Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear
factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance

Revision Lecture 1: Nodal Analysis \& Frequency Responses

Exam

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam

- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear
factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance

Exam Format

Question 1 (40\%): eight short parts covering the whole syllabus.

Questions 2 and 3: single topic questions (answer both)

Syllabus

Does include: Everything in the notes.

Does not include: Two-port parameters (2008:1j), Gaussian elimination (2007:2c), Application areas (2008:3d), Nullators and Norators (2008:4c), Small-signal component models (2008:4e), Gain-bandwidth product (2006:4c), Zener Diodes (2008/9 syllabus), Non-ideal models of L, C and transformer (2011/12 syllabus), Transmission lines VSWR and crank diagram (2011/12 syllabus).

Nodal Analysis

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes

- Corner frequencies (linear
factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance

Nodal Analysis

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear

actors)

- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance
(1) Pick reference node.

Nodal Analysis

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear

actors)

- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance
(1) Pick reference node.
(2) Label nodes: 8

Nodal Analysis

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear

actors)

- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance
(1) Pick reference node.
(2) Label nodes: $8, X$

Nodal Analysis

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear

factors)

- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance
(1) Pick reference node.
(2) Label nodes: $8, X$ and $X+2$ since it is joined to X via a voltage source.

Nodal Analysis

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear
factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance
(1) Pick reference node.
(2) Label nodes: $8, X$ and $X+2$ since it is joined to X via a voltage source.
(3) Write KCL equations but count all the nodes connected via floating voltage sources as a single "super-node" giving one equation

$$
\frac{X-8}{1}+\frac{X}{2}+\frac{(X+2)-0}{3}=0
$$

Nodal Analysis

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear
factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance
(1) Pick reference node.
(2) Label nodes: $8, X$ and $X+2$ since it is joined to X via a voltage source.
(3) Write KCL equations but count all the nodes connected via floating voltage sources as a single "super-node" giving one equation

$$
\frac{X-8}{1}+\frac{X}{2}+\frac{(X+2)-0}{3}=0
$$

Ohm's law always involves the difference between the voltages at either end of a

Nodal Analysis

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear
factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance
(1) Pick reference node.
(2) Label nodes: $8, X$ and $X+2$ since it is joined to X via a voltage source.
(3) Write KCL equations but count all the nodes connected via floating voltage sources as a single "super-node" giving one equation

$$
\frac{X-8}{1}+\frac{X}{2}+\frac{(X+2)-0}{3}=0
$$

Ohm's law always involves the difference between the voltages at either end of a
 resistor. (Obvious but easily forgotten)
(4) Solve the equations: $X=4$

Op Amps

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear
factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance
- Ideal Op Amp: (a) Zero input current, (b) Infinite gain (b) $\Rightarrow V_{+}=V_{-}$provided the circuit has negative feedback.
- Negative Feedback: An increase in $V_{\text {out }}$ makes $\left(V_{+}-V_{-}\right)$decrease.

Op Amps

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear
factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance
- Ideal Op Amp: (a) Zero input current, (b) Infinite gain (b) $\Rightarrow V_{+}=V_{-}$provided the circuit has negative feedback.
- Negative Feedback: An increase in $V_{\text {out }}$ makes $\left(V_{+}-V_{-}\right)$decrease.

Non-inverting amplifier

$$
Y=\left(1+\frac{3}{1}\right) X
$$

Op Amps

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear
factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance
- Ideal Op Amp: (a) Zero input current, (b) Infinite gain
(b) $\Rightarrow V_{+}=V_{-}$provided the circuit has negative feedback.
- Negative Feedback: An increase in $V_{\text {out }}$ makes $\left(V_{+}-V_{-}\right)$decrease.

Non-inverting amplifier

$$
Y=\left(1+\frac{3}{1}\right) X
$$

Inverting amplifier

$$
Y=\frac{-8}{1} X_{1}+\frac{-8}{2} X_{2}+\frac{-8}{2} X_{3}
$$

Op Amps

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear
factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance
- Ideal Op Amp: (a) Zero input current, (b) Infinite gain
(b) $\Rightarrow V_{+}=V_{-}$provided the circuit has negative feedback.
- Negative Feedback: An increase in $V_{\text {out }}$ makes $\left(V_{+}-V_{-}\right)$decrease.

Non-inverting amplifier

$$
Y=\left(1+\frac{3}{1}\right) X
$$

Inverting amplifier

$$
Y=\frac{-8}{1} X_{1}+\frac{-8}{2} X_{2}+\frac{-8}{2} X_{3}
$$

Nodal Analysis: Use two separate KCL equations at V_{+}and V_{-}.

Op Amps

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear
factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance
- Ideal Op Amp: (a) Zero input current, (b) Infinite gain
(b) $\Rightarrow V_{+}=V_{-}$provided the circuit has negative feedback.
- Negative Feedback: An increase in $V_{\text {out }}$ makes $\left(V_{+}-V_{-}\right)$decrease.

Non-inverting amplifier

$$
Y=\left(1+\frac{3}{1}\right) X
$$

Inverting amplifier

$$
Y=\frac{-8}{1} X_{1}+\frac{-8}{2} X_{2}+\frac{-8}{2} X_{3}
$$

Nodal Analysis: Use two separate KCL equations at V_{+}and V_{-}. Do not do KCL at $V_{\text {out }}$ except to find the op-amp output current.

Block Diagrams

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear
factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance

Blocks are labelled with their gains and connected using adder/subtractors shown as circles. Adder inputs are marked + for add or - for subtract.

Block Diagrams

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance

Blocks are labelled with their gains and connected using adder/subtractors shown as circles. Adder inputs are marked + for add or - for subtract.

To analyse:

1. Label the inputs, the outputs and the output of each adder.

Block Diagrams

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance

Blocks are labelled with their gains and connected using adder/subtractors shown as circles. Adder inputs are marked + for add or - for subtract.

To analyse:

1. Label the inputs, the outputs and the output of each adder.
2. Write down an equation for each variable:

- $U=X-F G U$
- Follow signals back though the blocks until you meet a labelled node.

Block Diagrams

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance

Blocks are labelled with their gains and connected using adder/subtractors shown as circles. Adder inputs are marked + for add or - for subtract.

To analyse:

1. Label the inputs, the outputs and the output of each adder.
2. Write down an equation for each variable:

- $U=X-F G U, \quad Y=F U+F G H U$
- Follow signals back though the blocks until you meet a labelled node.

Block Diagrams

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear
factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance

Blocks are labelled with their gains and connected using adder/subtractors shown as circles. Adder inputs are marked + for add or - for subtract.

To analyse:

1. Label the inputs, the outputs and the output of each adder.
2. Write down an equation for each variable:

- $U=X-F G U, \quad Y=F U+F G H U$
- Follow signals back though the blocks until you meet a labelled node.

3. Solve the equations (eliminate intermediate node variables):

- $U(1+F G)=X$

Block Diagrams

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear
factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance

Blocks are labelled with their gains and connected using adder/subtractors shown as circles. Adder inputs are marked + for add or - for subtract.

To analyse:

1. Label the inputs, the outputs and the output of each adder.
2. Write down an equation for each variable:

- $U=X-F G U, \quad Y=F U+F G H U$
- Follow signals back though the blocks until you meet a labelled node.

3. Solve the equations (eliminate intermediate node variables):

- $U(1+F G)=X \quad \Rightarrow \quad U=\frac{X}{1+F G}$

Block Diagrams

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance

Blocks are labelled with their gains and connected using adder/subtractors shown as circles. Adder inputs are marked + for add or - for subtract.

