Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time

Constant

- Determining Transient
- Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

Revision Lecture 2: Transients & Lines

Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time

- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

- Transients happen in response to a sudden change
 - Input voltage/current abruptly changes its magnitude, frequency or phase
 - A switch alters the circuit

Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time

- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

- Transients happen in response to a sudden change
 - Input voltage/current abruptly changes its magnitude, frequency or phase
 - A switch alters the circuit
- 1st order circuits only: one capacitor/inductor

Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time

- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

- Transients happen in response to a sudden change
 - Input voltage/current abruptly changes its magnitude,
 frequency or phase
 - A switch alters the circuit
- 1st order circuits only: one capacitor/inductor
- All voltage/current waveforms are: Steady State + Transient
 - Steady States: find with nodal analysis or transfer function
 - Note: Steady State is not the same as DC Level
 - Need steady states before and after the sudden change

Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time

- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

- Transients happen in response to a sudden change
 - Input voltage/current abruptly changes its magnitude, frequency or phase
 - A switch alters the circuit
- 1st order circuits only: one capacitor/inductor
- All voltage/current waveforms are: Steady State + Transient
 - Steady States: find with nodal analysis or transfer function
 - Note: Steady State is not the same as DC Level
 - Need steady states before and after the sudden change
 - \circ Transient: Always a negative exponential: $Ae^{-\frac{t}{\tau}}$

Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time

- Determining Transient
 Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

- Transients happen in response to a sudden change
 - Input voltage/current abruptly changes its magnitude, frequency or phase
 - A switch alters the circuit
- 1st order circuits only: one capacitor/inductor
- All voltage/current waveforms are: Steady State + Transient
 - Steady States: find with nodal analysis or transfer function
 - Note: Steady State is not the same as DC Level
 - Need steady states before and after the sudden change
 - \circ Transient: Always a negative exponential: $Ae^{-\frac{t}{\tau}}$
 - Time Constant: $\tau=RC$ or $\frac{L}{R}$ where R is the Thévenin resistance at the terminals of C or L

Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time

- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

- Transients happen in response to a sudden change
 - Input voltage/current abruptly changes its magnitude, frequency or phase
 - A switch alters the circuit
- 1st order circuits only: one capacitor/inductor
- All voltage/current waveforms are: Steady State + Transient
 - Steady States: find with nodal analysis or transfer function
 - Note: Steady State is not the same as DC Level
 - Need steady states before and after the sudden change
 - \circ Transient: Always a negative exponential: $Ae^{-\frac{t}{\tau}}$
 - Time Constant: $\tau=RC$ or $\frac{L}{R}$ where R is the Thévenin resistance at the terminals of C or L
 - Find transient amplitude, A, from continuity since V_C or I_L cannot change instantly.

Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time

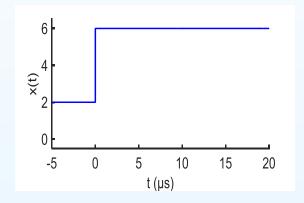
- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

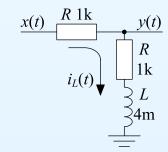
- Transients happen in response to a sudden change
 - Input voltage/current abruptly changes its magnitude, frequency or phase
 - A switch alters the circuit
- 1st order circuits only: one capacitor/inductor
- All voltage/current waveforms are: Steady State + Transient
 - Steady States: find with nodal analysis or transfer function
 - Note: Steady State is not the same as DC Level
 - Need steady states before and after the sudden change
 - \circ Transient: Always a negative exponential: $Ae^{-\frac{t}{\tau}}$
 - Time Constant: $\tau=RC$ or $\frac{L}{R}$ where R is the Thévenin resistance at the terminals of C or L
 - Find transient amplitude, A, from continuity since V_C or I_L cannot change instantly.
 - τ and A can also be found from the transfer function.

Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time
 Constant
- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

A steady-state output assumes the input frequency, phase and amplitude are constant forever. You need to determine two $y_{SS}(t)$ steady state outputs: one for before the transient (t < 0) and one after ($t \ge 0$).

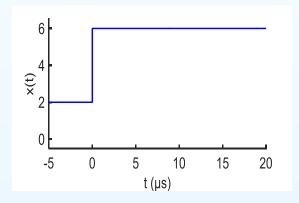


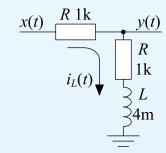


Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time
 Constant
- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

A steady-state output assumes the input frequency, phase and amplitude are constant forever. You need to determine two $y_{SS}(t)$ steady state outputs: one for before the transient (t<0) and one after $(t\geq0)$. At t=0, $y_{SS}(0-)$ means the first one and $y_{SS}(0+)$ means the second.





Revision Lecture 2: Transients & Lines

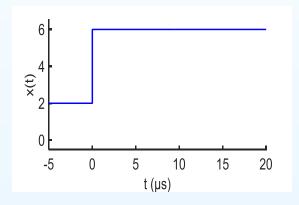
- Transients: Basic Ideas
- Steady States
- Determining Time
 Constant
- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

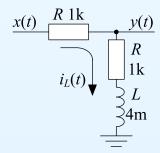
A steady-state output assumes the input frequency, phase and amplitude are constant forever. You need to determine two $y_{SS}(t)$ steady state outputs: one for before the transient (t<0) and one after $(t\geq0)$. At t=0, $y_{SS}(0-)$ means the first one and $y_{SS}(0+)$ means the second.

Method 1: Nodal analysis

Input voltage is DC ($\omega = 0$) $\Rightarrow Z_L = 0$ (for capacitor: $Z_C = \infty$)

So L acts as a short citcuit





Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time

 Constant
- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

A steady-state output assumes the input frequency, phase and amplitude are constant forever. You need to determine two $y_{SS}(t)$ steady state outputs: one for before the transient (t<0) and one after $(t\geq0)$. At t=0, $y_{SS}(0-)$ means the first one and $y_{SS}(0+)$ means the second.

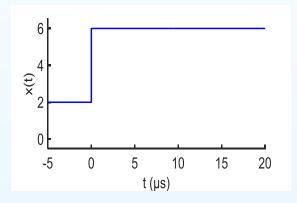
Method 1: Nodal analysis

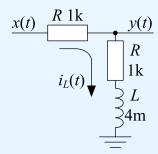
Input voltage is DC ($\omega = 0$)

$$\Rightarrow Z_L = 0$$
 (for capacitor: $Z_C = \infty$)

So L acts as a short citcuit

Potential divider: $y_{SS} = \frac{1}{2}x$





Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time

 Constant
- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

A steady-state output assumes the input frequency, phase and amplitude are constant forever. You need to determine two $y_{SS}(t)$ steady state outputs: one for before the transient (t<0) and one after $(t\geq0)$. At t=0, $y_{SS}(0-)$ means the first one and $y_{SS}(0+)$ means the second.

Method 1: Nodal analysis

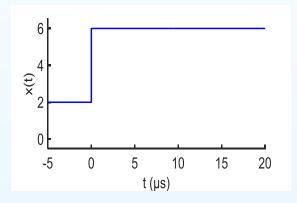
Input voltage is DC ($\omega = 0$)

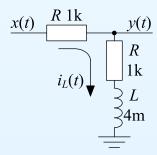
$$\Rightarrow Z_L = 0$$
 (for capacitor: $Z_C = \infty$)

So L acts as a short citcuit

Potential divider:
$$y_{SS} = \frac{1}{2}x$$

$$y_{SS}(0-) = 1, y_{SS}(0+) = 3$$





Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time
 Constant
- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

A steady-state output assumes the input frequency, phase and amplitude are constant forever. You need to determine two $y_{SS}(t)$ steady state outputs: one for before the transient (t<0) and one after $(t\geq0)$. At t=0, $y_{SS}(0-)$ means the first one and $y_{SS}(0+)$ means the second.

Method 1: Nodal analysis

Input voltage is DC ($\omega = 0$)

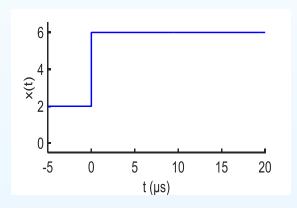
$$\Rightarrow Z_L = 0$$
 (for capacitor: $Z_C = \infty$)

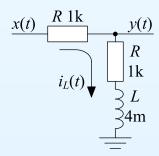
So L acts as a short citcuit

Potential divider:
$$y_{SS} = \frac{1}{2}x$$

$$y_{SS}(0-) = 1, y_{SS}(0+) = 3$$

$$\frac{Y}{X}(j\omega) = \frac{R+j\omega L}{2R+j\omega L}$$





Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time
 Constant
- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

A steady-state output assumes the input frequency, phase and amplitude are constant forever. You need to determine two $y_{SS}(t)$ steady state outputs: one for before the transient (t<0) and one after $(t\geq0)$. At t=0, $y_{SS}(0-)$ means the first one and $y_{SS}(0+)$ means the second.

