Revision Lecture 1: Nodal Analysis \& Fre-
D quency Responses

Exam

Nodal Analysis
Op Amps
Block Diagrams
Diodes
Reactive Components
Phasors
Plotting Frequency Responses
LF and HF
Asymptotes
Corner frequencies
(linear factors)
Sketching Magnitude Responses (linear
factors)
Filters
Resonance

Revision Lecture 1: Nodal Analysis \& Frequency Responses

Exam

Revision Lecture 1:

Nodal Analysis \&

 Frequency Responses\triangleright Exam
Nodal Analysis

Op Amps

Block Diagrams
Diodes
Reactive Components Phasors
Plotting Frequency

Responses

LF and HF
Asymptotes
Corner frequencies
(linear factors)
Sketching Magnitude Responses (linear factors)
Filters
Resonance

Exam Format

Question 1 (40\%): eight short parts covering the whole syllabus.
Questions 2 and 3: single topic questions (answer both)

Syllabus

Does include: Everything in the notes.
Does not include: Two-port parameters (2008:1j), Gaussian elimination (2007:2c), Application areas (2008:3d), Nullators and Norators (2008:4c), Small-signal component models (2008:4e), Gain-bandwidth product (2006:4c), Zener Diodes (2008/9 syllabus), Non-ideal models of L, C and transformer (2011/12 syllabus), Transmission lines VSWR and crank diagram (2011/12 syllabus).

Nodal Analysis

Revision Lecture 1:

Nodal Analysis \&
Frequency Responses
Exam
\triangleright Nodal Analysis

Op Amps

Block Diagrams
Diodes
Reactive Components
Phasors
Plotting Frequency

Responses

LF and HF
Asymptotes
Corner frequencies
(linear factors)
Sketching Magnitude Responses (linear factors)

Filters

Resonance
(1) Pick reference node.
(2) Label nodes: $8, X$ and $X+2$ since it is joined to X via a voltage source.
(3) Write KCL equations but count all the nodes connected via floating voltage sources as a single "super-node" giving one equation

$$
\frac{X-8}{1}+\frac{X}{2}+\frac{(X+2)-0}{3}=0
$$

Ohm's law always involves the difference between the voltages at either end of a
 resistor. (Obvious but easily forgotten)
(4) Solve the equations: $X=4$

Op Amps

Revision Lecture 1:

Nodal Analysis \& Frequency Responses

Exam

Nodal Analysis
D Op Amps
Block Diagrams
Diodes
Reactive Components
Phasors
Plotting Frequency

Responses

LF and HF
Asymptotes
Corner frequencies
(linear factors)
Sketching Magnitude Responses (linear factors)

Filters

Resonance

- Ideal Op Amp: (a) Zero input current, (b) Infinite gain
(b) $\Rightarrow V_{+}=V_{-}$provided the circuit has negative feedback.
- Negative Feedback: An increase in $V_{\text {out }}$ makes $\left(V_{+}-V_{-}\right)$decrease.

Non-inverting amplifier

$$
Y=\left(1+\frac{3}{1}\right) X
$$

Inverting amplifier

$$
Y=\frac{-8}{1} X_{1}+\frac{-8}{2} X_{2}+\frac{-8}{2} X_{3}
$$

Nodal Analysis: Use two separate KCL equations at V_{+}and V_{-}. Do not do KCL at $V_{\text {out }}$ except to find the op-amp output current.

Block Diagrams

Revision Lecture 1:

Nodal Analysis \&

Frequency Responses

Exam
Nodal Analysis

Op Amps

D Block Diagrams
Diodes
Reactive Components

Phasors

Plotting Frequency

Responses

LF and HF
Asymptotes
Corner frequencies
(linear factors)
Sketching Magnitude Responses (linear factors)

Filters

Resonance

Blocks are labelled with their gains and connected using adder/subtractors shown as circles. Adder inputs are marked + for add or - for subtract.