To analyse:

1. Label the inputs, the outputs and the output of each adder.
2. Write down an equation for each variable:

- $U=X-F G U, \quad Y=F U+F G H U$
- Follow signals back though the blocks until you meet a labelled node.

3. Solve the equations (eliminate intermediate node variables):

- $U(1+F G)=X \quad \Rightarrow \quad U=\frac{X}{1+F G}$
- $Y=(1+G H) F U$

Block Diagrams

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance

Blocks are labelled with their gains and connected using adder/subtractors shown as circles. Adder inputs are marked + for add or - for subtract.

To analyse:

1. Label the inputs, the outputs and the output of each adder.
2. Write down an equation for each variable:

- $U=X-F G U, \quad Y=F U+F G H U$
- Follow signals back though the blocks until you meet a labelled node.

3. Solve the equations (eliminate intermediate node variables):

- $U(1+F G)=X \quad \Rightarrow \quad U=\frac{X}{1+F G}$
- $Y=(1+G H) F U=\frac{(1+G H) F}{1+F G} X$

Block Diagrams

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear
factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance

Blocks are labelled with their gains and connected using adder/subtractors shown as circles. Adder inputs are marked + for add or - for subtract.

To analyse:

1. Label the inputs, the outputs and the output of each adder.
2. Write down an equation for each variable:

- $U=X-F G U, \quad Y=F U+F G H U$
- Follow signals back though the blocks until you meet a labelled node.

3. Solve the equations (eliminate intermediate node variables):

- $U(1+F G)=X \quad \Rightarrow \quad U=\frac{X}{1+F G}$
- $Y=(1+G H) F U=\frac{(1+G H) F}{1+F G} X$
[Note: "Wires" carry information not current: KCL not valid]

Diodes

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance

Each diode in a circuit is in one of two modes; each has an equality condition and an inequality condition:

- Off: $I_{D}=0, V_{D}<0.7$
- On: $V_{D}=0.7, I_{D}>0$
(a) Guess the mode
(b) Do nodal analysis assuming the equality condition
(c) Check the inequality condition. If the inequality condition fails, you made the wrong guess.

Diodes

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear
factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance

Each diode in a circuit is in one of two modes; each has an equality condition and an inequality condition:

- Off: $I_{D}=0, V_{D}<0.7 \Rightarrow$ Diode $=$ open circuit
- On: $V_{D}=0.7, I_{D}>0$
(a) Guess the mode
(b) Do nodal analysis assuming the equality condition
(c) Check the inequality condition. If the inequality condition fails, you made the wrong guess.
- Assume Diode Off

$$
X=5+2=7
$$

Diodes

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear
factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance

Each diode in a circuit is in one of two modes; each has an equality condition and an inequality condition:

- Off: $I_{D}=0, V_{D}<0.7 \Rightarrow$ Diode $=$ open circuit
- On: $V_{D}=0.7, I_{D}>0$
(a) Guess the mode
(b) Do nodal analysis assuming the equality condition
(c) Check the inequality condition. If the inequality condition fails, you made the wrong guess.
- Assume Diode Off

$$
\begin{aligned}
& X=5+2=7 \\
& V_{D}=2
\end{aligned}
$$

Diodes

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear
factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance

Each diode in a circuit is in one of two modes; each has an equality condition and an inequality condition:

- Off: $I_{D}=0, V_{D}<0.7 \Rightarrow$ Diode $=$ open circuit
- On: $V_{D}=0.7, I_{D}>0$
(a) Guess the mode
(b) Do nodal analysis assuming the equality condition
(c) Check the inequality condition. If the inequality condition fails, you made the wrong guess.
- Assume Diode Off

$$
\begin{aligned}
& X=5+2=7 \\
& V_{D}=2 \quad \text { Fail: } V_{D}>0.7
\end{aligned}
$$

Diodes

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear
factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance

Each diode in a circuit is in one of two modes; each has an equality condition and an inequality condition:

- Off: $I_{D}=0, V_{D}<0.7 \Rightarrow$ Diode $=$ open circuit
- On: $V_{D}=0.7, I_{D}>0 \Rightarrow$ Diode $=0.7 \mathrm{~V}$ voltage source
(a) Guess the mode
(b) Do nodal analysis assuming the equality condition
(c) Check the inequality condition. If the inequality condition fails, you made the wrong guess.
- Assume Diode Off

$$
\begin{aligned}
& X=5+2=7 \\
& V_{D}=2 \quad \text { Fail: } V_{D}>0.7
\end{aligned}
$$

- Assume Diode On

$$
X=5+0.7=5.7
$$

Diodes

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear
factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance

Each diode in a circuit is in one of two modes; each has an equality condition and an inequality condition:

- Off: $I_{D}=0, V_{D}<0.7 \Rightarrow$ Diode $=$ open circuit
- On: $V_{D}=0.7, I_{D}>0 \Rightarrow$ Diode $=0.7 \mathrm{~V}$ voltage source
(a) Guess the mode
(b) Do nodal analysis assuming the equality condition
(c) Check the inequality condition. If the inequality condition fails, you made the wrong guess.
- Assume Diode Off

$$
\begin{aligned}
& X=5+2=7 \\
& V_{D}=2 \quad \text { Fail: } V_{D}>0.7
\end{aligned}
$$

- Assume Diode On

$$
\begin{aligned}
& X=5+0.7=5.7 \\
& I_{D}+\frac{0.7}{1 \mathrm{k}}=2 \mathrm{~mA}
\end{aligned}
$$

Diodes

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear
factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance

Each diode in a circuit is in one of two modes; each has an equality condition and an inequality condition:

- Off: $I_{D}=0, V_{D}<0.7 \Rightarrow$ Diode $=$ open circuit
- On: $V_{D}=0.7, I_{D}>0 \Rightarrow$ Diode $=0.7 \mathrm{~V}$ voltage source
(a) Guess the mode
(b) Do nodal analysis assuming the equality condition
(c) Check the inequality condition. If the inequality condition fails, you made the wrong guess.
- Assume Diode Off

$$
\begin{aligned}
& X=5+2=7 \\
& V_{D}=2 \quad \text { Fail: } V_{D}>0.7
\end{aligned}
$$

- Assume Diode On

$$
\begin{aligned}
& X=5+0.7=5.7 \\
& I_{D}+\frac{0.7}{1 \mathrm{k}}=2 \mathrm{~mA} \quad \text { OK: } I_{D}>0
\end{aligned}
$$

Reactive Components

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear
factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance
- Impedances: $R, j \omega L, \frac{1}{j \omega C}=\frac{-j}{\omega C}$.
- Admittances: $\frac{1}{R}, \frac{1}{j \omega L}=\frac{-j}{\omega L}, j \omega C$

Reactive Components

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear
factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance
- Impedances: $R, j \omega L, \frac{1}{j \omega C}=\frac{-j}{\omega C}$.
- Admittances: $\frac{1}{R}, \frac{1}{j \omega L}=\frac{-j}{\omega L}, j \omega C$
- In a capacitor or inductor, the Current and Voltage are 90° apart :
- CIVIL: Capacitor - I leads V; Inductor $-I$ lags V

Reactive Components

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance
- Impedances: $R, j \omega L, \frac{1}{j \omega C}=\frac{-j}{\omega C}$.
- Admittances: $\frac{1}{R}, \frac{1}{j \omega L}=\frac{-j}{\omega L}, j \omega C$
- In a capacitor or inductor, the Current and Voltage are 90° apart :
- CIVIL: Capacitor - I leads V; Inductor $-I$ lags V
- Average current (or DC current) through a capacitor is always zero
- Average voltage across an inductor is always zero