Method 1: Nodal analysis

Input voltage is DC ($\omega = 0$)

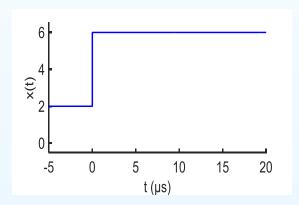
$$\Rightarrow Z_L = 0$$
 (for capacitor: $Z_C = \infty$)

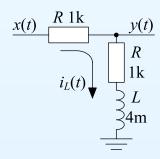
So L acts as a short citcuit

Potential divider:
$$y_{SS} = \frac{1}{2}x$$

 $y_{SS}(0-) = 1$, $y_{SS}(0+) = 3$

$$\frac{Y}{X}(j\omega) = \frac{R+j\omega L}{2R+j\omega L}$$
 set $\omega = 0$: $\frac{Y}{X}(0) = \frac{1}{2}$





Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time
 Constant
- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

A steady-state output assumes the input frequency, phase and amplitude are constant forever. You need to determine two $y_{SS}(t)$ steady state outputs: one for before the transient (t<0) and one after $(t\geq0)$. At t=0, $y_{SS}(0-)$ means the first one and $y_{SS}(0+)$ means the second.

Method 1: Nodal analysis

Input voltage is DC ($\omega = 0$)

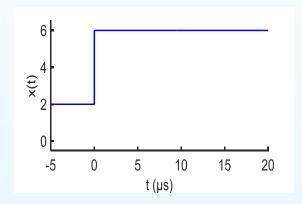
$$\Rightarrow Z_L = 0$$
 (for capacitor: $Z_C = \infty$)

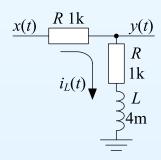
So L acts as a short citcuit

Potential divider:
$$y_{SS} = \frac{1}{2}x$$

$$y_{SS}(0-) = 1, y_{SS}(0+) = 3$$

$$\begin{split} \frac{Y}{X}(j\omega) &= \frac{R+j\omega L}{2R+j\omega L} \\ \text{set } \omega &= 0 \colon \frac{Y}{X}(0) = \frac{1}{2} \\ y_{SS}(0-) &= 1, y_{SS}(0+) = 3 \end{split}$$





Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time

 Constant
- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

A steady-state output assumes the input frequency, phase and amplitude are constant forever. You need to determine two $y_{SS}(t)$ steady state outputs: one for before the transient (t<0) and one after $(t\geq0)$. At t=0, $y_{SS}(0-)$ means the first one and $y_{SS}(0+)$ means the second.

Method 1: Nodal analysis

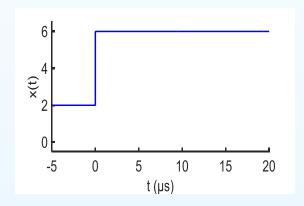
Input voltage is DC ($\omega = 0$)

$$\Rightarrow Z_L = 0$$
 (for capacitor: $Z_C = \infty$)

So L acts as a short citcuit

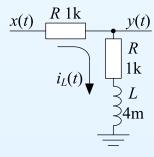
Potential divider:
$$y_{SS} = \frac{1}{2}x$$

 $y_{SS}(0-) = 1, y_{SS}(0+) = 3$



Method 2: Transfer function

$$\begin{split} \frac{Y}{X}(j\omega) &= \frac{R+j\omega L}{2R+j\omega L}\\ \text{set } \omega &= 0 \colon \frac{Y}{X}(0) = \frac{1}{2}\\ y_{SS}(0-) &= 1, y_{SS}(0+) = 3 \end{split}$$



Sinusoidal input \Rightarrow Sinusoidal steady state \Rightarrow use phasors.

Then convert phasors to time waveforms to calculate the actual output voltages $y_{SS}(0-)$ and $y_{SS}(0+)$ at t=0.

Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time

Constant

- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

Method 1: Thévenin x(t) = 4R x(t) = 4R

Revision Lecture 2: Transients & Lines

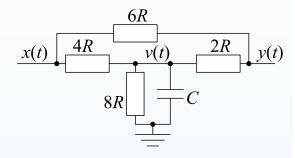
- Transients: Basic Ideas
- Steady States
- Determining Time

Constant

- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

Method 1: Thévenin

(a) Remove the capacitor/inductor



Revision Lecture 2: Transients & Lines

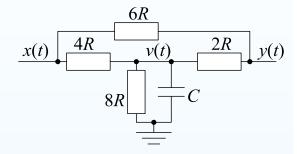
- Transients: Basic Ideas
- Steady States
- Determining Time

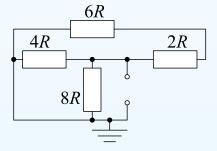
Constant

- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

Method 1: Thévenin

- (a) Remove the capacitor/inductor
- (b) Set all sources to zero (including the input voltage source). Leave output unconnected.





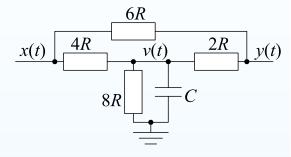
Revision Lecture 2: Transients & Lines

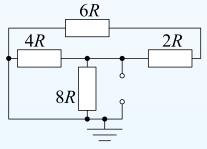
- Transients: Basic Ideas
- Steady States
- Determining Time
 Constant
- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

Method 1: Thévenin

- (a) Remove the capacitor/inductor
- (b) Set all sources to zero (including the input voltage source). Leave output unconnected.
- (c) Calculate the Thévenin resistance between the capacitor/inductor terminals:

$$R_{Th} = 8R||4R||(6R + 2R) = 2R$$





Revision Lecture 2: Transients & Lines

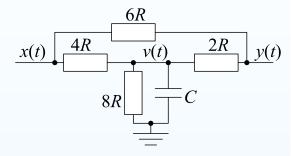
- Transients: Basic Ideas
- Steady States
- Determining Time
 Constant
- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

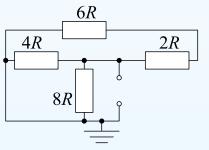
Method 1: Thévenin

- (a) Remove the capacitor/inductor
- (b) Set all sources to zero (including the input voltage source). Leave output unconnected.
- (c) Calculate the Thévenin resistance between the capacitor/inductor terminals:

$$R_{Th} = 8R||4R||(6R + 2R) = 2R$$

(d) Time constant: $=R_{Th}C$ or $\frac{L}{R_{Th}}$ $\tau=R_{Th}C=2RC$





Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time

Constant

- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

- Method 1: Thévenin
- (a) Remove the capacitor/inductor
- (b) Set all sources to zero (including the input voltage source). Leave output unconnected.
- (c) Calculate the Thévenin resistance between the capacitor/inductor terminals:

$$R_{Th} = 8R||4R||(6R+2R) = 2R$$
 (d) Time constant: $= R_{Th}C$ or $\frac{L}{R_{Th}}$ $\tau = R_{Th}C = 2RC$

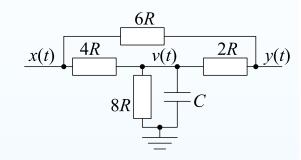
Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time
 Constant
- Determining Transient
 Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

Method 1: Thévenin

- (a) Remove the capacitor/inductor
- (b) Set all sources to zero (including the input voltage source). Leave output unconnected.
- (c) Calculate the Thévenin resistance between the capacitor/inductor terminals:

$$R_{Th} = 8R||4R||(6R+2R) = 2R$$
 (d) Time constant: $= R_{Th}C$ or $\frac{L}{R_{Th}}$
$$\tau = R_{Th}C = 2RC$$



Method 2: Transfer function

(a) Calculate transfer function using nodal analysis

Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time

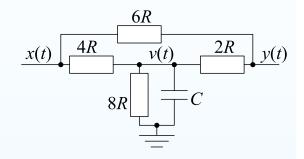
Constant

- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

Method 1: Thévenin

- (a) Remove the capacitor/inductor
- (b) Set all sources to zero (including the input voltage source). Leave output unconnected.
- (c) Calculate the Thévenin resistance between the capacitor/inductor terminals:

$$R_{Th}=8R||4R||(6R+2R)=2R$$
 (d) Time constant: $=R_{Th}C$ or $\frac{L}{R_{Th}}$ $au=R_{Th}C=2RC$



Method 2: Transfer function

(a) Calculate transfer function using nodal analysis

KCL @ V:
$$\frac{V-X}{4R}+\frac{V}{8R}+j\omega CV+\frac{V-Y}{2R}=0$$
 KCL @ Y:
$$\frac{Y-V}{2R}+\frac{Y-X}{6R}=0$$

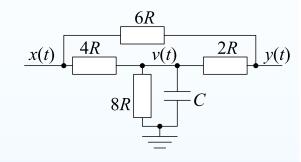
Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time
- Constant
- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

- Method 1: Thévenin
- (a) Remove the capacitor/inductor
- (b) Set all sources to zero (including the input voltage source). Leave output unconnected.
- (c) Calculate the Thévenin resistance between the capacitor/inductor terminals:

$$R_{Th} = 8R||4R||(6R + 2R) = 2R$$

(d) Time constant:
$$=R_{Th}C$$
 or $\frac{L}{R_{Th}}$ $\tau=R_{Th}C=2RC$



Method 2: Transfer function

(a) Calculate transfer function using nodal analysis

KCL @ V:
$$\frac{V-X}{4R}+\frac{V}{8R}+j\omega CV+\frac{V-Y}{2R}=0$$
 KCL @ Y:
$$\frac{Y-V}{2R}+\frac{Y-X}{6R}=0$$

ightarrow Eliminate V to get transfer Function: $\frac{Y}{X} = \frac{8j\omega RC + 13}{32j\omega RC + 16}$

Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time

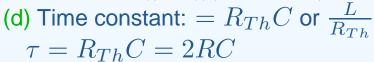
Constan

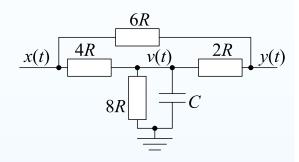
- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