To analyse:

1. Label the inputs, the outputs and the output of each adder.
2. Write down an equation for each variable:

- $U=X-F G U, \quad Y=F U+F G H U$
- Follow signals back though the blocks until you meet a labelled node.

3. Solve the equations (eliminate intermediate node variables):

- $U(1+F G)=X \quad \Rightarrow \quad U=\frac{X}{1+F G}$
- $Y=(1+G H) F U=\frac{(1+G H) F}{1+F G} X$
[Note: "Wires" carry information not current: KCL not valid]

Diodes

Revision Lecture 1:

Nodal Analysis \&
Frequency Responses

Exam

Nodal Analysis

Op Amps

Block Diagrams
D Diodes
Reactive Components

Phasors

Plotting Frequency
Responses
LF and HF
Asymptotes
Corner frequencies
(linear factors)
Sketching Magnitude Responses (linear factors)

Filters

Resonance

Each diode in a circuit is in one of two modes; each has an equality condition and an inequality condition:
\square Off: $I_{D}=0, V_{D}<0.7 \Rightarrow$ Diode $=$ open circuit
\square On: $V_{D}=0.7, I_{D}>0 \Rightarrow$ Diode $=0.7 \mathrm{~V}$ voltage source
(a) Guess the mode
(b) Do nodal analysis assuming the equality condition
(c) Check the inequality condition. If the inequality condition fails, you made the wrong guess.

- Assume Diode Off

$$
\begin{aligned}
& X=5+2=7 \\
& V_{D}=2 \quad \text { Fail: } V_{D}>0.7
\end{aligned}
$$

- Assume Diode On

$$
\begin{aligned}
& X=5+0.7=5.7 \\
& I_{D}+\frac{0.7}{1 \mathrm{k}}=2 \mathrm{~mA} \quad \text { OK: } I_{D}>0
\end{aligned}
$$

Reactive Components

Revision Lecture 1:
Nodal Analysis \& Frequency Responses
Exam
Nodal Analysis
Op Amps
Block Diagrams
Diodes
Reactive
\triangleright Components

Phasors

Plotting Frequency
Responses
LF and HF
Asymptotes
Corner frequencies
(linear factors)
Sketching Magnitude Responses (linear
factors)
Filters
Resonance
\square Impedances: $R, j \omega L, \frac{1}{j \omega C}=\frac{-j}{\omega C}$.

- Admittances: $\frac{1}{R}, \frac{1}{j \omega L}=\frac{-j}{\omega L}, j \omega C$
\square In a capacitor or inductor, the Current and Voltage are 90° apart :
- CIVIL: Capacitor - I leads V; Inductor - I lags V
\square Average current (or DC current) through a capacitor is always zero
\square Average voltage across an inductor is always zero
\square Average power absorbed by a capacitor or inductor is always zero

Phasors

Revision Lecture 1:

Nodal Analysis \& Frequency Responses

Exam

Nodal Analysis

Op Amps

Block Diagrams
Diodes
Reactive Components
D Phasors
Plotting Frequency Responses
LF and HF Asymptotes
Corner frequencies
(linear factors)
Sketching Magnitude Responses (linear factors)

Filters

Resonance

A phasor represents a time-varying sinusoidal waveform by a fixed complex number.

$$
\begin{array}{ccc}
\text { Waveform } & \text { Phasor } & \\
x(t)=F \cos \omega t-G \sin \omega t & X=F+j G & \text { [Note minus sign] } \\
x(t)=A \cos (\omega t+\theta) & X=A e^{j \theta}=A \angle \theta & \\
\max (x(t))=A & |X|=A &
\end{array}
$$

$-\frac{\text { e }}{2}$
$x(t)$ is the projection of a rotating rod onto the real (horizontal) axis.

