the source, x(t), we find RT hev =

3R×R
3R+R = 0.75R so the time

constant is τ = 0.75RC.

An alternative method is to calculate the transfer function of the cir-
cuit as

Y
X

=
R

R+ 1
jωC+ 1

3R

=
R

R+ 3R
jω3RC+1

=
jω3RC+1

jω3RC+1+3
=

jω3RC+1
jω3RC+4

from which the time constant is the reciprocal of the denominator
corner frequency and therefore equals τ = 0.75RC. The transfer
function also gives the DC gain as 0.25 and the HF gain as 1.

Most got this right. The transfer function method involves quite a bit
more effort for this circuit and sometimes led to algebra errors.
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ii) Determine an expression for y(t) for t > 0. [ 5 ]

[U] Since the DC gain of the circuit is 0.25 (obtained by treating
the capacitor as an open circuit), the steady state output for t ≥ 0 is
ySS(t) = 0.25x(t) = 2.

At time t = 0, the capacitor voltage, y− x, cannot change instanta-
neously. Therefore, y(0+)−x(0+) = y(0−)−x(0−) = 0 and hence
y(0+) = x(0+) = 8. The transient amplitude is therefore y(0+)−
ySS(0+) = 8− 2 = 6. The complete output is therefore y(t) = 2+
6e−

t
τ .

Alternatively, the transfer function is H( jω) = 1+3 jωRC
4+3 jωRC from which

H(∞) = 1. Hence ∆y = 1×∆x = 8 and so y(0+) = y(0−)+8 = 8.

Quite a few people assumed that capacitor voltage continuity im-
plied y(0+) = y(0−) = 0 which is not true. Apart from this, most
people got this question right.

Analysis of Circuits c©Imperial College London 9/22



2. The frequency response of a circuit is given by

H( jω) =
a jω

( jω)2 +2ζ ω0 jω +ω2
0

where a, ζ and ω0 are real numbers.

a) i) By dividing the numerator and denominator of H( jω) by jω and
then multiplying the resultant expression by its complex conjugate,

show that |H( jω)|2 = a2

4ζ 2ω2
0 +
(

ω− ω2
0

ω

)2 . [ 3 ]

[U] Dividing numerator and denominator by jω gives

H( jω) =
a

2ζ ω0 + jω +
ω2

0
jω

=
a

2ζ ω0 + j
(

ω− ω2
0

ω

) .
To multiply by its complex conjugate we take the sum of the real and
imaginary parts in both numerator and denominator to obtain

|H( jω)|2 = a2

4ζ 2ω2
0 +
(

ω− ω2
0

ω

)2 .

Mostly OK although quite a few people seemed unfamiliar with the
very useful property of complex numbers that if z= a+ jb, then zz∗=
|z|2 = a2 +b2. Several people rationalized the fraction in the second
line above by multiplying numerator and denominator by 2ζ ω0−
j
(

ω− ω2
0

ω

)
; although this is mathematically valid it is usually a bad

thing to do algebraically because it doubles the polynomial order
of the denominator. In this case, it makes the algebra much harder.
Several people didn’t like drawing ζ ; one person just used τ instead.

ii) Explain why the maximum value of |H( jω)|2 occurs when the quan-

tity
(

ω− ω2
0

ω

)
equals zero. Hence show that the maximum occurs at

ω = ω0 and determine |H( jω0)|2 . [ 2 ]

[U] The denominator of |H( jω)|2 is the sum of two squares which
are both always ≥ 0. Only one of the squares involves ω while
the other is constant. Therefore the denominator in minimized (and
|H( jω)|2 is maximized) when this term is zero:(

ω−
ω2

0
ω

)2

= 0 ⇒ ω =
ω2

0
ω

⇒ ω =±ω0.

Substituting this into the expression for |H( jω)|2 gives

max
{
|H( jω)|2

}
=

a2

4ζ 2ω2
0
.
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A valid but somewhat more laborious method is to differentiate the
expression for |H( jω)|−2 or, even more laboriously, |H( jω)|2 and
find when it is zero. The entire purpose of the manipulations in part
(i) was to avoid the need for this by pushing all dependency on ωinto
a single non-negative term.