Method 1: Thévenin

- (a) Remove the capacitor/inductor
- (b) Set all sources to zero (including the input voltage source). Leave output unconnected.
- (c) Calculate the Thévenin resistance between the capacitor/inductor terminals:

$$R_{Th} = 8R||4R||(6R + 2R) = 2R$$





Method 2: Transfer function

(a) Calculate transfer function using nodal analysis

KCL @ V:
$$\frac{V-X}{4R}+\frac{V}{8R}+j\omega CV+\frac{V-Y}{2R}=0$$
 KCL @ Y:
$$\frac{Y-V}{2R}+\frac{Y-X}{6R}=0$$

- ightarrow Eliminate V to get transfer Function: $\frac{Y}{X} = \frac{8j\omega RC + 13}{32j\omega RC + 16}$
- (b) Time Constant = $\frac{1}{\text{Denominator corner frequency}}$

Revision Lecture 2: Transients & Lines

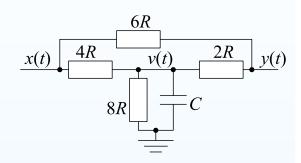
- Transients: Basic Ideas
- Steady States
- Determining Time
- Constant
- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

Method 1: Thévenin

- (a) Remove the capacitor/inductor
- (b) Set all sources to zero (including the input voltage source). Leave output unconnected.
- (c) Calculate the Thévenin resistance between the capacitor/inductor terminals:

$$R_{Th}=8R||4R||(6R+2R)=2R$$
 (d) Time constant: $=R_{Th}C$ or $\frac{L}{R_{Th}}$

$$\tau = R_{Th}C = 2RC$$



Method 2: Transfer function

(a) Calculate transfer function using nodal analysis

KCL @ V:
$$\frac{V-X}{4R} + \frac{V}{8R} + j\omega CV + \frac{V-Y}{2R} = 0$$
 KCL @ Y: $\frac{Y-V}{2R} + \frac{Y-X}{6R} = 0$

$$ightarrow$$
 Eliminate V to get transfer Function: $\frac{Y}{X} = \frac{8j\omega RC + 13}{32j\omega RC + 16}$

(b) Time Constant = $\frac{1}{\text{Denominator corner frequency}}$

$$\omega_d = \frac{16}{32RC} \Rightarrow \tau = \frac{1}{\omega_d} = 2RC$$

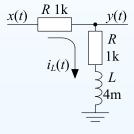
Revision Lecture 2: Transients & Lines

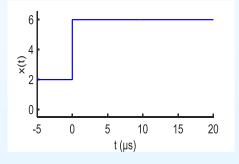
- Transients: Basic Ideas
- Steady States
- Determining Time

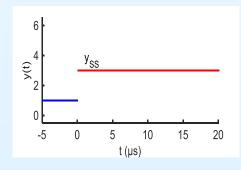
Constant

- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

After an input change at t=0, $y(t)=y_{SS}(t)+Ae^{-\frac{t}{\tau}}$.







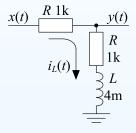
Revision Lecture 2: Transients & Lines

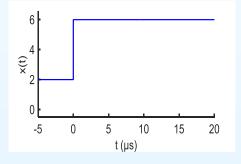
- Transients: Basic Ideas
- Steady States
- Determining Time

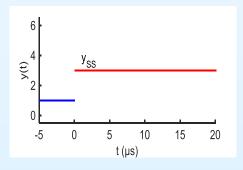
Constant

- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

After an input change at t = 0, $y(t) = y_{SS}(t) + Ae^{-\frac{t}{\tau}}$. $\Rightarrow y(0+) = y_{SS}(0+) + A \Rightarrow A = y(0+) - y_{SS}(0+)$







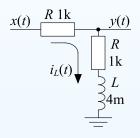
Revision Lecture 2: Transients & Lines

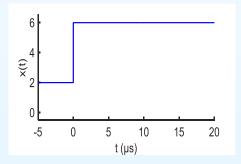
- Transients: Basic Ideas
- Steady States
- Determining Time

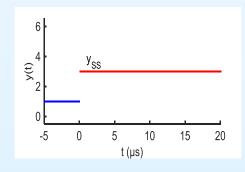
Constant

- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

After an input change at t=0, $y(t)=y_{SS}(t)+Ae^{-\frac{t}{\tau}}$. $\Rightarrow y(0+)=y_{SS}(0+)+A\Rightarrow A=y(0+)-y_{SS}(0+)$ Method: (a) calculate true output y(0+), (b) subtract $y_{SS}(0+)$ to get A







Revision Lecture 2: Transients & Lines

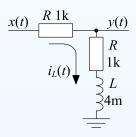
- Transients: Basic Ideas
- Steady States
- Determining Time

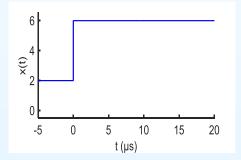
Constant

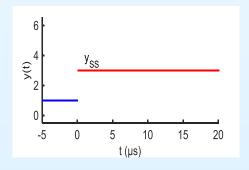
- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

After an input change at t=0, $y(t)=y_{SS}(t)+Ae^{-\frac{t}{\tau}}$. $\Rightarrow y(0+)=y_{SS}(0+)+A\Rightarrow A=y(0+)-y_{SS}(0+)$ Method: (a) calculate true output y(0+), (b) subtract $y_{SS}(0+)$ to get A

(i) Version 1: v_C or i_L continuity







Revision Lecture 2: Transients & Lines

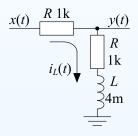
- Transients: Basic Ideas
- Steady States
- Determining Time

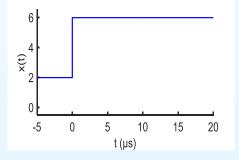
Constant

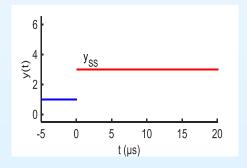
- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

After an input change at t=0, $y(t)=y_{SS}(t)+Ae^{-\frac{t}{\tau}}$. $\Rightarrow y(0+)=y_{SS}(0+)+A\Rightarrow A=y(0+)-y_{SS}(0+)$ Method: (a) calculate true output y(0+), (b) subtract $y_{SS}(0+)$ to get A

(i) Version 1: v_C or i_L continuity x(0-)=2







Revision Lecture 2: Transients & Lines

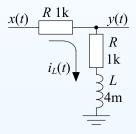
- Transients: Basic Ideas
- Steady States
- Determining Time

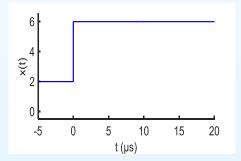
Constant

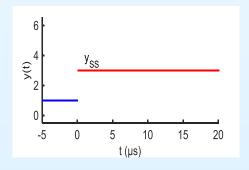
- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

After an input change at t=0, $y(t)=y_{SS}(t)+Ae^{-\frac{t}{\tau}}$. $\Rightarrow y(0+)=y_{SS}(0+)+A\Rightarrow A=y(0+)-y_{SS}(0+)$ Method: (a) calculate true output y(0+), (b) subtract $y_{SS}(0+)$ to get A

(i) Version 1: v_C or i_L continuity $x(0-)=2 \Rightarrow i_L(0-)=1 \, \mathrm{mA}$







Revision Lecture 2: Transients & Lines

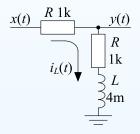
- Transients: Basic Ideas
- Steady States
- Determining Time

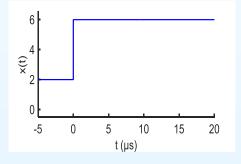
Constant

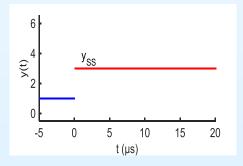
- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

After an input change at t=0, $y(t)=y_{SS}(t)+Ae^{-\frac{t}{\tau}}$. $\Rightarrow y(0+)=y_{SS}(0+)+A\Rightarrow A=y(0+)-y_{SS}(0+)$ Method: (a) calculate true output y(0+), (b) subtract $y_{SS}(0+)$ to get A

(i) Version 1: v_C or i_L continuity $x(0-)=2\Rightarrow i_L(0-)=1\,\mathrm{mA}$ Continuity $\Rightarrow i_L(0+)=i_L(0-)$







Revision Lecture 2: Transients & Lines

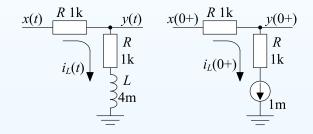
- Transients: Basic Ideas
- Steady States
- Determining Time

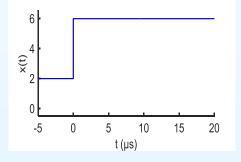
Constant

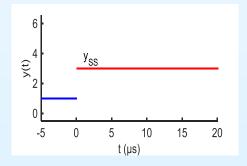
- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

After an input change at t=0, $y(t)=y_{SS}(t)+Ae^{-\frac{t}{\tau}}$. $\Rightarrow y(0+)=y_{SS}(0+)+A\Rightarrow A=y(0+)-y_{SS}(0+)$ Method: (a) calculate true output y(0+), (b) subtract $y_{SS}(0+)$ to get A

(i) Version 1: v_C or i_L continuity $x(0-)=2\Rightarrow i_L(0-)=1~\mathrm{mA}$ Continuity $\Rightarrow i_L(0+)=i_L(0-)$ Replace L with a $1~\mathrm{mA}$ current source