$$
X=F+j G \text { is its starting position at } t=0 .
$$

RMS Phasor: $\tilde{V}=\frac{1}{\sqrt{2}} V \Rightarrow|\widetilde{V}|^{2}=\left\langle x^{2}(t)\right\rangle$
Complex Power: $\tilde{V} \tilde{I}^{*}=|\tilde{I}|^{2} Z=\frac{|\tilde{V}|^{2}}{Z^{*}}=P+j Q$
P is average power (Watts), Q is reactive power (VARs)

Plotting Frequency Responses

Revision Lecture 1:

Nodal Analysis \&

 Frequency ResponsesExam
Nodal Analysis

Op Amps

Block Diagrams
Diodes
Reactive Components Phasors

Plotting Frequency
\triangleright Responses
LF and HF
Asymptotes
Corner frequencies
(linear factors)
Sketching Magnitude Responses (linear factors)

Filters

Resonance

- Plot the magnitude response and phase response as separate graphs. Use log scale for frequency and magnitude and linear scale for phase: this gives graphs that can be approximated by straight line segments.
- If $\frac{V_{2}}{V_{1}}=A(j \omega)^{k}=A \times j^{k} \times \omega^{k}$
(where A is real)
\circ magnitude is a straight line with gradient k :

$$
\log \left|\frac{V_{2}}{V_{1}}\right|=\log |A|+k \log \omega
$$

- phase is a constant $k \times \frac{\pi}{2}(+\pi$ if $A<0)$:

$$
\angle\left(\frac{V_{2}}{V_{1}}\right)=\angle A+k \angle j=\angle A+k \frac{\pi}{2}
$$

- Measure magnitude response using decibels $=20 \log _{10} \frac{\left|V_{2}\right|}{\left|V_{1}\right|}$. A gradient of k on log axes is equivalent to $20 k \mathrm{~dB} /$ decade ($\times 10$ in frequency) or $6 k \mathrm{~dB}$ /octave ($\times 2$ in frequency).

$\frac{Y}{X}=\frac{\frac{1}{j \omega C}}{R+\frac{1}{j \omega C}}=\frac{1}{j \omega R C+1}=\frac{1}{\frac{j \omega}{\omega_{c}}+1}$ where $\omega_{c}=\frac{1}{R C}$

LF and HF Asymptotes

Revision Lecture 1:
Nodal Analysis \& Frequency Responses
Exam
Nodal Analysis

Op Amps

Block Diagrams
Diodes
Reactive Components

Phasors

Plotting Frequency

Responses

LF and HF
\triangle Asymptotes
Corner frequencies
(linear factors)
Sketching Magnitude Responses (linear factors)

Filters

Resonance
\square Frequency response is always a ratio of two polynomials in $j \omega$ with real coefficients that depend on the component values.

- The terms with the lowest power of $j \omega$ on top and bottom gives the low-frequency asymptote
- The terms with the highest power of $j \omega$ on top and bottom gives the high-frequency asymptote.

Example: $H(j \omega)=\frac{60(j \omega)^{2}+720(j \omega)}{3(j \omega)^{3}+165(j \omega)^{2}+762(j \omega)+600}$

LF: $H(j \omega) \simeq 1.2 j \omega$
HF: $H(j \omega) \simeq 20(j \omega)^{-1}$

Corner frequencies (linear factors)

Revision Lecture 1:

Nodal Analysis \&
Frequency Responses

Exam

Nodal Analysis

Op Amps

Block Diagrams
Diodes
Reactive Components Phasors
Plotting Frequency
Responses
LF and HF
Asymptotes
Corner frequencies
\triangleright (linear factors)
Sketching Magnitude Responses (linear factors)

Filters

Resonance
\square We can factorize the numerator and denominator into linear terms of the form $(a j \omega+b) \simeq\left\{\begin{array}{ll}b & \omega<\left|\frac{b}{a}\right| \\ a j \omega & \omega>\left|\frac{b}{a}\right|\end{array}\right.$.
\square At the corner frequency, $\omega_{c}=\left|\frac{b}{a}\right|$, the slope of the magnitude response changes by ± 1 ($\pm 20 \mathrm{~dB} /$ decade) because the linear term introduces another factor of ω into the numerator or denominator for $\omega>\omega_{c}$.
\square The phase changes by $\pm \frac{\pi}{2}$ because the linear term introduces another factor of j into the numerator or denominator for $\omega>\omega_{c}$.