Reactive Components

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance
- Impedances: $R, j \omega L, \frac{1}{j \omega C}=\frac{-j}{\omega C}$.
- Admittances: $\frac{1}{R}, \frac{1}{j \omega L}=\frac{-j}{\omega L}, j \omega C$
- In a capacitor or inductor, the Current and Voltage are 90° apart :
- CIVIL: Capacitor - I leads V; Inductor $-I$ lags V
- Average current (or DC current) through a capacitor is always zero
- Average voltage across an inductor is always zero
- Average power absorbed by a capacitor or inductor is always zero

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance

A phasor represents a time-varying sinusoidal waveform by a fixed complex number.

$$
\begin{array}{cc}
\text { Waveform } & \text { Phasor } \\
x(t)=F \cos \omega t-G \sin \omega t & X=F+j G
\end{array}
$$

Phasors

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance

A phasor represents a time-varying sinusoidal waveform by a fixed complex number.

$$
\begin{array}{cc}
\text { Waveform } & \text { Phasor } \\
x(t)=F \cos \omega t-G \sin \omega t & X=F+j G
\end{array}
$$

Phasors

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance

A phasor represents a time-varying sinusoidal waveform by a fixed complex number.

$$
\begin{array}{cc}
\text { Waveform } & \text { Phasor } \\
x(t)=F \cos \omega t-G \sin \omega t & X=F+j G \\
x(t)=A \cos (\omega t+\theta) & X=A e^{j \theta}=A \angle \theta
\end{array}
$$

Phasors

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance

A phasor represents a time-varying sinusoidal waveform by a fixed complex number.

$$
\begin{array}{cc}
\text { Waveform } & \text { Phasor } \\
x(t)=F \cos \omega t-G \sin \omega t & X=F+j G \\
x(t)=A \cos (\omega t+\theta) & X=A e^{j \theta}=A \angle \theta \\
\max (x(t))=A & |X|=A
\end{array}
$$

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance

A phasor represents a time-varying sinusoidal waveform by a fixed complex number.

$$
\begin{array}{cc}
\text { Waveform } & \text { Phasor } \\
x(t)=F \cos \omega t-G \sin \omega t & X=F+j G \\
x(t)=A \cos (\omega t+\theta) & X=A e^{j \theta}=A \angle \theta \\
\max (x(t))=A & |X|=A
\end{array}
$$

$x(t)$ is the projection of a rotating rod onto the real (horizontal) axis.
$X=F+j G$ is its starting position at $t=0$.

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance

A phasor represents a time-varying sinusoidal waveform by a fixed complex number.

$$
\begin{array}{cc}
\text { Waveform } & \text { Phasor } \\
x(t)=F \cos \omega t-G \sin \omega t & X=F+j G \\
x(t)=A \cos (\omega t+\theta) & X=A e^{j \theta}=A \angle \theta \\
\max (x(t))=A & |X|=A
\end{array}
$$

$x(t)$ is the projection of a rotating rod onto the real (horizontal) axis.
$X=F+j G$ is its starting position at $t=0$.

RMS Phasor: $\widetilde{V}=\frac{1}{\sqrt{2}} V$

Phasors

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance

A phasor represents a time-varying sinusoidal waveform by a fixed complex number.

$$
\begin{array}{cc}
\text { Waveform } & \text { Phasor } \\
x(t)=F \cos \omega t-G \sin \omega t & X=F+j G \\
x(t)=A \cos (\omega t+\theta) & X=A e^{j \theta}=A \angle \theta \\
\max (x(t))=A & |X|=A
\end{array}
$$

$x(t)$ is the projection of a rotating rod onto the real (horizontal) axis.
$X=F+j G$ is its starting position at $t=0$.
RMS Phasor: $\tilde{V}=\frac{1}{\sqrt{2}} V \quad \Rightarrow \quad|\widetilde{V}|^{2}=\left\langle x^{2}(t)\right\rangle$

Phasors

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear
factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance

A phasor represents a time-varying sinusoidal waveform by a fixed complex number.

$$
\begin{array}{cc}
\text { Waveform } & \text { Phasor } \\
x(t)=F \cos \omega t-G \sin \omega t & X=F+j G \\
x(t)=A \cos (\omega t+\theta) & X=A e^{j \theta}=A \angle \theta \\
\max (x(t))=A & |X|=A
\end{array}
$$

$x(t)$ is the projection of a rotating rod onto the real (horizontal) axis.
$X=F+j G$ is its starting position at $t=0$.
RMS Phasor: $\tilde{V}=\frac{1}{\sqrt{2}} V \quad \Rightarrow \quad|\widetilde{V}|^{2}=\left\langle x^{2}(t)\right\rangle$
Complex Power: $\tilde{V} \tilde{I}^{*}=|\tilde{I}|^{2} Z=\frac{|\widetilde{V}|^{2}}{Z^{*}}=P+j Q$
P is average power (Watts), Q is reactive power (VARs)

Plotting Frequency Responses

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear
factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance
- Plot the magnitude response and phase response as separate graphs. Use log scale for frequency and magnitude and linear scale for phase: this gives graphs that can be approximated by straight line segments.

Plotting Frequency Responses

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear
factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance
- Plot the magnitude response and phase response as separate graphs. Use log scale for frequency and magnitude and linear scale for phase: this gives graphs that can be approximated by straight line segments.
- If $\frac{V_{2}}{V_{1}}=A(j \omega)^{k}=A \times j^{k} \times \omega^{k}$
(where A is real)
\circ magnitude is a straight line with gradient k :

$$
\log \left|\frac{V_{2}}{V_{1}}\right|=\log |A|+k \log \omega
$$

Plotting Frequency Responses

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear
factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance
- Plot the magnitude response and phase response as separate graphs. Use log scale for frequency and magnitude and linear scale for phase: this gives graphs that can be approximated by straight line segments.
- If $\frac{V_{2}}{V_{1}}=A(j \omega)^{k}=A \times j^{k} \times \omega^{k}$
(where A is real)
- magnitude is a straight line with gradient k :

$$
\log \left|\frac{V_{2}}{V_{1}}\right|=\log |A|+k \log \omega
$$

- phase is a constant $k \times \frac{\pi}{2}(+\pi$ if $A<0)$:

$$
\angle\left(\frac{V_{2}}{V_{1}}\right)=\angle A+k \angle j=\angle A+k \frac{\pi}{2}
$$

Plotting Frequency Responses

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear
factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance
- Plot the magnitude response and phase response as separate graphs. Use log scale for frequency and magnitude and linear scale for phase: this gives graphs that can be approximated by straight line segments.
- If $\frac{V_{2}}{V_{1}}=A(j \omega)^{k}=A \times j^{k} \times \omega^{k}$
(where A is real)
- magnitude is a straight line with gradient k :

$$
\log \left|\frac{V_{2}}{V_{1}}\right|=\log |A|+k \log \omega
$$

- phase is a constant $k \times \frac{\pi}{2}(+\pi$ if $A<0)$:

$$
\angle\left(\frac{V_{2}}{V_{1}}\right)=\angle A+k \angle j=\angle A+k \frac{\pi}{2}
$$

- Measure magnitude response using decibels $=20 \log _{10} \frac{\left|V_{2}\right|}{\left|V_{1}\right|}$.

Plotting Frequency Responses

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear
factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance
- Plot the magnitude response and phase response as separate graphs. Use log scale for frequency and magnitude and linear scale for phase: this gives graphs that can be approximated by straight line segments.
- If $\frac{V_{2}}{V_{1}}=A(j \omega)^{k}=A \times j^{k} \times \omega^{k}$
(where A is real)
- magnitude is a straight line with gradient k :

$$
\log \left|\frac{V_{2}}{V_{1}}\right|=\log |A|+k \log \omega
$$

- phase is a constant $k \times \frac{\pi}{2}(+\pi$ if $A<0)$:

$$
\angle\left(\frac{V_{2}}{V_{1}}\right)=\angle A+k \angle j=\angle A+k \frac{\pi}{2}
$$

- Measure magnitude response using decibels $=20 \log _{10} \frac{\left|V_{2}\right|}{\left|V_{1}\right|}$. A gradient of k on log axes is equivalent to $20 k \mathrm{~dB} /$ decade ($\times 10$ in frequency) or $6 k \mathrm{~dB}$ /octave ($\times 2$ in frequency).