Most got this right although quite a few people gave non-algebraic
reasons, which are not true for all circuits, such as “The peak of
|H( jω)|2 must be at the corner frequency, ω0” rather than giving
an algebrai explanation. Very few people commented on the impor-
tance of the first denominator term, 4ζ 2ω2

0 , being positive. Quite
a lot of people lost a mark becuase they did not give the value of
max

{
|H( jω)|2

}
as requested.

iii) Find expressions for the two positive values of ω for which

|H( jω)|2 = a2

8ζ 2ω2
0

and determine a simplified expression for the

difference between them. [ 4 ]

[U] We have

|H( jω)|2 = a2

4ζ 2ω2
0 +
(

ω− ω2
0

ω

)2 =
a2

8ζ 2ω2
0

⇒
(

ω−
ω2

0
ω

)2

= 4ζ
2
ω

2
0

ω−
ω2

0
ω

=±2ζ ω0

ω
2±2ζ ω0ω−ω

2
0 = 0

ω =
±2ζ ω0±

√
4ζ 2ω2

0 +4ω2
0

2

=±ζ ω0±
√

ζ 2ω2
0 +ω2

0

=
(
±ζ ±

√
ζ 2 +1

)
ω0.

This gives a total of four roots: two positive and two negative. Since
the square-root term is larger in magnitude than the first term, the
two positive roots will be when the square root term is positive:

ω1,2 =±ζ ω0 +
√

ζ 2ω2
0 +ω2

0 =
(
±ζ +

√
ζ 2 +1

)
ω0

Thus the difference between these two roots will be ω2−ω1 = 2ζ ω0
(since the square root term cancels out in the subtraction). At these
values of ω , the response has fallen 3dB from its peak, so this differ-
ence is the 3dB bandwidth.

If you don’t take the square root in the third line above, you get a
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quadratic in ω2 which is rather messier to solve (especially if you
don’t know in advance the correct answer to aim for):

(
ω−

ω2
0

ω

)2

= 4ζ
2
ω

2
0

ω
2−2ω

2
0 +

ω4
0

ω2 −4ζ
2
ω

2
0 = 0

ω
4−2ω

2
0
(
1+2ζ

2)
ω

2 +ω
4
0 = 0

⇒ ω
2 =

2ω2
0
(
1+2ζ 2

)
±
√

4ω4
0 (1+2ζ 2)2−4ω4

0

2

= ω
2
0
(
1+2ζ

2)±ω
2
0

√
(1+2ζ 2)2−1

=
(

1+2ζ
2±2ζ

√
ζ 2 +1

)
ω

2
0

=
(

ζ ±
√

ζ 2 +1
)2

ω
2
0

⇒ ω =±
(

ζ ±
√

ζ 2 +1
)

ω0

Very many people omitted the ±in the third line: ω − ω2
0

ω
= ±2ζ ω0

and therefore did not find both of the positive solutions; whenever
you take a square root in algebra, you need to insert a ± sign.
Others successfully found all four solutions but took the wrong pair
of roots from ω =

(
±ζ ±

√
ζ 2 +1

)
ω0 by setting the first ± to be

always positive. Quite a few people got a sign wrong and wrote√
4ζ 2ω2

0 −4ω2
0 instead of

√
4ζ 2ω2

0 +4ω2
0 when writing the solu-

tion to the quadratic equation.

b) Suppose now that a = 5000s−1, ζ = 0.1 and ω0 = 5000rad/s.

i) Determine the low and high frequency asymptotes of H( jω). [ 2 ]

[U] The LF asymptote is found by taking the terms with the lowest
power of jω in numerator and denomiator and is

HL( jω) = jaω
−2
0 ω =

jω
5000

= j2×10−4
ω

. Similarly, the HF asymptote is

HH( jω) =− jaω
−1 =

5000
jω

=− j5000ω
−1

.