Revision Lecture 2: Transients & Lines

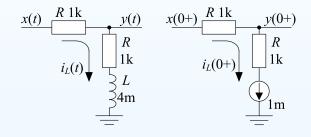
- Transients: Basic Ideas
- Steady States
- Determining Time

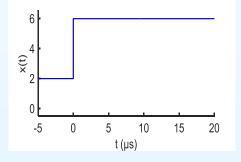
Constant

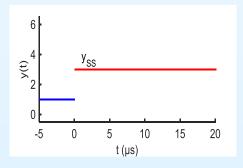
- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

After an input change at t=0, $y(t)=y_{SS}(t)+Ae^{-\frac{t}{\tau}}$. $\Rightarrow y(0+)=y_{SS}(0+)+A\Rightarrow A=y(0+)-y_{SS}(0+)$ Method: (a) calculate true output y(0+), (b) subtract $y_{SS}(0+)$ to get A

(i) Version 1: v_C or i_L continuity $x(0-)=2\Rightarrow i_L(0-)=1~\mathrm{mA}$ Continuity $\Rightarrow i_L(0+)=i_L(0-)$ Replace L with a $1~\mathrm{mA}$ current source y(0+)=x(0+)-iR=6-1=5







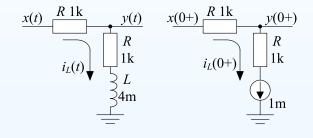
Revision Lecture 2: Transients & Lines

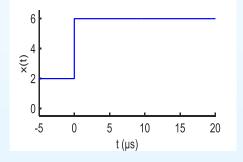
- Transients: Basic Ideas
- Steady States
- Determining Time

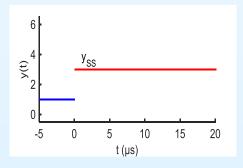
Constant

- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

- (i) Version 1: v_C or i_L continuity $x(0-)=2\Rightarrow i_L(0-)=1~\mathrm{mA}$ Continuity $\Rightarrow i_L(0+)=i_L(0-)$ Replace L with a $1~\mathrm{mA}$ current source y(0+)=x(0+)-iR=6-1=5
- (i) Version 2: Transfer function







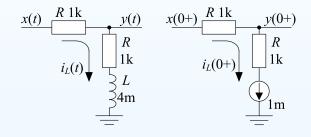
Revision Lecture 2: Transients & Lines

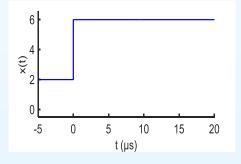
- Transients: Basic Ideas
- Steady States
- Determining Time

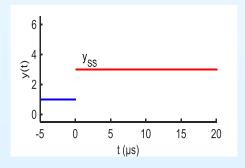
Constant

- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

- (i) Version 1: v_C or i_L continuity $x(0-)=2\Rightarrow i_L(0-)=1~\mathrm{mA}$ Continuity $\Rightarrow i_L(0+)=i_L(0-)$ Replace L with a $1~\mathrm{mA}$ current source y(0+)=x(0+)-iR=6-1=5
- (i) Version 2: Transfer function $H(j\omega)=\frac{Y}{X}(j\omega)=\frac{R+j\omega L}{2R+j\omega L}$







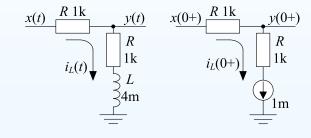
Revision Lecture 2: Transients & Lines

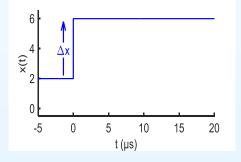
- Transients: Basic Ideas
- Steady States
- Determining Time

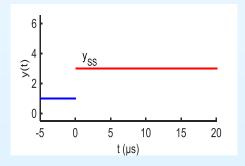
Constant

- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

- (i) Version 1: v_C or i_L continuity $x(0-)=2\Rightarrow i_L(0-)=1~\mathrm{mA}$ Continuity $\Rightarrow i_L(0+)=i_L(0-)$ Replace L with a $1~\mathrm{mA}$ current source y(0+)=x(0+)-iR=6-1=5
- (i) Version 2: Transfer function $H(j\omega)=\frac{Y}{X}(j\omega)=\frac{R+j\omega L}{2R+j\omega L}$ Input step, $\Delta x=x(0+)-x(0-)=+4$







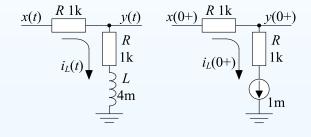
Revision Lecture 2: Transients & Lines

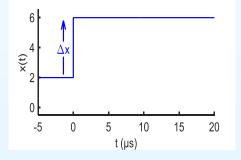
- Transients: Basic Ideas
- Steady States
- Determining Time

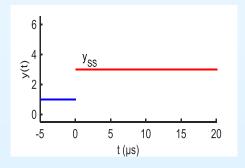
Constant

- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

- (i) Version 1: v_C or i_L continuity $x(0-)=2\Rightarrow i_L(0-)=1~\mathrm{mA}$ Continuity $\Rightarrow i_L(0+)=i_L(0-)$ Replace L with a $1~\mathrm{mA}$ current source y(0+)=x(0+)-iR=6-1=5
- (i) Version 2: Transfer function $H(j\omega) = \frac{Y}{X}(j\omega) = \frac{R+j\omega L}{2R+j\omega L}$ Input step, $\Delta x = x(0+) x(0-) = +4$ $y(0+) = y(0-) + H(j\infty) \times \Delta x$







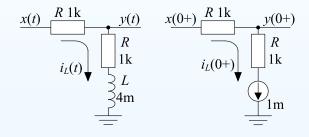
Revision Lecture 2: Transients & Lines

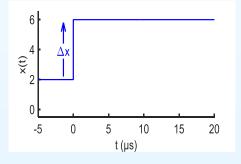
- Transients: Basic Ideas
- Steady States
- Determining Time

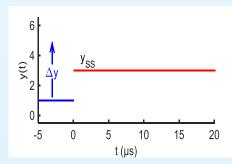
Constant

- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

- (i) Version 1: v_C or i_L continuity $x(0-)=2\Rightarrow i_L(0-)=1~\mathrm{mA}$ Continuity $\Rightarrow i_L(0+)=i_L(0-)$ Replace L with a $1~\mathrm{mA}$ current source y(0+)=x(0+)-iR=6-1=5
- (i) Version 2: Transfer function $H(j\omega) = \frac{Y}{X}(j\omega) = \frac{R+j\omega L}{2R+j\omega L}$ Input step, $\Delta x = x(0+) x(0-) = +4$ $y(0+) = y(0-) + H(j\infty) \times \Delta x$ $= 1 + \Delta y = 1 + 1 \times 4 = 5$





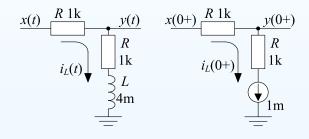


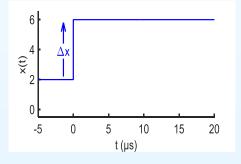
Revision Lecture 2: Transients & Lines

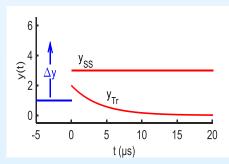
- Transients: Basic Ideas
- Steady States
- Determining Time

- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

- After an input change at t=0, $y(t)=y_{SS}(t)+Ae^{-\frac{t}{\tau}}$. $\Rightarrow y(0+)=y_{SS}(0+)+A\Rightarrow A=y(0+)-y_{SS}(0+)$ Method: (a) calculate true output y(0+), (b) subtract $y_{SS}(0+)$ to get A
- (i) Version 1: v_C or i_L continuity $x(0-)=2\Rightarrow i_L(0-)=1~\mathrm{mA}$ Continuity $\Rightarrow i_L(0+)=i_L(0-)$ Replace L with a $1~\mathrm{mA}$ current source y(0+)=x(0+)-iR=6-1=5
- (i) Version 2: Transfer function $H(j\omega) = \frac{Y}{X}(j\omega) = \frac{R+j\omega L}{2R+j\omega L}$ Input step, $\Delta x = x(0+) x(0-) = +4$ $y(0+) = y(0-) + H(j\infty) \times \Delta x$ $= 1 + \Delta y = 1 + 1 \times 4 = 5$
- (ii) $A = y(0+) y_{SS}(0+) = 5 3 = 2$





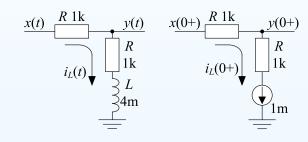


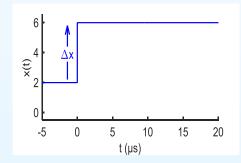
Revision Lecture 2: Transients & Lines

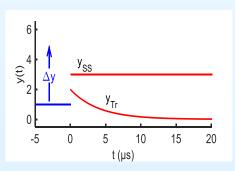
- Transients: Basic Ideas
- Steady States
- Determining Time

- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

- After an input change at t=0, $y(t)=y_{SS}(t)+Ae^{-\frac{t}{\tau}}$. $\Rightarrow y(0+)=y_{SS}(0+)+A\Rightarrow A=y(0+)-y_{SS}(0+)$ Method: (a) calculate true output y(0+), (b) subtract $y_{SS}(0+)$ to get A
- (i) Version 1: v_C or i_L continuity $x(0-)=2\Rightarrow i_L(0-)=1~\mathrm{mA}$ Continuity $\Rightarrow i_L(0+)=i_L(0-)$ Replace L with a $1~\mathrm{mA}$ current source y(0+)=x(0+)-iR=6-1=5
- (i) Version 2: Transfer function $H(j\omega) = \frac{Y}{X}(j\omega) = \frac{R+j\omega L}{2R+j\omega L}$ Input step, $\Delta x = x(0+) x(0-) = +4$ $y(0+) = y(0-) + H(j\infty) \times \Delta x$ $= 1 + \Delta y = 1 + 1 \times 4 = 5$
- (ii) $A = y(0+) y_{SS}(0+) = 5 3 = 2$
- (iii) $y(t) = y_{SS}(t) + Ae^{-t/\tau}$







Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time

Constant

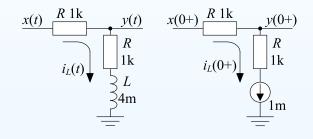
- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

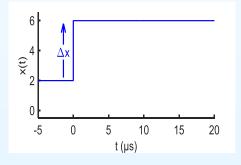
After an input change at t=0, $y(t)=y_{SS}(t)+Ae^{-\frac{t}{\tau}}$. $\Rightarrow y(0+)=y_{SS}(0+)+A\Rightarrow A=y(0+)-y_{SS}(0+)$ Method: (a) calculate true output y(0+), (b) subtract $y_{SS}(0+)$ to get A

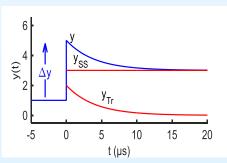
- (i) Version 1: v_C or i_L continuity $x(0-)=2\Rightarrow i_L(0-)=1~\mathrm{mA}$ Continuity $\Rightarrow i_L(0+)=i_L(0-)$ Replace L with a $1~\mathrm{mA}$ current source y(0+)=x(0+)-iR=6-1=5
- (i) Version 2: Transfer function $H(j\omega) = \frac{Y}{X}(j\omega) = \frac{R+j\omega L}{2R+j\omega L}$ Input step, $\Delta x = x(0+) x(0-) = +4$ $y(0+) = y(0-) + H(j\infty) \times \Delta x$ $= 1 + \Delta y = 1 + 1 \times 4 = 5$

(ii)
$$A = y(0+) - y_{SS}(0+) = 5 - 3 = 2$$

(iii) $y(t) = y_{SS}(t) + Ae^{-t/\tau}$ = $3 + 2e^{-t/2\mu}$







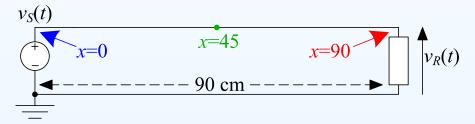
Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time
 Constant
- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

Transmission Line: constant ${\cal L}_0$ and ${\cal C}_0$: inductance/capacitance per metre.

Forward wave travels along the line: $f_x(t) = f_0\left(t - \frac{x}{u}\right)$.

Velocity
$$u = \sqrt{\frac{1}{L_0 C_0}} \approx \frac{1}{2}c = 15 \, \mathrm{cm/ns}$$



Revision Lecture 2: Transients & Lines

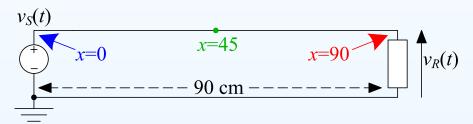
- Transients: Basic Ideas
- Steady States
- Determining Time
 Constant
- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

Transmission Line: constant ${\cal L}_0$ and ${\cal C}_0$: inductance/capacitance per metre.

Forward wave travels along the line: $f_x(t) = f_0\left(t - \frac{x}{u}\right)$.

Velocity
$$u = \sqrt{\frac{1}{L_0 C_0}} \approx \frac{1}{2}c = 15 \, \mathrm{cm/ns}$$

 $f_x(t)$ equals $f_0\left(t\right)$ but delayed by $\frac{x}{u}$.



Revision Lecture 2: Transients & Lines

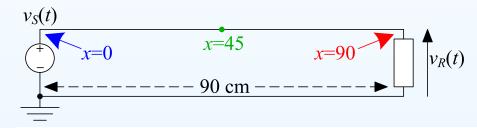
- Transients: Basic Ideas
- Steady States
- Determining Time
 Constant
- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

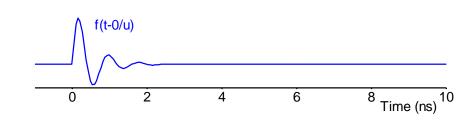
Transmission Line: constant ${\cal L}_0$ and ${\cal C}_0$: inductance/capacitance per metre.

Forward wave travels along the line: $f_x(t) = f_0\left(t - \frac{x}{u}\right)$.

Velocity
$$u = \sqrt{\frac{1}{L_0 C_0}} \approx \frac{1}{2}c = 15 \, \mathrm{cm/ns}$$

 $f_x(t)$ equals $f_0(t)$ but delayed by $\frac{x}{u}$.





Revision Lecture 2: Transients & Lines

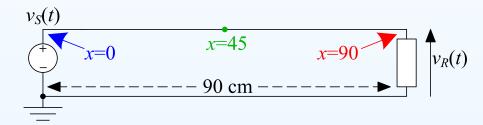
- Transients: Basic Ideas
- Steady States
- Determining Time Constant
- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

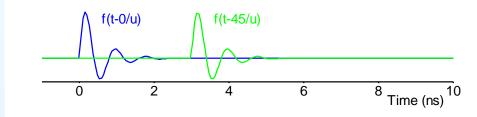
Transmission Line: constant L_0 and C_0 : inductance/capacitance per metre.

Forward wave travels along the line: $f_x(t) = f_0\left(t - \frac{x}{u}\right)$.

Velocity
$$u = \sqrt{\frac{1}{L_0 C_0}} \approx \frac{1}{2}c = 15 \, \mathrm{cm/ns}$$

 $f_x(t)$ equals $f_0(t)$ but delayed by $\frac{x}{y}$.





Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time
- Constant
- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

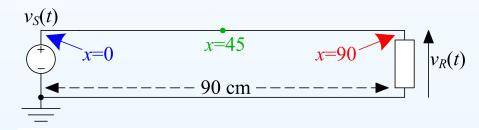
Transmission Line: constant ${\cal L}_0$ and ${\cal C}_0$: inductance/capacitance per metre.

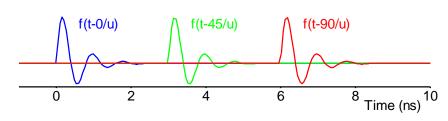
Forward wave travels along the line: $f_x(t) = f_0\left(t - \frac{x}{u}\right)$.

Velocity
$$u = \sqrt{\frac{1}{L_0 C_0}} \approx \frac{1}{2}c = 15 \, \mathrm{cm/ns}$$

 $f_x(t)$ equals $f_0(t)$ but delayed by $\frac{x}{u}$.

Knowing $f_x(t)$ for $x = x_0$ fixes it for all other x.





Revision Lecture 2: Transients & Lines

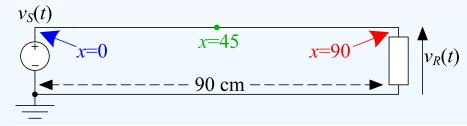
- Transients: Basic Ideas
- Steady States
- Determining Time
 Constant
- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

Transmission Line: constant ${\cal L}_0$ and ${\cal C}_0$: inductance/capacitance per metre.

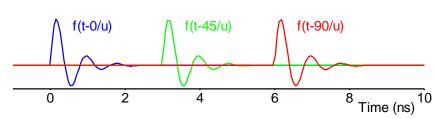
Forward wave travels along the line: $f_x(t) = f_0\left(t - \frac{x}{u}\right)$.

Velocity
$$u = \sqrt{\frac{1}{L_0 C_0}} \approx \frac{1}{2}c = 15 \,\mathrm{cm/ns}$$

 $f_x(t)$ equals $f_0(t)$ but delayed by $\frac{x}{u}$.



Knowing $f_x(t)$ for $x = x_0$ fixes it for all other x.



Backward wave: $g_x(t)$ is the same but travelling $\leftarrow: g_x(t) = g_0\left(t + \frac{x}{u}\right)$.

Revision Lecture 2: Transients & Lines

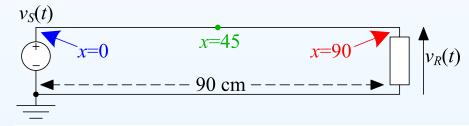
- Transients: Basic Ideas
- Steady States
- Determining Time
 Constant
- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

Transmission Line: constant ${\cal L}_0$ and ${\cal C}_0$: inductance/capacitance per metre.

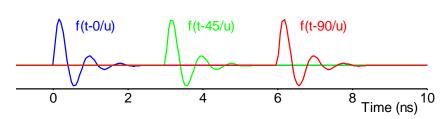
Forward wave travels along the line: $f_x(t) = f_0\left(t - \frac{x}{u}\right)$.

Velocity
$$u = \sqrt{\frac{1}{L_0 C_0}} \approx \frac{1}{2}c = 15 \,\mathrm{cm/ns}$$

 $f_x(t)$ equals $f_0(t)$ but delayed by $\frac{x}{u}$.