Plotting Frequency Responses

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear
factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance
- Plot the magnitude response and phase response as separate graphs. Use log scale for frequency and magnitude and linear scale for phase: this gives graphs that can be approximated by straight line segments.
- If $\frac{V_{2}}{V_{1}}=A(j \omega)^{k}=A \times j^{k} \times \omega^{k}$
(where A is real)
- magnitude is a straight line with gradient k :

$$
\log \left|\frac{V_{2}}{V_{1}}\right|=\log |A|+k \log \omega
$$

- phase is a constant $k \times \frac{\pi}{2}(+\pi$ if $A<0)$:

$$
\angle\left(\frac{V_{2}}{V_{1}}\right)=\angle A+k \angle j=\angle A+k \frac{\pi}{2}
$$

- Measure magnitude response using decibels $=20 \log _{10} \frac{\left|V_{2}\right|}{\left|V_{1}\right|}$. A gradient of k on log axes is equivalent to $20 k \mathrm{~dB} /$ decade ($\times 10$ in frequency) or $6 k \mathrm{~dB}$ /octave ($\times 2$ in frequency).

$$
\frac{Y}{X}=\frac{\frac{1}{j \omega C}}{R+\frac{1}{j \omega C}}=\frac{1}{j \omega R C+1}
$$

Plotting Frequency Responses

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear
factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance
- Plot the magnitude response and phase response as separate graphs. Use log scale for frequency and magnitude and linear scale for phase: this gives graphs that can be approximated by straight line segments.
- If $\frac{V_{2}}{V_{1}}=A(j \omega)^{k}=A \times j^{k} \times \omega^{k}$
(where A is real)
- magnitude is a straight line with gradient k :

$$
\log \left|\frac{V_{2}}{V_{1}}\right|=\log |A|+k \log \omega
$$

- phase is a constant $k \times \frac{\pi}{2}(+\pi$ if $A<0)$:

$$
\angle\left(\frac{V_{2}}{V_{1}}\right)=\angle A+k \angle j=\angle A+k \frac{\pi}{2}
$$

- Measure magnitude response using decibels $=20 \log _{10} \frac{\left|V_{2}\right|}{\left|V_{1}\right|}$. A gradient of k on log axes is equivalent to $20 k \mathrm{~dB} /$ decade ($\times 10$ in frequency) or $6 k \mathrm{~dB}$ /octave ($\times 2$ in frequency).

$$
\frac{Y}{X}=\frac{\frac{1}{j \omega C}}{R+\frac{1}{j \omega C}}=\frac{1}{j \omega R C+1}=\frac{1}{\frac{j \omega}{\omega_{c}}+1} \text { where } \omega_{c}=\frac{1}{R C}
$$

LF and HF Asymptotes

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear
factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance
- Frequency response is always a ratio of two polynomials in $j \omega$ with real coefficients that depend on the component values.
- The terms with the lowest power of $j \omega$ on top and bottom gives the low-frequency asymptote
- The terms with the highest power of $j \omega$ on top and bottom gives the high-frequency asymptote.

LF and HF Asymptotes

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance
- Frequency response is always a ratio of two polynomials in $j \omega$ with real coefficients that depend on the component values.
- The terms with the lowest power of $j \omega$ on top and bottom gives the low-frequency asymptote
- The terms with the highest power of $j \omega$ on top and bottom gives the high-frequency asymptote.

Example: $H(j \omega)=\frac{60(j \omega)^{2}+720(j \omega)}{3(j \omega)^{3}+165(j \omega)^{2}+762(j \omega)+600}$

LF and HF Asymptotes

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance
- Frequency response is always a ratio of two polynomials in $j \omega$ with real coefficients that depend on the component values.
- The terms with the lowest power of $j \omega$ on top and bottom gives the low-frequency asymptote
- The terms with the highest power of $j \omega$ on top and bottom gives the high-frequency asymptote.

Example: $H(j \omega)=\frac{60(j \omega)^{2}+720(j \omega)}{3(j \omega)^{3}+165(j \omega)^{2}+762(j \omega)+600}$

LF: $H(j \omega) \simeq 1.2 j \omega$

LF and HF Asymptotes

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear
factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance
- Frequency response is always a ratio of two polynomials in $j \omega$ with real coefficients that depend on the component values.
- The terms with the lowest power of $j \omega$ on top and bottom gives the low-frequency asymptote
- The terms with the highest power of $j \omega$ on top and bottom gives the high-frequency asymptote.

Example: $H(j \omega)=\frac{60(j \omega)^{2}+720(j \omega)}{3(j \omega)^{3}+165(j \omega)^{2}+762(j \omega)+600}$

LF: $H(j \omega) \simeq 1.2 j \omega$
HF: $H(j \omega) \simeq 20(j \omega)^{-1}$

Corner frequencies (linear factors)

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance
- We can factorize the numerator and denominator into linear terms of the form $(a j \omega+b) \simeq\left\{\begin{array}{ll}b & \omega<\left|\frac{b}{a}\right| \\ a j \omega & \omega>\left|\frac{b}{a}\right|\end{array}\right.$.

Corner frequencies (linear factors)

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance
- We can factorize the numerator and denominator into linear terms of the form $(a j \omega+b) \simeq\left\{\begin{array}{ll}b & \omega<\left|\frac{b}{a}\right| \\ a j \omega & \omega>\left|\frac{b}{a}\right|\end{array}\right.$.
- At the corner frequency, $\omega_{c}=\left|\frac{b}{a}\right|$, the slope of the magnitude response changes by ± 1 ($\pm 20 \mathrm{~dB} /$ decade) because the linear term introduces another factor of ω into the numerator or denominator for $\omega>\omega_{c}$.

Corner frequencies (linear factors)

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear
factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance
- We can factorize the numerator and denominator into linear terms of the form $(a j \omega+b) \simeq\left\{\begin{array}{ll}b & \omega<\left|\frac{b}{a}\right| \\ a j \omega & \omega>\left|\frac{b}{a}\right|\end{array}\right.$.
- At the corner frequency, $\omega_{c}=\left|\frac{b}{a}\right|$, the slope of the magnitude response changes by ± 1 ($\pm 20 \mathrm{~dB} /$ decade) because the linear term introduces another factor of ω into the numerator or denominator for $\omega>\omega_{c}$.
- The phase changes by $\pm \frac{\pi}{2}$ because the linear term introduces another factor of j into the numerator or denominator for $\omega>\omega_{c}$.
- The phase change is gradual and takes place over the range $0.1 \omega_{c}$ to $10 \omega_{c}\left(\pm \frac{\pi}{2}\right.$ spread over two decades in $\left.\omega\right)$.

Corner frequencies (linear factors)

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear
factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance
- We can factorize the numerator and denominator into linear terms of the form $(a j \omega+b) \simeq\left\{\begin{array}{ll}b & \omega<\left|\frac{b}{a}\right| \\ a j \omega & \omega>\left|\frac{b}{a}\right|\end{array}\right.$.
- At the corner frequency, $\omega_{c}=\left|\frac{b}{a}\right|$, the slope of the magnitude response changes by ± 1 ($\pm 20 \mathrm{~dB} /$ decade) because the linear term introduces another factor of ω into the numerator or denominator for $\omega>\omega_{c}$.
- The phase changes by $\pm \frac{\pi}{2}$ because the linear term introduces another factor of j into the numerator or denominator for $\omega>\omega_{c}$.
- The phase change is gradual and takes place over the range $0.1 \omega_{c}$ to $10 \omega_{c}\left(\pm \frac{\pi}{2}\right.$ spread over two decades in $\left.\omega\right)$.
- When a and b are real and positive, it is often convenient to write $(a j \omega+b)=b\left(\frac{j \omega}{\omega_{c}}+1\right)$.