Mostly OK although some people omitted the “ j” factors even though
the question asked for the asymptotes of H( jω) rather than of |H( jω)|.
A few people said the LF asymptote was HL( jω) = 0 because there
is no constant term in the numerator. A few people noticed that the
units of a were in s−1 and wrongly multiplied by 2πin order “to
convert to rad/s”. A few people gave the asymptotes as HL( jω) =
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HH( jω) = 0; note that the asymptote, HL( jω) is a tangent to the
curve of H( jω) at low frequencies and it is not the same thing as
H( j0) which is just a single value of H( jω).

ii) Draw a dimensioned sketch showing the high and low frequency
asymptotes as well as the true magnitude response, |H( jω)|. In-
dicate on your graph in dB the peak value of |H( jω)| and the value
of the asymptotes at their point of intersection. [ 5 ]

[U] The magnitude asymptotes cross when
∣∣ jaω

−2
0 ω

∣∣= ∣∣− jaω−1
∣∣ ⇒

aω
−2
0 ω = aω−1 ⇒ ω = ω0 = 5000. At this point, their value

is aω
−1
0 = 1 = 0dB. From part ii), the peak magnitude gain is√

a2

4ζ 2ω2
0
= a

2ζ ω0
= 5 = 14dB at ω = 5000. We also know from part

iii) that the 3dB bandwidth is 2ζ ω0 = 1000rad/s. Thus we can draw
the graph as shown.

Surprisingly many people got the gain at the asymptote interestec-
tion wrong; often this was set equal to 5 or 14dB and, in one case,
100dB which is rather massive. Quite a few people had the true peak
at 28dB because part a-i asked for |H( jω)|2 rather than |H( jω)|.
Some people drew the “true” curve nowhere near the asymptotes;
the main property of asymptotes is that the true curve tends to the
asymptote at frequencies far from the corner frequency. Quite a few
people drew the response of a low pass filter (i.e. with a low fre-
quency asymptote of 1) evennthough they correctly calculated the
asymptotes in the previous part.

iii) Draw a dimensioned sketch of the straight-line approximation to the
phase response, ∠H( jω). You may assume without proof that the
gradient of the approximation at ω0 is equal to −0.5πζ−1 radians
per decade where “decade” means a factor of 10 in frequency. [ 4 ]

[U] From part i), the LF and HF phase shifts are +π

2 and −π

2 . Also,
at ω = ω0, the outer terms of the quadratic cancel and the phase
shift is 0. At ω0, the gradient is−0.5πζ−1 =−15.71 (meaning that it
changes by π in 2ζ decades), so the central line of the approximation
will hit ±π

2 at ω = ω0±ζ decades. ζ = 0.1 decades is equivalent to
a multiple of 100.1 = 1.259. So the sloping segement goes between
ω = [5000÷1.29, 5000×1.29] = [3972, 6295].
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Many people omitted this part entirely but most f those who at-
tempted it got the overal shape of the graph right. Quite a few peo-
ple showed the phase response with completely the wrong shape and
with LF and HF asymptotes having the same slopes as the magnitude
response. The LF and HF phases can be deduced from the answers
to part b-i: jω

5000 has a phase of +π

2 while 5000
jω has a phase of −π

2 .
Many people had gradient changes at ω = {500, 50k} which gives
an intermediate slope of−0.5π; this would be the slope if ζ = 1.The
cornbers in the phase response are at ω = ω0±ζ decades.

c) i) Show that the frequency response, Y ( jω)
X( jω) of the circuit shown in Fig-

ure 2.1 is given by [ 5 ]

Y ( jω)

X( jω)
=

− jωR2C

( jω)2 R1R2C2 +2 jωR1C+1
.

[U] KCL at the –ve opamp input (which is a virtual ground) gives

jωC (0−V )+
0−Y

R2
= 0

⇒ V =
−Y

jωR2C
.

This can also be viewed as an inverting opamp circuit with V as the
input signal.

KCL at V gives

V −X
R1

+ jωC (V −Y )+ jωC (V −0) = 0

V (1+2 jωR1C)−X− jωR1CY = 0.

Substituting from the first equation gives

−Y
jωR2C

(1+2 jωR1C)−X− jωR1CY = 0.(
1+2 jωR1C+( jω)2 R1R2C2

)
Y =− jωR2CX

⇒ Y ( jω)

X( jω)
=

− jωR2C

( jω)2 R1R2C2 +2 jωR1C+1
.
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A neater, but slightly trixier, soluution method is

Y =− jωR2CV

X = (1+2 jωR1C)V − jωR1CY

= (1+2 jωR1C)V +( jω)2 R1R2C2V
Y
X

=
− jωR2CV

(1+2 jωR1C)V +( jω)2 R1R2C2V

=
− jωR2C

( jω)2 R1R2C2 +2 jωR1C+1
.