- The phase change is gradual and takes place over the range $0.1 \omega_{c}$ to $10 \omega_{c}$ ($\pm \frac{\pi}{2}$ spread over two decades in ω).
\square When a and b are real and positive, it is often convenient to write $(a j \omega+b)=b\left(\frac{j \omega}{\omega_{c}}+1\right)$.
\square The corner frequencies are the absolute values of the roots of the numerator and denominator polynomials (values of $j \omega$).

Sketching Magnitude Responses (linear factors)

Revision Lecture 1:

Nodal Analysis \&

 Frequency Responses
Exam

Nodal Analysis

Op Amps

Block Diagrams
Diodes
Reactive Components
Phasors
Plotting Frequency

Responses

LF and HF
Asymptotes
Corner frequencies
(linear factors)

Sketching

Magnitude
Responses (linear
D factors)

Filters

Resonance

1. Find corner frequencies: (a) factorize the numerator/denominator polynomials or (b) find their roots
2. Find LF and HF asymptotes. $A(j \omega)^{k}$ has a slope of k; substitute $\omega=\omega_{c}$ to get the response at first/last corner frequency.
3. At a corner frequency, the gradient of the magnitude response changes by ± 1 ($\pm 20 \mathrm{~dB} /$ decade). + for numerator (top line) and for denominator (bottom line).
4. $\left|H\left(j \omega_{2}\right)\right|=\left(\frac{\omega_{2}}{\omega_{1}}\right)^{k}\left|H\left(j \omega_{1}\right)\right|$ if the gradient between them is k.
$H(j \omega)=1.2 \frac{j \omega\left(\frac{j \omega}{12}+1\right)}{\left(\frac{j \omega}{1}+1\right)\left(\frac{j \omega}{4}+1\right)\left(\frac{j \omega}{50}+1\right)}$
LF: $1.2 j \omega \Rightarrow|H(j 1)|=1.2(1.6 \mathrm{~dB})$
$|H(j 4)|=\left(\frac{4}{1}\right)^{0} \times 1.2=1.2$
$|H(j 12)|=\left(\frac{12}{4}\right)^{-1} \times 1.2=0.4$
$|H(j 50)|=\left(\frac{50}{12}\right)^{0} \times 0.4=0.4(-8 \mathrm{~dB})$. As a check: HF: $20(j \omega)^{-1}$

[Sketching Responses (linear factors): Summary]

LF and HF asymptotes

The LF and HF asymptotes give you both the magnitude and phase at very low and very high frequencies. The LF asymptote is found by taking the terms with the lowest power of ω in numerator and denominator; the HF asymptote is found by taking the terms with the highest power of ω.

Magnitude response

The corner frequency for a linear factor $(a j \omega+b)$ is at $\omega_{c}=\left|\frac{b}{a}\right|$. At each corner frequency, the slope of the magnitude response changes by $\pm 6 \mathrm{~dB}$ /octave ($= \pm 20 \mathrm{~dB} /$ decade). The change is +ve for numerator corner frequencies and -ve for denominator corner frequencies. An octave is a factor of 2 in frequency and a decade is a factor of 10 in frequency. The number of decades between ω_{1} and ω_{2} is given by $\log _{10} \frac{\omega_{2}}{\omega_{1}}$.