Corner frequencies (linear factors)

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance
- We can factorize the numerator and denominator into linear terms of the form $(a j \omega+b) \simeq\left\{\begin{array}{ll}b & \omega<\left|\frac{b}{a}\right| \\ a j \omega & \omega>\left|\frac{b}{a}\right|\end{array}\right.$.
- At the corner frequency, $\omega_{c}=\left|\frac{b}{a}\right|$, the slope of the magnitude response changes by ± 1 ($\pm 20 \mathrm{~dB} /$ decade) because the linear term introduces another factor of ω into the numerator or denominator for $\omega>\omega_{c}$.
- The phase changes by $\pm \frac{\pi}{2}$ because the linear term introduces another factor of j into the numerator or denominator for $\omega>\omega_{c}$.
- The phase change is gradual and takes place over the range $0.1 \omega_{c}$ to $10 \omega_{c}\left(\pm \frac{\pi}{2}\right.$ spread over two decades in $\left.\omega\right)$.
- When a and b are real and positive, it is often convenient to write $(a j \omega+b)=b\left(\frac{j \omega}{\omega_{c}}+1\right)$.
- The corner frequencies are the absolute values of the roots of the numerator and denominator polynomials (values of $j \omega$).

Sketching Magnitude Responses (linear factors)

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance

1. Find corner frequencies: (a) factorize the numerator/denominator polynomials or (b) find their roots
2. Find LF and HF asymptotes. $A(j \omega)^{k}$ has a slope of k; substitute $\omega=\omega_{c}$ to get the response at first/last corner frequency.
3. At a corner frequency, the gradient of the magnitude response changes by ± 1 ($\pm 20 \mathrm{~dB} /$ decade). + for numerator (top line) and for denominator (bottom line).
4. $\left|H\left(j \omega_{2}\right)\right|=\left(\frac{\omega_{2}}{\omega_{1}}\right)^{k}\left|H\left(j \omega_{1}\right)\right|$ if the gradient between them is k.

Sketching Magnitude Responses (linear factors)

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance

1. Find corner frequencies: (a) factorize the numerator/denominator polynomials or (b) find their roots
2. Find LF and HF asymptotes. $A(j \omega)^{k}$ has a slope of k; substitute $\omega=\omega_{c}$ to get the response at first/last corner frequency.
3. At a corner frequency, the gradient of the magnitude response changes by ± 1 ($\pm 20 \mathrm{~dB} /$ decade). + for numerator (top line) and for denominator (bottom line).
4. $\left|H\left(j \omega_{2}\right)\right|=\left(\frac{\omega_{2}}{\omega_{1}}\right)^{k}\left|H\left(j \omega_{1}\right)\right|$ if the gradient between them is k.

$$
H(j \omega)=1.2 \frac{j \omega\left(\frac{j \omega}{12}+1\right)}{\left(\frac{j \omega}{1}+1\right)\left(\frac{j \omega}{4}+1\right)\left(\frac{j \omega}{50}+1\right)}
$$

Sketching Magnitude Responses (linear factors)

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance

1. Find corner frequencies: (a) factorize the numerator/denominator polynomials or (b) find their roots
2. Find LF and HF asymptotes. $A(j \omega)^{k}$ has a slope of k; substitute $\omega=\omega_{c}$ to get the response at first/last corner frequency.
3. At a corner frequency, the gradient of the magnitude response changes by ± 1 ($\pm 20 \mathrm{~dB} /$ decade). + for numerator (top line) and for denominator (bottom line).
4. $\left|H\left(j \omega_{2}\right)\right|=\left(\frac{\omega_{2}}{\omega_{1}}\right)^{k}\left|H\left(j \omega_{1}\right)\right|$ if the gradient between them is k.

$$
\begin{aligned}
& H(j \omega)=1.2 \frac{j \omega\left(\frac{j \omega}{12}+1\right)}{\left(\frac{j \omega}{1}+1\right)\left(\frac{j \omega}{4}+1\right)\left(\frac{j \omega}{50}+1\right)} \\
& \text { LF: } 1.2 j \omega \Rightarrow|H(j 1)|=1.2(1.6 \mathrm{~dB})
\end{aligned}
$$

Sketching Magnitude Responses (linear factors)

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance

1. Find corner frequencies: (a) factorize the numerator/denominator polynomials or (b) find their roots
2. Find LF and HF asymptotes. $A(j \omega)^{k}$ has a slope of k; substitute $\omega=\omega_{c}$ to get the response at first/last corner frequency.
3. At a corner frequency, the gradient of the magnitude response changes by ± 1 ($\pm 20 \mathrm{~dB} /$ decade). + for numerator (top line) and for denominator (bottom line).
4. $\left|H\left(j \omega_{2}\right)\right|=\left(\frac{\omega_{2}}{\omega_{1}}\right)^{k}\left|H\left(j \omega_{1}\right)\right|$ if the gradient between them is k.

$$
\begin{aligned}
& H(j \omega)=1.2 \frac{j \omega\left(\frac{j \omega}{\left.\frac{i \omega}{12}+1\right)}\right.}{\left(\frac{j \omega}{1}+1\right)\left(\frac{i \omega}{4}+1\right)\left(\frac{j \omega}{50}+1\right)} \\
& \text { LF: } 1.2 j \omega \Rightarrow|H(j 1)|=1.2(1.6 \mathrm{~dB}) \\
& |H(j 4)|=\left(\frac{4}{1}\right)^{0} \times 1.2=1.2
\end{aligned}
$$

Sketching Magnitude Responses (linear factors)

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance

1. Find corner frequencies: (a) factorize the numerator/denominator polynomials or (b) find their roots
2. Find LF and HF asymptotes. $A(j \omega)^{k}$ has a slope of k; substitute $\omega=\omega_{c}$ to get the response at first/last corner frequency.
3. At a corner frequency, the gradient of the magnitude response changes by ± 1 ($\pm 20 \mathrm{~dB} /$ decade). + for numerator (top line) and for denominator (bottom line).
4. $\left|H\left(j \omega_{2}\right)\right|=\left(\frac{\omega_{2}}{\omega_{1}}\right)^{k}\left|H\left(j \omega_{1}\right)\right|$ if the gradient between them is k.

$$
\begin{aligned}
& H(j \omega)=1.2 \frac{j \omega\left(\frac{j \omega}{12}+1\right)}{\left(\frac{j \omega}{1}+1\right)\left(\frac{j \omega}{4}+1\right)\left(\frac{j \omega}{50}+1\right)} \\
& \mathrm{LF}: 1.2 j \omega \Rightarrow|H(j 1)|=1.2(1.6 \mathrm{~dB}) \\
& |H(j 4)|=\left(\frac{4}{1}\right)^{0} \times 1.2=1.2 \\
& |H(j 12)|=\left(\frac{12}{4}\right)^{-1} \times 1.2=0.4
\end{aligned}
$$

Sketching Magnitude Responses (linear factors)

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance

1. Find corner frequencies: (a) factorize the numerator/denominator polynomials or (b) find their roots
2. Find LF and HF asymptotes. $A(j \omega)^{k}$ has a slope of k; substitute $\omega=\omega_{c}$ to get the response at first/last corner frequency.
3. At a corner frequency, the gradient of the magnitude response changes by ± 1 ($\pm 20 \mathrm{~dB} /$ decade). + for numerator (top line) and for denominator (bottom line).
4. $\left|H\left(j \omega_{2}\right)\right|=\left(\frac{\omega_{2}}{\omega_{1}}\right)^{k}\left|H\left(j \omega_{1}\right)\right|$ if the gradient between them is k.