Most got this right although a few people needed to fudge the mi-
nus sign in the numerator. Several people did KCL at node Y which
doesn’t work because the opamp output current is unknown (and
was ignored by those who did this). A few people wrote down the
correct initial equations but did not have a clear goal for their alge-
bra (namely to eliminate V between the equations) and often ended
you with a formula that sill included V . One or two people tried
to use the formula for an inverting opamp with some combination
of C, C and R2 as the feedback network; this is not valid because
node V is not the opamp input terminal. Several people wrote the
second KCL equation as V−X

R1
+ jωC (V −Y )+ jωC

1+ jωR2C (V −Y ) = 0
where the last term arisies from the series combination of C and R2
(which is valid because no current is drawn by the V− terminal); this
equation is valid but it complicates the algebra.

ii) Determine simplified expressions for a, ζ and ω0 so that the expres-
sion given in part c)i) equals that given above for H( jω). [ 3 ]

[U] In order to make the coefficient of ( jω)2 equal to unity (to match
the equation for H( jω)), we divide numerator and denominator by
R1R2C2 to obtain

Y ( jω)

X( jω)
=

−(R1C)−1 jω

( jω)2 +2(R2C)−1 jω +(R1R2C2)−1 .

Matching coefficients gives

a =−(R1C)−1

ω0 =
(
R1R2C2)−0.5

=
1

C
√

R1R2

ζ =
1

R2Cω0
= R1Cω0 =

√
R1

R2
.

Surprisingly many people didn’t realize that they needed to divide
numerator and denominator by R1R2C2 to make the coefficient of
( jω)2 equal to unity. Identifyng the remaining coefficients then re-
sulted in a fixed corner frequency of ω0 = 1 which is constradicted by
part c-iii and is very unlikely in any case. Several people got mixed

Analysis of Circuits c©Imperial College London 15/22



up between “a” in the question and “a” in the standard quadratic
expression ax2 + bx+ c; they are completely different. Quite a lot

of people wrote ζ =
√

R1R2
R2

or even
√

R1R2C2

R2C rather than the simpler

expression
√

R1
R2

which surprised me since the question asked for
“simplified expressions”.

iii) Given that C = 10nF, determine the values of R1 and R2 so that
ω0 = 5000rad/s and ζ = 0.1. [ 2 ]

[U] From part ii),

ζ =
1

R2Cω0
⇒ R2 =

1
ζCω0

= 200kΩ.

Now we can write

ζ =

√
R1

R2
⇒ R1 = R2ζ

2 =
ζ

Cω0
= 0.012 = 2kΩ.

Most people did this part OK although there were quite often algebra
errors. There typically resulted in absurd values for the resistors
like 1010 Ω or 10−5 Ω which is a pretty sure sign of an error. One
common mistake was in calculating ω0C = 5× 10−5; many people
got the exponent wrong.

Figure 2.1

Analysis of Circuits c©Imperial College London 16/22



3. Figure 3.1 shows a shows a transmission line of length L = 10m whose characteristic
impedance is Z0 = 120Ω and whose propagation velocity is u = 2×108 m/s. Distance
along the line is denoted by x and the two points x = 0 and x = L are marked in the
figure.

At a point x on the line, the line voltage and current are given by vx(t) = fx(t)+ gx(t)
and ix(t) = Z−1

0 ( fx(t)−gx(t)) where fx(t) = f0(t−u−1x) and gx(t) = g0(t +u−1x) are
the forward and backward waves respectively.

Figure 3.1

a) i) At the position x = L, the backward wave is given by gL(t) = ρL fL(t)
where ρL = 0.75 is the reflection coefficient at x = L.

Show that g0(t) = ρL f0(t−2u−1L). [ 3 ]

[B] We substitute the given expressions, fx(t) = f0(t − u−1x) and
gx(t) = g0(t +u−1x) into gL(t) = ρL fL(t) to obtain

gL(t) = ρL fL(t)

g0(t +u−1L) = ρL f0(t−u−1L)

g0(t ′) = ρL f0(t ′−2u−1L)

where in the final line we make the substitution t ′ = t +u−1L.