Knowing $f_x(t)$ for $x = x_0$ fixes it for all other x.



Backward wave: $g_x(t)$ is the same but travelling $\leftarrow: g_x(t) = g_0\left(t + \frac{x}{u}\right)$.

Voltage and current are: $v_x=f_x+g_x$ and $i_x=\frac{f_x-g_x}{Z_0}$ where i_x is positive in the +x direction (\to) and $Z_0=\sqrt{\frac{L_0}{C_0}}$

Revision Lecture 2: Transients & Lines

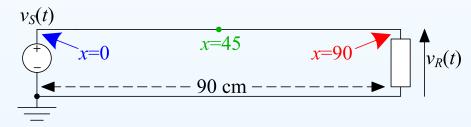
- Transients: Basic Ideas
- Steady States
- Determining Time
- Constant
- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

Transmission Line: constant ${\cal L}_0$ and ${\cal C}_0$: inductance/capacitance per metre.

Forward wave travels along the line: $f_x(t) = f_0\left(t - \frac{x}{u}\right)$.

Velocity
$$u = \sqrt{\frac{1}{L_0 C_0}} \approx \frac{1}{2}c = 15 \,\mathrm{cm/ns}$$

 $f_x(t)$ equals $f_0(t)$ but delayed by $\frac{x}{u}$.



Knowing $f_x(t)$ for $x = x_0$ fixes it for all other x.



Backward wave: $g_x(t)$ is the same but travelling $\leftarrow: g_x(t) = g_0\left(t + \frac{x}{u}\right)$.

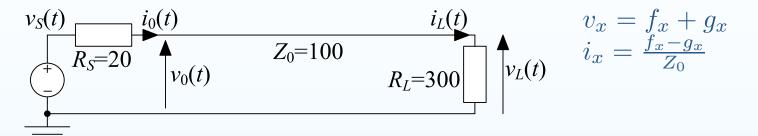
Voltage and current are: $v_x=f_x+g_x$ and $i_x=\frac{f_x-g_x}{Z_0}$ where i_x is positive in the +x direction (\to) and $Z_0=\sqrt{\frac{L_0}{C_0}}$

Waveforms of f_x and g_x are determined by the connections at both ends.

Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time

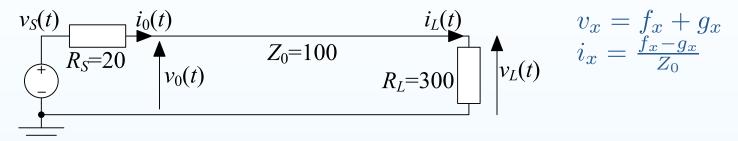
- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves



Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time

- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

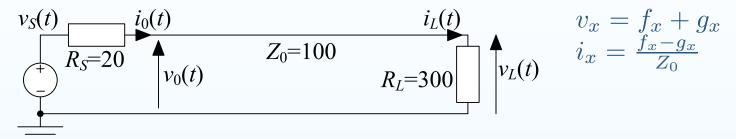


At
$$x=L$$
, Ohm's law $\Rightarrow \frac{v_L(t)}{i_L(t)}=R_L \ \Rightarrow g_L\left(t\right)=\frac{R_L-Z_0}{R_L+Z_0} \times f_L\left(t\right)$.

Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time

- Determining Transient
 Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves



At
$$x=L$$
, Ohm's law $\Rightarrow \frac{v_L(t)}{i_L(t)}=R_L \Rightarrow g_L(t)=\frac{R_L-Z_0}{R_L+Z_0}\times f_L(t)$. Reflection coefficient: $\rho_L=\frac{g_L(t)}{f_L(t)}=\frac{R_L-Z_0}{R_L+Z_0}$

Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time

- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

$$v_S(t)$$
 $R_S=20$
 $v_0(t)$
 $v_0(t)$
 $v_L(t)$
 $v_L(t)$
 $v_L(t)$
 $v_L(t)$
 $v_L(t)$
 $v_L(t)$
 $v_L(t)$
 $v_L(t)$

At
$$x=L$$
, Ohm's law $\Rightarrow \frac{v_L(t)}{i_L(t)}=R_L \Rightarrow g_L(t)=\frac{R_L-Z_0}{R_L+Z_0} \times f_L(t)$. Reflection coefficient: $\rho_L=\frac{g_L(t)}{f_L(t)}=\frac{R_L-Z_0}{R_L+Z_0}$ $\rho_L\in[-1,\ +1]$ and increases with R_L

Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time

- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

$$v_{S}(t) = i_{0}(t)$$

$$R_{S}=20$$

$$v_{0}(t)$$

$$V_{L}(t)$$

$$v_{x} = f_{x} + g_{x}$$

$$i_{x} = \frac{f_{x} - g_{x}}{Z_{0}}$$

At
$$x=L$$
, Ohm's law $\Rightarrow \frac{v_L(t)}{i_L(t)}=R_L \Rightarrow g_L(t)=\frac{R_L-Z_0}{R_L+Z_0} \times f_L(t)$. Reflection coefficient: $\rho_L=\frac{g_L(t)}{f_L(t)}=\frac{R_L-Z_0}{R_L+Z_0}$ $\rho_L\in[-1,\ +1]$ and increases with R_L Knowing $f_x(t)$ for $x=x_0$ now tells you $f_x,\ g_x,\ v_x,\ i_x\ \forall x$

Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time

- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

$$v_{S}(t) = i_{0}(t)$$

$$R_{S}=20$$

$$v_{0}(t)$$

$$V_{L}(t)$$

$$v_{x} = f_{x} + g_{x}$$

$$i_{x} = \frac{f_{x} - g_{x}}{Z_{0}}$$

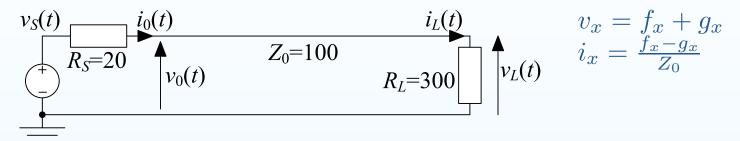
At
$$x=L$$
, Ohm's law $\Rightarrow \frac{v_L(t)}{i_L(t)}=R_L \Rightarrow g_L(t)=\frac{R_L-Z_0}{R_L+Z_0} \times f_L(t)$. Reflection coefficient: $\rho_L=\frac{g_L(t)}{f_L(t)}=\frac{R_L-Z_0}{R_L+Z_0}$ $\rho_L\in[-1,\ +1]$ and increases with R_L Knowing $f_x(t)$ for $x=x_0$ now tells you $f_x,\ g_x,\ v_x,\ i_x\ \forall x$

At
$$x = 0$$
: $f_0(t) = \frac{Z_0}{R_S + Z_0} v_S(t) + \frac{R_S - Z_0}{R_S + Z_0} g_0(t)$

Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time

- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves



At
$$x=L$$
, Ohm's law $\Rightarrow \frac{v_L(t)}{i_L(t)}=R_L \Rightarrow g_L(t)=\frac{R_L-Z_0}{R_L+Z_0} \times f_L(t)$. Reflection coefficient: $\rho_L=\frac{g_L(t)}{f_L(t)}=\frac{R_L-Z_0}{R_L+Z_0}$ $\rho_L\in[-1,\ +1]$ and increases with R_L Knowing $f_x(t)$ for $x=x_0$ now tells you $f_x,\ g_x,\ v_x,\ i_x\ \forall x$

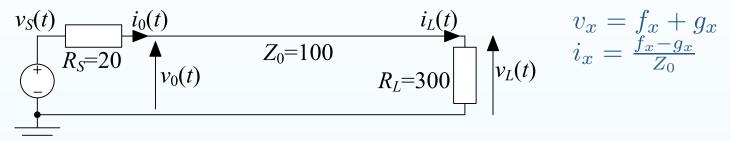
At
$$x=0$$
: $f_0(t)=\frac{Z_0}{R_S+Z_0}v_S(t)+\frac{R_S-Z_0}{R_S+Z_0}g_0(t)=\tau_0v_S(t)+\rho_0g_0(t)$

Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time

Constant

- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves



At
$$x=L$$
, Ohm's law $\Rightarrow \frac{v_L(t)}{i_L(t)}=R_L \Rightarrow g_L(t)=\frac{R_L-Z_0}{R_L+Z_0}\times f_L(t)$.

Reflection coefficient: $\rho_L = \frac{g_L(t)}{f_L(t)} = \frac{R_L - Z_0}{R_L + Z_0}$

 $ho_L \in [-1, \ +1]$ and increases with R_L

Knowing $f_x(t)$ for $x=x_0$ now tells you $f_x,\ g_x,\ v_x,\ i_x\ \forall x$

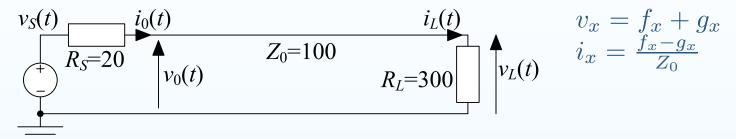
At
$$x=0$$
: $f_0(t)=\frac{Z_0}{R_S+Z_0}v_S(t)+\frac{R_S-Z_0}{R_S+Z_0}g_0(t)=\tau_0v_S(t)+\rho_0g_0(t)$

Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time

Constant

- Determining Transient
 Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves



At
$$x=L$$
, Ohm's law $\Rightarrow \frac{v_L(t)}{i_L(t)}=R_L \Rightarrow g_L(t)=\frac{R_L-Z_0}{R_L+Z_0}\times f_L(t)$.