$$
\begin{aligned}
& H(j \omega)=1.2 \frac{j \omega\left(\frac{j \omega}{12}+1\right)}{\left(\frac{j \omega}{1}+1\right)\left(\frac{j \omega}{4}+1\right)\left(\frac{j \omega}{50}+1\right)} \\
& \mathrm{LF}: 1.2 j \omega \Rightarrow|H(j 1)|=1.2(1.6 \mathrm{~dB}) \\
& |H(j 4)|=\left(\frac{4}{1}\right)^{0} \times 1.2=1.2 \\
& |H(j 12)|=\left(\frac{12}{4}\right)^{-1} \times 1.2=0.4 \\
& |H(j 50)|=\left(\frac{50}{12}\right)^{0} \times 0.4=0.4(-8 \mathrm{~dB}) .
\end{aligned}
$$

Sketching Magnitude Responses (linear factors)

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam

- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance

1. Find corner frequencies: (a) factorize the numerator/denominator polynomials or (b) find their roots
2. Find LF and HF asymptotes. $A(j \omega)^{k}$ has a slope of k; substitute $\omega=\omega_{c}$ to get the response at first/last corner frequency.
3. At a corner frequency, the gradient of the magnitude response changes by ± 1 ($\pm 20 \mathrm{~dB} /$ decade). + for numerator (top line) and for denominator (bottom line).
4. $\left|H\left(j \omega_{2}\right)\right|=\left(\frac{\omega_{2}}{\omega_{1}}\right)^{k}\left|H\left(j \omega_{1}\right)\right|$ if the gradient between them is k.

$$
\begin{aligned}
& H(j \omega)=1.2 \frac{j \omega\left(\frac{j \omega}{12}+1\right)}{\left(\frac{j \omega}{1}+1\right)\left(\frac{j \omega}{4}+1\right)\left(\frac{j \omega}{50}+1\right)} \\
& \mathrm{LF}: 1.2 j \omega \Rightarrow|H(j 1)|=1.2(1.6 \mathrm{~dB}) \\
& |H(j 4)|=\left(\frac{4}{1}\right)^{0} \times 1.2=1.2 \\
& |H(j 12)|=\left(\frac{12}{4}\right)^{-1} \times 1.2=0.4 \\
& |H(j 50)|=\left(\frac{50}{12}\right)^{0} \times 0.4=0.4(-8 \mathrm{~dB}) . \text { As a check: HF: } 20(j \omega)^{-1}
\end{aligned}
$$

Filters

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear
factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance
- Filter: a circuit designed to amplify some frequencies and/or attenuate others. Very widely used.
- The order of the filter is the highest power of $j \omega$ in the denominator of the frequency response.
- Often use op-amps to provide a low impedance output.

Filters

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear
factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance
- Filter: a circuit designed to amplify some frequencies and/or attenuate others. Very widely used.
- The order of the filter is the highest power of $j \omega$ in the denominator of the frequency response.
- Often use op-amps to provide a low impedance output.

$$
\frac{Y}{X}=\frac{R}{R+1 / j \omega C}
$$

Filters

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear
factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance
- Filter: a circuit designed to amplify some frequencies and/or attenuate others. Very widely used.
- The order of the filter is the highest power of $j \omega$ in the denominator of the frequency response.
- Often use op-amps to provide a low impedance output.

$$
\frac{Y}{X}=\frac{R}{R+1 / j \omega C}=\frac{j \omega R C}{j \omega R C+1}
$$

Filters

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear
factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance
- Filter: a circuit designed to amplify some frequencies and/or attenuate others. Very widely used.
- The order of the filter is the highest power of $j \omega$ in the denominator of the frequency response.
- Often use op-amps to provide a low impedance output.

$$
\frac{Y}{X}=\frac{R}{R+1 / j \omega C}=\frac{j \omega R C}{j \omega R C+1}=\frac{j \omega R C}{\frac{j \omega}{a}+1}
$$

Filters

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear
factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance
- Filter: a circuit designed to amplify some frequencies and/or attenuate others. Very widely used.
- The order of the filter is the highest power of $j \omega$ in the denominator of the frequency response.
- Often use op-amps to provide a low impedance output.

$$
\frac{Y}{X}=\frac{R}{R+1 / j \omega C}=\frac{j \omega R C}{j \omega R C+1}=\frac{j \omega R C}{\frac{j \omega}{a}+1}
$$

Filters

Revision Lecture 1: Nodal
Analysis \&
Frequency Responses

- Exam
- Nodal Analysis
- Op Amps
- Block Diagrams
- Diodes
- Reactive Components
- Phasors
- Plotting Frequency

Responses

- LF and HF Asymptotes
- Corner frequencies (linear factors)
- Sketching Magnitude

Responses (linear factors)

- Filters
- Resonance
- Filter: a circuit designed to amplify some frequencies and/or attenuate others. Very widely used.
- The order of the filter is the highest power of $j \omega$ in the denominator of the frequency response.
- Often use op-amps to provide a low impedance output.

$$
\begin{aligned}
& \frac{Y}{X}=\frac{R}{R+1 / j \omega C}=\frac{j \omega R C}{j \omega R C+1}=\frac{j \omega R C}{\frac{j \omega}{a}+1} \\
& \frac{Z}{X}=\frac{Z}{Y} \times \frac{Y}{X}=\left(1+\frac{R_{B}}{R_{A}}\right) \times \frac{j \omega R C}{\frac{j \omega}{a}+1}
\end{aligned}
$$

Resonance

- Resonant circuits have quadratic factors that cannot be factorized

$$
H(j \omega)=a(j \omega)^{2}+b j \omega+c=c\left(\left(\frac{j \omega}{\omega_{0}}\right)^{2}+2 \zeta\left(\frac{j \omega}{\omega_{0}}\right)+1\right)
$$

Resonance

- Resonant circuits have quadratic factors that cannot be factorized
- $H(j \omega)=a(j \omega)^{2}+b j \omega+c=c\left(\left(\frac{j \omega}{\omega_{0}}\right)^{2}+2 \zeta\left(\frac{j \omega}{\omega_{0}}\right)+1\right)$
- Corner frequency: $\omega_{0}=\sqrt{\frac{c}{a}}$ determines the horizontal position
- Damping Factor: $\zeta=\frac{b \omega_{0}}{2 c}=\frac{b}{\sqrt{4 a c}}$ determines the response shape

Resonance

- Resonant circuits have quadratic factors that cannot be factorized
- $H(j \omega)=a(j \omega)^{2}+b j \omega+c=c\left(\left(\frac{j \omega}{\omega_{0}}\right)^{2}+2 \zeta\left(\frac{j \omega}{\omega_{0}}\right)+1\right)$
- Corner frequency: $\omega_{0}=\sqrt{\frac{c}{a}}$ determines the horizontal position
- Damping Factor: $\zeta=\frac{b \omega_{0}}{2 c}=\frac{b}{\sqrt{4 a c}}$ determines the response shape
- Equivalently Quality Factor: $Q \triangleq \frac{\omega \times \text { Average Stored Energy }}{\text { Average Power Dissipation }} \approx \frac{1}{2 \zeta}=\frac{c}{b \omega_{0}}$