Most people got the general idea right. Many people explained the
reason in words rather than proving it algebraically. Rather few
people formally made the substitution t ′ = t +u−1L or its equivalent
which is requred for going rigorously from line 2 to line 3 above.
Some people converted to phasor form in order to prove the result so
that the second line became G0e jkL = ρLF0e− jkL⇒G0 = ρLF0e− j2kL.
The problem with this approach is that while the formula in the ques-
tion applies to any sort of waveform, phasors can only be used if
f0(t) is a sine wave.

ii) At x = 0, show that vs(t) = v0(t)+RSi0(t). Hence show that f0(t)
can be written in the form f0(t) = τ0vs(t)+ ρ0g0(t) and determine
the numerical values of τ0 and ρ0. [ 6 ]

[U] Applying Kirchoff’s Current law at the rightmost end of RS gives
v0−vs

RS
+ i0 = 0 from which vs = v0 +RSi0.

Substituting for v0 and i0 (using the formulae given in the preamble)
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results in

vs (t) = ( f0 (t)+g0 (t))+RSZ−1
0 ( f0 (t)−g0 (t))

=
(
1+RSZ−1

0

)
f0 (t)+

(
1−RSZ−1

0

)
g0 (t)

⇒ f0 (t) =
1

1+RSZ−1
0

vs (t)−
1−RSZ−1

0

1+RSZ−1
0

g0 (t)

=
Z0

RS +Z0
vs (t)+

RS−Z0

RS +Z0
g0 (t)

from which τ0 = Z0
RS+Z0

= 120
192 = 0.625 and ρ0 = RS−Z0

RS+Z0
= −48

192 =
−0.25.

Several people omitted the minus sign from the numerical value of
ρ0 and several more omitted the numerical values entirely. Several
people decomposed vS as vS(t) = fS(t)+ gS(t) but the forward and
backward waves exist only on the transmission line and vS is not part
of the line (it is separated from the line by RS) so fS and gS have no
meaning. Proving the first part, vs = v0+RSi0, is very easy but some
people lost easy marks because they did not do it.

iii) By combining the results of parts i) and ii) show that

f0(t) = τ0vs(t)+ρ0ρL f0(t−2u−1L).

Hence prove, by using induction or otherwise, that

f0(t) = ∑
∞
n=0 τ0ρn

0 ρn
Lvs
(
t−2nu−1L

)
. [ 6 ]

[U] Substituting part i) into part ii) gives f0(t)= τ0vs(t)+ρ0ρL f0(t−
2u−1L) directly.

The informal way of proving the result is to use the above equation
to substitute repeatedly for the f0(. . .) factor in the final term of the
equation itself:

f0(t) = τ0vs(t)+ρ0ρL f0(t−2u−1L)

= τ0vs(t)+ρ0ρLτ0vs(t−2u−1L)+ρ
2
0 ρ

2
L f0(t−4u−1L)

= τ0vs(t)+ρ0ρLτ0vs(t−2u−1L)+ρ
2
0 ρ

2
Lτ0vs(t−4u−1L)︸ ︷︷ ︸

∑
2
n=0 τ0ρn

0 ρn
Lvs(t−2nu−1L)

+ρ
3
0 ρ

3
L f0(t−6u−1L)

= . . . and so on . . .

=
∞

∑
n=0

τ0ρ
n
0 ρ

n
Lvs
(
t−2nu−1L

)
.

Mathematical induction is the formal way of making this argument
rigorous. We prove by induction that, for any N ≥ 1,the following
proposition is true:

f0(t) =

(
N−1

∑
n=0

τ0ρ
n
0 ρ

n
Lvs
(
t−2nu−1L

))
+ρ

N
0 ρ

N
L f0

(
t−2Nu−1L

)
.

This corresponds to line N above with the first N terms combined
into a summation.
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When N = 1, this is true because the summation has only one term
and it becomes the result given in the question.