Reflection coefficient: $\rho_L=\frac{g_L(t)}{f_L(t)}=\frac{R_L-Z_0}{R_L+Z_0}$ $\rho_L\in[-1,\ +1]$ and increases with R_L

Knowing $f_x(t)$ for $x=x_0$ now tells you $f_x,\ g_x,\ v_x,\ i_x\ \forall x$

At
$$x=0$$
: $f_0(t)=\frac{Z_0}{R_S+Z_0}v_S(t)+\frac{R_S-Z_0}{R_S+Z_0}g_0(t)=\tau_0v_S(t)+\rho_0g_0(t)$

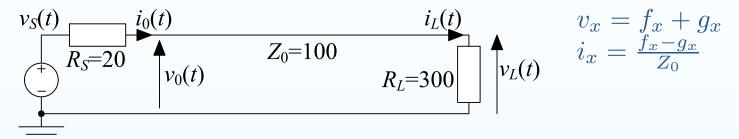
$$v_S(t) \xrightarrow{\times \tau_0} f_0(t)$$

Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time

Constant

- Determining Transient
 Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves



At
$$x=L$$
, Ohm's law $\Rightarrow \frac{v_L(t)}{i_L(t)}=R_L \Rightarrow g_L(t)=\frac{R_L-Z_0}{R_L+Z_0}\times f_L(t)$.

Reflection coefficient: $\rho_L = \frac{g_L(t)}{f_L(t)} = \frac{R_L - Z_0}{R_L + Z_0}$

 $ho_L \in [-1, \ +1]$ and increases with R_L

Knowing $f_x(t)$ for $x=x_0$ now tells you $f_x,\ g_x,\ v_x,\ i_x\ \forall x$

At
$$x=0$$
: $f_0(t)=\frac{Z_0}{R_S+Z_0}v_S(t)+\frac{R_S-Z_0}{R_S+Z_0}g_0(t)=\tau_0v_S(t)+\rho_0g_0(t)$

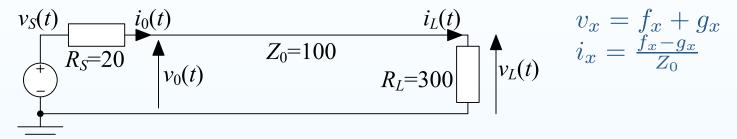
$$v_S(t) \xrightarrow{\times \tau_0} f_0(t) \xrightarrow{\times \rho_L} g_0(t + \frac{2L}{u})$$

Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time

Constant

- Determining Transient
 Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves



At
$$x=L$$
, Ohm's law $\Rightarrow \frac{v_L(t)}{i_L(t)}=R_L \Rightarrow g_L(t)=\frac{R_L-Z_0}{R_L+Z_0}\times f_L(t)$.

Reflection coefficient: $\rho_L = \frac{g_L(t)}{f_L(t)} = \frac{R_L - Z_0}{R_L + Z_0}$

 $ho_L \in [-1, \ +1]$ and increases with R_L

Knowing $f_x(t)$ for $x=x_0$ now tells you $f_x,\ g_x,\ v_x,\ i_x\ \forall x$

At
$$x=0$$
: $f_0(t)=\frac{Z_0}{R_S+Z_0}v_S(t)+\frac{R_S-Z_0}{R_S+Z_0}g_0(t)=\tau_0v_S(t)+\rho_0g_0(t)$

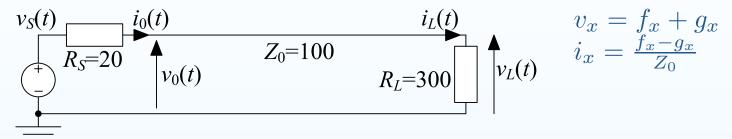
$$v_S(t) \xrightarrow{\times \tau_0} f_0(t) \xrightarrow{\times \rho_L} g_0(t + \frac{2L}{u}) \xrightarrow{\times \rho_0} f_0(t + \frac{2L}{u})$$

Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time

Constant

- Determining Transient
 Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves



At
$$x=L$$
, Ohm's law $\Rightarrow \frac{v_L(t)}{i_L(t)}=R_L \Rightarrow g_L(t)=\frac{R_L-Z_0}{R_L+Z_0}\times f_L(t)$.

Reflection coefficient: $\rho_L = \frac{g_L(t)}{f_L(t)} = \frac{R_L - Z_0}{R_L + Z_0}$

 $ho_L \in [-1, \ +1]$ and increases with R_L

Knowing $f_x(t)$ for $x=x_0$ now tells you $f_x,\ g_x,\ v_x,\ i_x\ \forall x$

At
$$x=0$$
: $f_0(t)=\frac{Z_0}{R_S+Z_0}v_S(t)+\frac{R_S-Z_0}{R_S+Z_0}g_0(t)=\tau_0v_S(t)+\rho_0g_0(t)$

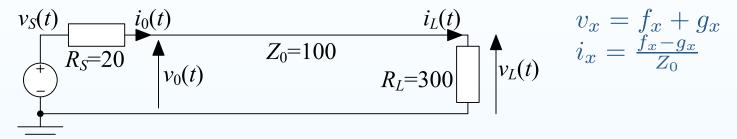
$$v_S(t) \xrightarrow{\times \tau_0} f_0(t) \xrightarrow{\times \rho_L} g_0(t + \frac{2L}{u}) \xrightarrow{\times \rho_0} f_0(t + \frac{2L}{u}) \xrightarrow{\times \rho_L} g_0(t + \frac{4L}{u})$$

Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time

Constant

- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves



At
$$x=L$$
, Ohm's law $\Rightarrow \frac{v_L(t)}{i_L(t)}=R_L \Rightarrow g_L(t)=\frac{R_L-Z_0}{R_L+Z_0}\times f_L(t)$.

Reflection coefficient: $\rho_L = \frac{g_L(t)}{f_L(t)} = \frac{R_L - Z_0}{R_L + Z_0}$ $\rho_L \in [-1, +1]$ and increases with R_L

Knowing $f_x(t)$ for $x=x_0$ now tells you $f_x,\ g_x,\ v_x,\ i_x\ \forall x$

At
$$x=0$$
: $f_0(t)=\frac{Z_0}{R_S+Z_0}v_S(t)+\frac{R_S-Z_0}{R_S+Z_0}g_0(t)=\tau_0v_S(t)+\rho_0g_0(t)$

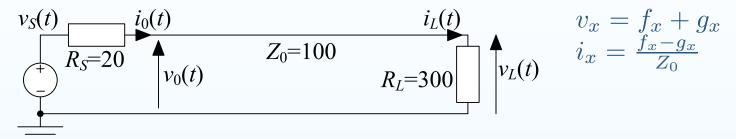
$$v_S(t) \xrightarrow{\times \tau_0} f_0(t) \xrightarrow{\times \rho_L} g_0(t + \frac{2L}{u}) \xrightarrow{\times \rho_0} f_0(t + \frac{2L}{u}) \xrightarrow{\times \rho_L} g_0(t + \frac{4L}{u}) \xrightarrow{\times \rho_0} \cdots$$

Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time

Constant

- Determining Transient
 Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves



At
$$x=L$$
, Ohm's law $\Rightarrow \frac{v_L(t)}{i_L(t)}=R_L \ \Rightarrow g_L\left(t\right)=\frac{R_L-Z_0}{R_L+Z_0}\times f_L\left(t\right)$.

Reflection coefficient:
$$\rho_L = \frac{g_L(t)}{f_L(t)} = \frac{R_L - Z_0}{R_L + Z_0}$$

$$ho_L \in [-1, \ +1]$$
 and increases with R_L

Knowing $f_x(t)$ for $x=x_0$ now tells you $f_x,\ g_x,\ v_x,\ i_x\ \forall x$

At
$$x=0$$
: $f_0(t)=\frac{Z_0}{R_S+Z_0}v_S(t)+\frac{R_S-Z_0}{R_S+Z_0}g_0(t)=\tau_0v_S(t)+\rho_0g_0(t)$

Wave bounces back and forth getting smaller with each reflection:

$$v_S(t) \xrightarrow{\times \tau_0} f_0(t) \xrightarrow{\times \rho_L} g_0(t + \frac{2L}{u}) \xrightarrow{\times \rho_0} f_0(t + \frac{2L}{u}) \xrightarrow{\times \rho_L} g_0(t + \frac{4L}{u}) \xrightarrow{\times \rho_0} \cdots$$

Infinite sum:

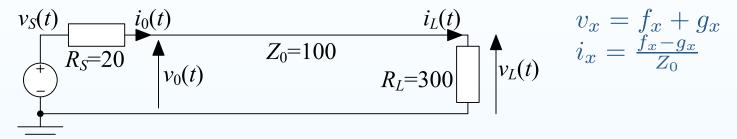
$$f_0(t) = \tau_0 v_S(t) + \tau_0 \rho_L \rho_0 v_S(t - \frac{2L}{u}) + \dots$$

Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time

Constant

- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves



At
$$x=L$$
, Ohm's law $\Rightarrow \frac{v_L(t)}{i_L(t)}=R_L \Rightarrow g_L(t)=\frac{R_L-Z_0}{R_L+Z_0}\times f_L(t)$.