Resonance

- Resonant circuits have quadratic factors that cannot be factorized
- $H(j \omega)=a(j \omega)^{2}+b j \omega+c=c\left(\left(\frac{j \omega}{\omega_{0}}\right)^{2}+2 \zeta\left(\frac{j \omega}{\omega_{0}}\right)+1\right)$
- Corner frequency: $\omega_{0}=\sqrt{\frac{c}{a}}$ determines the horizontal position
- Damping Factor: $\zeta=\frac{b \omega_{0}}{2 c}=\frac{b}{\sqrt{4 a c}}$ determines the response shape
- Equivalently Quality Factor: $Q \triangleq \frac{\omega \times \text { Average Stored Energy }}{\text { Average Power Dissipation }} \approx \frac{1}{2 \zeta}=\frac{c}{b \omega_{0}}$
- At $\omega=\omega_{0}$, outer terms cancel $\left(a(j \omega)^{2}=-c\right): \Rightarrow H(j \omega)=j b \omega_{0}=2 j c \zeta$

Resonance

- Resonant circuits have quadratic factors that cannot be factorized
- $H(j \omega)=a(j \omega)^{2}+b j \omega+c=c\left(\left(\frac{j \omega}{\omega_{0}}\right)^{2}+2 \zeta\left(\frac{j \omega}{\omega_{0}}\right)+1\right)$
- Corner frequency: $\omega_{0}=\sqrt{\frac{c}{a}}$ determines the horizontal position
- Damping Factor: $\zeta=\frac{b \omega_{0}}{2 c}=\frac{b}{\sqrt{4 a c}}$ determines the response shape
- Equivalently Quality Factor: $Q \triangleq \frac{\omega \times \text { Average Stored Energy }}{\text { Average Power Dissipation }} \approx \frac{1}{2 \zeta}=\frac{c}{b \omega_{0}}$
- At $\omega=\omega_{0}$, outer terms cancel $\left(a(j \omega)^{2}=-c\right): \Rightarrow H(j \omega)=j b \omega_{0}=2 j c \zeta$ - $\left|H\left(j \omega_{0}\right)\right|=2 \zeta$ times the straight line approximation at ω_{0}.

Resonance

- Resonant circuits have quadratic factors that cannot be factorized
- $H(j \omega)=a(j \omega)^{2}+b j \omega+c=c\left(\left(\frac{j \omega}{\omega_{0}}\right)^{2}+2 \zeta\left(\frac{j \omega}{\omega_{0}}\right)+1\right)$
- Corner frequency: $\omega_{0}=\sqrt{\frac{c}{a}}$ determines the horizontal position
- Damping Factor: $\zeta=\frac{b \omega_{0}}{2 c}=\frac{b}{\sqrt{4 a c}}$ determines the response shape
- Equivalently Quality Factor: $Q \triangleq \frac{\omega \times \text { Average Stored Energy }}{\text { Average Power Dissipation }} \approx \frac{1}{2 \zeta}=\frac{c}{b \omega_{0}}$
- At $\omega=\omega_{0}$, outer terms cancel $\left(a(j \omega)^{2}=-c\right): \Rightarrow H(j \omega)=j b \omega_{0}=2 j c \zeta$ - $\left|H\left(j \omega_{0}\right)\right|=2 \zeta$ times the straight line approximation at ω_{0}.

Resonance

- Resonant circuits have quadratic factors that cannot be factorized
- $H(j \omega)=a(j \omega)^{2}+b j \omega+c=c\left(\left(\frac{j \omega}{\omega_{0}}\right)^{2}+2 \zeta\left(\frac{j \omega}{\omega_{0}}\right)+1\right)$
- Corner frequency: $\omega_{0}=\sqrt{\frac{c}{a}}$ determines the horizontal position
- Damping Factor: $\zeta=\frac{b \omega_{0}}{2 c}=\frac{b}{\sqrt{4 a c}}$ determines the response shape
- Equivalently Quality Factor: $Q \triangleq \frac{\omega \times \text { Average Stored Energy }}{\text { Average Power Dissipation }} \approx \frac{1}{2 \zeta}=\frac{c}{b \omega_{0}}$
- At $\omega=\omega_{0}$, outer terms cancel $\left(a(j \omega)^{2}=-c\right): \Rightarrow H(j \omega)=j b \omega_{0}=2 j c \zeta$ - $\left|H\left(j \omega_{0}\right)\right|=2 \zeta$ times the straight line approximation at ω_{0}.

$$
\begin{aligned}
& U \underset{\sim}{U} \underbrace{L}_{100 \mathrm{~m}}{ }^{R} \\
& \frac{X}{\overline{-}}{ }^{1} 0 \mu \\
& \frac{X}{U}=\frac{\frac{1}{j \omega C}}{R+j \omega L+\frac{1}{j \omega C}}=\frac{1}{(j \omega)^{2} L C+j \omega R C+1} \\
& \omega_{0}=\sqrt{\frac{1}{L C}}, \zeta=\frac{R}{2} \sqrt{\frac{C}{L}}, Q=\frac{\omega_{0} L}{R}=\frac{1}{2 \zeta}
\end{aligned}
$$

Resonance

- Resonant circuits have quadratic factors that cannot be factorized
- $H(j \omega)=a(j \omega)^{2}+b j \omega+c=c\left(\left(\frac{j \omega}{\omega_{0}}\right)^{2}+2 \zeta\left(\frac{j \omega}{\omega_{0}}\right)+1\right)$
- Corner frequency: $\omega_{0}=\sqrt{\frac{c}{a}}$ determines the horizontal position
- Damping Factor: $\zeta=\frac{b \omega_{0}}{2 c}=\frac{b}{\sqrt{4 a c}}$ determines the response shape
- Equivalently Quality Factor: $Q \triangleq \frac{\omega \times \text { Average Stored Energy }}{\text { Average Power Dissipation }} \approx \frac{1}{2 \zeta}=\frac{c}{b \omega_{0}}$
- At $\omega=\omega_{0}$, outer terms cancel $\left(a(j \omega)^{2}=-c\right): \Rightarrow H(j \omega)=j b \omega_{0}=2 j c \zeta$ - $\left|H\left(j \omega_{0}\right)\right|=2 \zeta$ times the straight line approximation at ω_{0}.

$$
\begin{aligned}
& R=5,20,60,120 \\
& \zeta=\frac{1}{40}, \frac{1}{10}, \frac{3}{10}, \frac{6}{10}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{X}{U}=\frac{\frac{1}{j \omega C}}{R+j \omega L+\frac{1}{j \omega C}}=\frac{1}{(j \omega)^{2} L C+j \omega R C+1} \\
& \omega_{0}=\sqrt{\frac{1}{L C}}, \zeta=\frac{R}{2} \sqrt{\frac{C}{L}}, Q=\frac{\omega_{0} L}{R}=\frac{1}{2 \zeta}
\end{aligned}
$$

Resonance

- Resonant circuits have quadratic factors that cannot be factorized
- $H(j \omega)=a(j \omega)^{2}+b j \omega+c=c\left(\left(\frac{j \omega}{\omega_{0}}\right)^{2}+2 \zeta\left(\frac{j \omega}{\omega_{0}}\right)+1\right)$
- Corner frequency: $\omega_{0}=\sqrt{\frac{c}{a}}$ determines the horizontal position
- Damping Factor: $\zeta=\frac{b \omega_{0}}{2 c}=\frac{b}{\sqrt{4 a c}}$ determines the response shape
- Equivalently Quality Factor: $Q \triangleq \frac{\omega \times \text { Average Stored Energy }}{\text { Average Power Dissipation }} \approx \frac{1}{2 \zeta}=\frac{c}{b \omega_{0}}$
- At $\omega=\omega_{0}$, outer terms cancel $\left(a(j \omega)^{2}=-c\right): \Rightarrow H(j \omega)=j b \omega_{0}=2 j c \zeta$ - $\left|H\left(j \omega_{0}\right)\right|=2 \zeta$ times the straight line approximation at ω_{0}.