We now assume it is true for N = N0 and prove it for N = N0 +1 by
substituting the result from the first line into the final term:

f0(t) =

(
N0−1

∑
n=0

τ0ρ
n
0 ρ

n
Lvs
(
t−2nu−1L

))
+ρ

N0
0 ρ

N0
L

{
f0
(
t−2N0u−1L

)}
=

(
N0−1

∑
n=0

τ0ρ
n
0 ρ

n
Lvs
(
t−2nu−1L

))
+ρ

N0
0 ρ

N0
L

{
τ0vs(t−2N0u−1L)+ρ0ρL f0(t−2N0u−1L−2u−1L)

}
=

(
N0−1

∑
n=0

τ0ρ
n
0 ρ

n
Lvs
(
t−2nu−1L

))
+ τ0ρ

N0
0 ρ

N0
L vs(t−2N0u−1L)+ρ

N0+1
0 ρ

N0+1
L f0(t−2N0u−1L−2u−1L)

=

(
N0

∑
n=0

τ0ρ
n
0 ρ

n
Lvs
(
t−2nu−1L

))
+ρ

N0+1
0 ρ

N0+1
L f0(t−2(N0 +1)u−1L)

As N0→ ∞, the final term tends to zero because |ρ0| , |ρL| < 1 from
which

f0(t) =
∞

∑
n=0

τ0ρ
n
0 ρ

n
Lvs
(
t−2nu−1L

)
.

An alternative, less general, approach is to assume that f0(t) =
vs(t) = 0 for t<0. Then the induction proposition for N = N0 can
be that

f0(t) =
N0−1

∑
n=0

τ0ρ
n
0 ρ

n
Lvs
(
t−2nu−1L

)
for t < 2N0u−1L

which is a simpler formula than that of the previous proposition al-
beit with a time constraint. The case for N0 = 1 is now f0(t)= τ0vs(t)
for t < 2u−1L; this is true because the second term in the original
formula is always zero for this restriction on t. Now we can write,
for t < 2(N0 +1)u−1L,

f0(t) = τ0vs(t)+ρ0ρL f0(t−2u−1L)

= τ0vs(t)+ρ0ρL

N0−1

∑
n=0

τ0ρ
n
0 ρ

n
Lvs
(
(t−2u−1L)−2nu−1L

)
= τ0vs(t)+

N0−1

∑
n=0

τ0ρ
n+1
0 ρ

n+1
L vs

(
t−2(n+1)u−1L

)
= τ0vs(t)+

N0

∑
n′=1

τ0ρ
n′
0 ρ

n′
L vs
(
t−2n′u−1L

)
=

N0

∑
n′=0

τ0ρ
n′
0 ρ

n′
L vs
(
t−2n′u−1L

)
where the second line is valid because if t < 2(N0 +1)u−1L then
(t−2u−1L)< 2N0u−1L as required by the induction proposition for
N = N0. When N = ∞, we get f0(t) = ∑

∞
n=0 τ0ρn

0 ρn
Lvs
(
t−2nu−1L

)
for t < ∞.
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Most people tried to do this using induction but very few gave a
rigorous proof. The essential first step of an induction proof is to
formulate a proposition that is true for all N; most people had dif-
ficulty in doing this. Many people started off with a statement like
“ f0(t) = τ0vS(t) is true” when it plainly isn’t true since it contra-
dicts the equation given in the question. Many people thought that
∑

∞
n=0 τ0ρn

0 ρn
Lvs
(
t−2nu−1L

)
was a function of n which it isn’t be-

cause n is just a dummy summation variable; so it doesn’t make
any sense to “assume this formula is true for n = 0”. As discussed
above, the formula f0(t) = ∑

N0−1
n=0 τ0ρn

0 ρn
Lvs
(
t−2nu−1L

)
is only true

for t < 2N0u−1L and even then only if f0(t) = vs(t) = 0 for t<0.
Many people assumed this formula was true for N0 (without any ex-
tra conditions) and then “proved” that it was true for N0 +1.

b) If the source is a 30ns pulse given by

vs(t) =

{
25.6V for 0≤ t ≤ 30ns
0 otherwise

,

draw a dimensioned sketch of the waveform vx(t) on the line at the point x= 8m
for the time interval 0≤ t ≤ 150ns. Give the times of all discontinuities and the
values of all horizontal portions of the waveform. [ 6 ]

[U] The propagatin velocity is u = 2×108 which equals 5ns per metre. So the
pulse arrives at x at 8×5 = 40ns, reflects off the load and returns at 12×5 =
60ns. Subsequent arrivals are at these times pulse multiples of the round trip
time, 20× 5 = 100ns so only the transition at 140ns lies within the plotted
range. The initial forward wave amplitude is 25.6× τ0 = 16 and subsequent
amplitudes are 16×ρL = 12, 12×ρ0 =−3, −3×ρL =−2.25.

putting all this together, we get transitions at t = {40, 60, 70, 90, 140} of volt-
ages δv = {16, 12,−16,−12,−3}. The voltage after each transition is there-
fore vx = {16, 28, 12, 0,−3}.