Phase Response

For each corner frequency, ω_{c}, the slope of the phase response changes twice: once at $0.1 \omega_{c}$ and once, in the opposite direction, at $10 \omega_{c}$. The change in slope is always $\pm 0.25 \pi \mathrm{rad} / \mathrm{decade}$. If a and b have the same sign (normal case), then the first slope change (at $0.1 \omega_{c}$) is in the same direction as that of the magnitude response (+ve for numerator and -ve for denominator); if a and b have opposite signs (rare), then the sign of the slope change is reversed. The second slope change (at $10 \omega_{c}$) always has the opposite sign from the first.

Filters

Revision Lecture 1:

Nodal Analysis \& Frequency Responses
Exam
Nodal Analysis
Op Amps
Block Diagrams
Diodes
Reactive Components
Phasors
Plotting Frequency

Responses

LF and HF
Asymptotes
Corner frequencies
(linear factors)
Sketching Magnitude Responses (linear factors)

\triangleright Filters

Resonance
\square Filter: a circuit designed to amplify some frequencies and/or attenuate others. Very widely used.
\square The order of the filter is the highest power of $j \omega$ in the denominator of the frequency response.
\square Often use op-amps to provide a low impedance output.

$$
\begin{aligned}
& \frac{Y}{X}=\frac{R}{R+1 / j \omega C}=\frac{j \omega R C}{j \omega R C+1}=\frac{j \omega R C}{\frac{j \omega}{a}+1} \\
& \frac{Z}{X}=\frac{Z}{Y} \times \frac{Y}{X}=\left(1+\frac{R_{B}}{R_{A}}\right) \times \frac{j \omega R C}{\frac{j \omega}{a}+1}
\end{aligned}
$$

Resonance

- Resonant circuits have quadratic factors that cannot be factorized
- $H(j \omega)=a(j \omega)^{2}+b j \omega+c=c\left(\left(\frac{j \omega}{\omega_{0}}\right)^{2}+2 \zeta\left(\frac{j \omega}{\omega_{0}}\right)+1\right)$
- Corner frequency: $\omega_{0}=\sqrt{\frac{c}{a}} \quad$ determines the horizontal position
- Damping Factor: $\zeta=\frac{b \omega_{0}}{2 c}=\frac{b}{\sqrt{4 a c}}$ determines the response shape
- Equivalently Quality Factor: $Q \triangleq \frac{\omega \times \text { Average Stored Energy }}{\text { Average Power Dissipation }} \approx \frac{1}{2 \zeta}=\frac{c}{b \omega_{0}}$
- At $\omega=\omega_{0}$, outer terms cancel $\left(a(j \omega)^{2}=-c\right): \Rightarrow H(j \omega)=j b \omega_{0}=2 j c \zeta$
- $\left|H\left(j \omega_{0}\right)\right|=2 \zeta$ times the straight line approximation at ω_{0}.
- 3 dB bandwidth of peak $\simeq 2 \zeta \omega_{0} \approx \frac{\omega_{0}}{Q} . \quad \Delta$ phase $= \pm \pi$ over 2ζ decades

$$
\begin{aligned}
& R=5,20,60,120 \\
& \zeta=\frac{1}{40}, \frac{1}{10}, \frac{3}{10}, \frac{6}{10} \\
& Q=\frac{\mid Z_{C}\left(\omega_{0}\right) \text { or } Z_{L}\left(\omega_{0}\right) \mid}{R}=20,5, \frac{5}{3}, \frac{5}{6} \\
& \frac{\text { Gain@ } \omega_{0}}{\text { CornerGain }}=\frac{1}{2 \zeta} \approx Q
\end{aligned}
$$

$$
\begin{aligned}
& \frac{X}{U}=\frac{\frac{1}{j \omega C}}{R+j \omega L+\frac{1}{j \omega C}}=\frac{1}{(j \omega)^{2} L C+j \omega R C+1} \\
& \omega_{0}=\sqrt{\frac{1}{L C}}, \zeta=\frac{R}{2} \sqrt{\frac{C}{L}}, Q=\frac{\omega_{0} L}{R}=\frac{1}{2 \zeta}
\end{aligned}
$$