$$
\begin{aligned}
& R=5,20,60,120 \\
& \zeta=\frac{1}{40}, \frac{1}{10}, \frac{3}{10}, \frac{6}{10} \\
& Q=\frac{\mid Z_{C}\left(\omega_{0}\right) \text { or } Z_{L}\left(\omega_{0}\right) \mid}{R}=20,5, \frac{5}{3}, \frac{5}{6}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{X}{U}=\frac{\frac{1}{j \omega C}}{R+j \omega L+\frac{1}{j \omega C}}=\frac{1}{(j \omega)^{2} L C+j \omega R C+1} \\
& \omega_{0}=\sqrt{\frac{1}{L C}}, \zeta=\frac{R}{2} \sqrt{\frac{C}{L}}, Q=\frac{\omega_{0} L}{R}=\frac{1}{2 \zeta}
\end{aligned}
$$

Resonance

- Resonant circuits have quadratic factors that cannot be factorized
- $H(j \omega)=a(j \omega)^{2}+b j \omega+c=c\left(\left(\frac{j \omega}{\omega_{0}}\right)^{2}+2 \zeta\left(\frac{j \omega}{\omega_{0}}\right)+1\right)$
- Corner frequency: $\omega_{0}=\sqrt{\frac{c}{a}}$ determines the horizontal position
- Damping Factor: $\zeta=\frac{b \omega_{0}}{2 c}=\frac{b}{\sqrt{4 a c}}$ determines the response shape
- Equivalently Quality Factor: $Q \triangleq \frac{\omega \times \text { Average Stored Energy }}{\text { Average Power Dissipation }} \approx \frac{1}{2 \zeta}=\frac{c}{b \omega_{0}}$
- At $\omega=\omega_{0}$, outer terms cancel $\left(a(j \omega)^{2}=-c\right): \Rightarrow H(j \omega)=j b \omega_{0}=2 j c \zeta$ - $\left|H\left(j \omega_{0}\right)\right|=2 \zeta$ times the straight line approximation at ω_{0}.

$$
\begin{aligned}
& R=5,20,60,120 \\
& \zeta=\frac{1}{40}, \frac{1}{10}, \frac{3}{10}, \frac{6}{10} \\
& Q=\frac{\mid Z_{C}\left(\omega_{0}\right) \text { or } Z_{L}\left(\omega_{0}\right) \mid}{R}=20,5, \frac{5}{3}, \frac{5}{6} \\
& \frac{\text { Gain@ } \omega_{0}}{\text { CornerGain }}=\frac{1}{2 \zeta} \approx Q
\end{aligned}
$$

$$
\begin{aligned}
& \frac{X}{U}=\frac{\frac{1}{j \omega C}}{R+j \omega L+\frac{1}{j \omega C}}=\frac{1}{(j \omega)^{2} L C+j \omega R C+1} \\
& \omega_{0}=\sqrt{\frac{1}{L C}}, \zeta=\frac{R}{2} \sqrt{\frac{C}{L}}, Q=\frac{\omega_{0} L}{R}=\frac{1}{2 \zeta}
\end{aligned}
$$

Resonance

- Resonant circuits have quadratic factors that cannot be factorized
- $H(j \omega)=a(j \omega)^{2}+b j \omega+c=c\left(\left(\frac{j \omega}{\omega_{0}}\right)^{2}+2 \zeta\left(\frac{j \omega}{\omega_{0}}\right)+1\right)$
- Corner frequency: $\omega_{0}=\sqrt{\frac{c}{a}}$ determines the horizontal position
- Damping Factor: $\zeta=\frac{b \omega_{0}}{2 c}=\frac{b}{\sqrt{4 a c}}$ determines the response shape
- Equivalently Quality Factor: $Q \triangleq \frac{\omega \times \text { Average Stored Energy }}{\text { Average Power Dissipation }} \approx \frac{1}{2 \zeta}=\frac{c}{b \omega_{0}}$
- At $\omega=\omega_{0}$, outer terms cancel $\left(a(j \omega)^{2}=-c\right): \Rightarrow H(j \omega)=j b \omega_{0}=2 j c \zeta$
- $\left|H\left(j \omega_{0}\right)\right|=2 \zeta$ times the straight line approximation at ω_{0}.
- 3 dB bandwidth of peak $\simeq 2 \zeta \omega_{0} \approx \frac{\omega_{0}}{Q}$.

$$
\begin{aligned}
& R=5,20,60,120 \\
& \zeta=\frac{1}{40}, \frac{1}{10}, \frac{3}{10}, \frac{6}{10} \\
& Q=\frac{\mid Z_{C}\left(\omega_{0}\right) \text { or } Z_{L}\left(\omega_{0}\right) \mid}{R}=20,5, \frac{5}{3}, \frac{5}{6} \\
& \frac{\text { Gain@ } \omega_{0}}{\text { CornerGain }}=\frac{1}{2 \zeta} \approx Q
\end{aligned}
$$

$$
\begin{aligned}
\frac{X}{U} & =\frac{\frac{1}{j \omega C}}{R+j \omega L+\frac{1}{j \omega C}}=\frac{1}{(j \omega)^{2} L C+j \omega R C+1} \\
\omega_{0} & =\sqrt{\frac{1}{L C}}, \zeta=\frac{R}{2} \sqrt{\frac{C}{L}}, Q=\frac{\omega_{0} L}{R}=\frac{1}{2 \zeta}
\end{aligned}
$$

Resonance

- Resonant circuits have quadratic factors that cannot be factorized
- $H(j \omega)=a(j \omega)^{2}+b j \omega+c=c\left(\left(\frac{j \omega}{\omega_{0}}\right)^{2}+2 \zeta\left(\frac{j \omega}{\omega_{0}}\right)+1\right)$
- Corner frequency: $\omega_{0}=\sqrt{\frac{c}{a}}$ determines the horizontal position
- Damping Factor: $\zeta=\frac{b \omega_{0}}{2 c}=\frac{b}{\sqrt{4 a c}}$ determines the response shape
- Equivalently Quality Factor: $Q \triangleq \frac{\omega \times \text { Average Stored Energy }}{\text { Average Power Dissipation }} \approx \frac{1}{2 \zeta}=\frac{c}{b \omega_{0}}$
- At $\omega=\omega_{0}$, outer terms cancel $\left(a(j \omega)^{2}=-c\right): \Rightarrow H(j \omega)=j b \omega_{0}=2 j c \zeta$
- $\left|H\left(j \omega_{0}\right)\right|=2 \zeta$ times the straight line approximation at ω_{0}.
- 3 dB bandwidth of peak $\simeq 2 \zeta \omega_{0} \approx \frac{\omega_{0}}{Q} . \quad \Delta$ phase $= \pm \pi$ over 2ζ decades

$$
\begin{aligned}
& R=5,20,60,120 \\
& \zeta=\frac{1}{40}, \frac{1}{10}, \frac{3}{10}, \frac{6}{10} \\
& Q=\frac{\mid Z_{C}\left(\omega_{0}\right) \text { or } Z_{L}\left(\omega_{0}\right) \mid}{R}=20,5, \frac{5}{3}, \frac{5}{6} \\
& \frac{\text { Gain@ } \omega_{0}}{\text { CornerGain }}=\frac{1}{2 \zeta} \approx Q
\end{aligned}
$$

$$
\begin{aligned}
\frac{X}{U} & =\frac{\frac{1}{j \omega C}}{R+j \omega L+\frac{1}{j \omega C}}=\frac{1}{(j \omega)^{2} L C+j \omega R C+1} \\
\omega_{0} & =\sqrt{\frac{1}{L C}}, \zeta=\frac{R}{2} \sqrt{\frac{C}{L}}, Q=\frac{\omega_{0} L}{R}=\frac{1}{2 \zeta}
\end{aligned}
$$