Many people omitted the pulse that starts at t = 140ns; others got the amplitude
wrong because they multiplied ρS by the amplitude of the original pulse rather
than by that of the backward wave. Very many people omitted the multiplication
by τ0 which results in an amplitude of 25.6 for the forward wave (even though
they had calculated τ0 correctly in part a-ii). A few people used τ0 = RL

RS+RL

instead of τ0 =
Z0

RS+Z0
; until the wave first reaches the other end of the line, the

value of RL cannot affect anything.

c) Now assume that all voltages and currents are sinusoidal with angular frequency
ω . The uppercase letter, Vx, denotes the phasor corresponding to vx(t).

Analysis of Circuits c©Imperial College London 20/22



i) The waveform f0(t) = Acos(ωt +θ) is represented by the phasor
F0 = Ae jθ . Show that Fx = F0e− jkx where k = u−1ω . [ 3 ]

[B] We know that fx(t) = f0(t−u−1x) = 3Acos
(
ω(t−u−1x)+θ

)
=

Acos
(
ωt +θ −ωu−1x

)
. The corresponding phasor is therefore Fx =

Ae j(θ−ωu−1x) = Ae jθ e− jωu−1x = F0e− jkx.

Mostly correct. Quite a few people got mixed up between the time-
domain and the phasor-domain and wrote things like fx(t)=Ae j(ωt+θ−ωu−1x)

which falsely makes fx(t) complex-valued; when using phasors, you
have made a mistake if you ever have “t” and “ j” in the same equa-
tion. Also quite common was to write fx(t) = Acos(ωt +θ − kx) =
Ae jθ e− jkx where the first two terms are real-valued waveforms but
the last is a complex-valued phasor; fairly obviously this is not math-
ematically correct.

ii) By converting the first equation given in part a)iii) into phasor form,
determine an expression for F0 in terms of Vs. [ 3 ]

[U] Converting f0(t)= τ0vs(t)+ρ0ρL f0(t−2u−1L) into phasor form
gives

F0 = τ0VS +ρ0ρLF0e− j2kL

⇒ F0

(
1−ρ0ρLe− j2kL

)
= τ0VS

⇒ F0 =
τ0

1−ρ0ρLe− j2kLVS

For reasons that are unclear, several people wrote e−2u−1L instead of
e− j2ωu−1L = e− j2kL. Complex exponents are always dimensionless,
so time is multiplied by ω (rad/s) and distance by k (rad/m). Sev-
eral people gave an expression that involves an infinite sum: F0(t) =
∑

∞
n=0 τ0ρn

0 ρn
Le− j2nkLVs which is correct and is the phasor form of

the result of part a-iii. This is a geometric progression and can
easily be shown to equal the simpler expression shown above in
the solution. A big advantage of using phasors is that it elimi-
nates such infinite sums. Surprisingly many people correctly wrote
F0 = τ0VS + ρ0ρLF0e− j2kL but were unable to rearrange it into the
form F0 = . . . or else made algebraic errors when doing so.

iii) Determine an expression for Vx in terms of Vs. [ 3 ]
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[U] We know that

Vx = Fx +Gx

= F0e− jkx +G0e jkx

= F0e− jkx +ρLF0e− j2kLe jkx

= F0

(
e− jkx +ρLe− jk(2L−x)

)
=

τ0
(
e− jkx +ρLe− jk(2L−x)

)
1−ρ0ρLe− j2kL VS

where the second line follows from gx(t) = g0(t+u−1x) and the third
from g0(t) = ρL f0(t−2u−1L).

Several people assumed Gx =G0e− jkx instead of G0e+ jkx. Also many
assumed that Gx = ρLFx but this is only true at x = L; the general re-
lation is Gx = ρLFxe− j2(L−x) which accounts for the round-trip dis-
tance to the end of the line and back.
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