Reflection coefficient: $\rho_L = \frac{g_L(t)}{f_L(t)} = \frac{R_L - Z_0}{R_L + Z_0}$

 $ho_L \in [-1, \ +1]$ and increases with R_L

Knowing $f_x(t)$ for $x=x_0$ now tells you $f_x,\ g_x,\ v_x,\ i_x\ \forall x$

At
$$x=0$$
: $f_0(t)=\frac{Z_0}{R_S+Z_0}v_S(t)+\frac{R_S-Z_0}{R_S+Z_0}g_0(t)=\tau_0v_S(t)+\rho_0g_0(t)$

Wave bounces back and forth getting smaller with each reflection:

$$v_S(t) \xrightarrow{\times \tau_0} f_0(t) \xrightarrow{\times \rho_L} g_0(t + \frac{2L}{u}) \xrightarrow{\times \rho_0} f_0(t + \frac{2L}{u}) \xrightarrow{\times \rho_L} g_0(t + \frac{4L}{u}) \xrightarrow{\times \rho_0} \cdots$$

Infinite sum:

$$f_0(t) = \tau_0 v_S(t) + \tau_0 \rho_L \rho_0 v_S(t - \frac{2L}{u}) + \ldots = \sum_{i=0}^{\infty} \tau_0 \rho_L^i \rho_0^i v_S(t - \frac{2Li}{u})$$

Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time

Constant

- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

Sinewayes are easier because:

- 1. Use phasors to eliminate t:
- 2. Time delays are just phase shifts:

Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time Constant
- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

Sinewaves are easier because:

- 1. Use phasors to eliminate t: $f_0(t) = A\cos(\omega t + \phi) \Leftrightarrow F_0 = Ae^{j\phi}$
- 2. Time delays are just phase shifts:

Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time
 Constant
- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

Sinewaves are easier because:

- 1. Use phasors to eliminate t: $f_0(t) = A\cos(\omega t + \phi) \Leftrightarrow F_0 = Ae^{j\phi}$
- 2. Time delays are just phase shifts:

$$f_x(t) = A\cos\left(\omega\left(t - \frac{x}{u}\right) + \phi\right) \Leftrightarrow F_x = Ae^{j\left(\phi - \frac{\omega}{u}x\right)} = F_0e^{-jkx}$$

Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time
- Constant
- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

Sinewayes are easier because:

- 1. Use phasors to eliminate t: $f_0(t) = A\cos(\omega t + \phi) \Leftrightarrow F_0 = Ae^{j\phi}$
- 2. Time delays are just phase shifts:

$$f_x(t) = A\cos\left(\omega\left(t - \frac{x}{u}\right) + \phi\right) \Leftrightarrow F_x = Ae^{j\left(\phi - \frac{\omega}{u}x\right)} = F_0e^{-jkx}$$
 $k = \frac{\omega}{u} = \frac{2\pi}{\lambda}$ is the wavenumber: radians per metre (c.f. ω in rad/s)

Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time
- Constant
- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

Sinewayes are easier because:

- 1. Use phasors to eliminate t: $f_0(t) = A\cos(\omega t + \phi) \Leftrightarrow F_0 = Ae^{j\phi}$
- 2. Time delays are just phase shifts:

$$f_x(t) = A\cos\left(\omega\left(t - \frac{x}{u}\right) + \phi\right) \Leftrightarrow F_x = Ae^{j\left(\phi - \frac{\omega}{u}x\right)} = F_0e^{-jkx}$$
 $k = \frac{\omega}{u} = \frac{2\pi}{\lambda}$ is the wavenumber: radians per metre (c.f. ω in rad/s)

As before:
$$V_x = F_x + G_x$$
 and $I_x = \frac{F_x - G_x}{Z_0}$

Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time

Constant

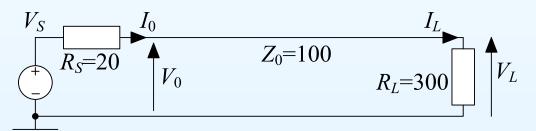
- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

Sinewayes are easier because:

- 1. Use phasors to eliminate t: $f_0(t) = A\cos(\omega t + \phi) \Leftrightarrow F_0 = Ae^{j\phi}$
- 2. Time delays are just phase shifts:

$$f_x(t) = A\cos\left(\omega\left(t - \frac{x}{u}\right) + \phi\right) \Leftrightarrow F_x = Ae^{j\left(\phi - \frac{\omega}{u}x\right)} = F_0e^{-jkx}$$
 $k = \frac{\omega}{u} = \frac{2\pi}{\lambda}$ is the wavenumber: radians per metre (c.f. ω in rad/s)

As before:
$$V_x = F_x + G_x$$
 and $I_x = \frac{F_x - G_x}{Z_0}$



As before:

$$\begin{bmatrix} \bullet \\ V_L \end{bmatrix} V_L \qquad G_L = \rho_L F_L \\ F_0 = \tau_0 V_S + \rho_0 G_0$$

Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time

Constant

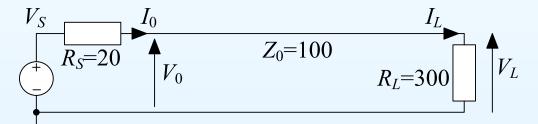
- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

Sinewayes are easier because:

- 1. Use phasors to eliminate t: $f_0(t) = A\cos(\omega t + \phi) \Leftrightarrow F_0 = Ae^{j\phi}$
- 2. Time delays are just phase shifts:

$$f_x(t) = A\cos\left(\omega\left(t - \frac{x}{u}\right) + \phi\right) \Leftrightarrow F_x = Ae^{j\left(\phi - \frac{\omega}{u}x\right)} = F_0e^{-jkx}$$
 $k = \frac{\omega}{u} = \frac{2\pi}{\lambda}$ is the wavenumber: radians per metre (c.f. ω in rad/s)

As before: $V_x = F_x + G_x$ and $I_x = \frac{F_x - G_x}{Z_0}$



As before:

$$\begin{bmatrix} \bullet \\ V_L \end{bmatrix} V_L \qquad G_L = \rho_L F_L \\ F_0 = \tau_0 V_S + \rho_0 G_0$$

But $G_0 = F_0 \rho_L e^{-2jkL}$: roundtrip delay of $\frac{2L}{u}$ + reflection at x = L.

Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time

Constant

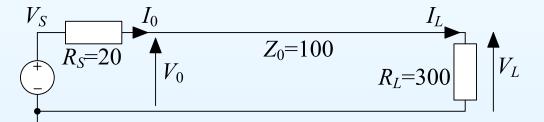
- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

Sinewayes are easier because:

- 1. Use phasors to eliminate t: $f_0(t) = A\cos(\omega t + \phi) \Leftrightarrow F_0 = Ae^{j\phi}$
- 2. Time delays are just phase shifts:

$$f_x(t) = A\cos\left(\omega\left(t - \frac{x}{u}\right) + \phi\right) \Leftrightarrow F_x = Ae^{j\left(\phi - \frac{\omega}{u}x\right)} = F_0e^{-jkx}$$
 $k = \frac{\omega}{u} = \frac{2\pi}{\lambda}$ is the wavenumber: radians per metre (c.f. ω in rad/s)

As before: $V_x = F_x + G_x$ and $I_x = \frac{F_x - G_x}{Z_0}$



As before:

 $V_L \qquad G_L = \rho_L F_L$ $F_0 = \tau_0 V_S + \rho_0 G_0$

But $G_0=F_0\rho_Le^{-2jkL}$: roundtrip delay of $\frac{2L}{u}$ + reflection at x=L. Substituting for G_0 in source end equation: $F_0=\tau_0V_S+\rho_0F_0\rho_Le^{-2jkL}$

Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time

Constant

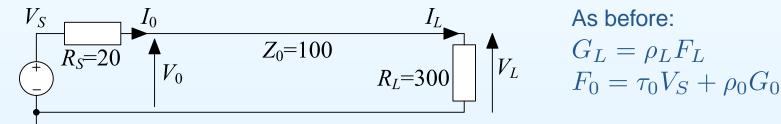
- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

Sinewayes are easier because:

- 1. Use phasors to eliminate t: $f_0(t) = A\cos(\omega t + \phi) \Leftrightarrow F_0 = Ae^{j\phi}$
- 2. Time delays are just phase shifts:

$$f_x(t) = A\cos\left(\omega\left(t - \frac{x}{u}\right) + \phi\right) \Leftrightarrow F_x = Ae^{j\left(\phi - \frac{\omega}{u}x\right)} = F_0e^{-jkx}$$
 $k = \frac{\omega}{u} = \frac{2\pi}{\lambda}$ is the wavenumber: radians per metre (c.f. ω in rad/s)

As before: $V_x = F_x + G_x$ and $I_x = \frac{F_x - G_x}{Z_0}$



As before:

$$G_L = \rho_L F_L$$

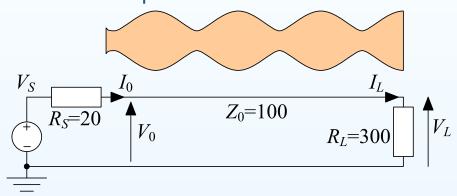
$$F_0 = \tau_0 V_S + \rho_0 G_0$$

But $G_0 = F_0 \rho_L e^{-2jkL}$: roundtrip delay of $\frac{2L}{x}$ + reflection at x = L. Substituting for G_0 in source end equation: $F_0 = \tau_0 V_S + \rho_0 F_0 \rho_L e^{-2jkL}$ $\Rightarrow F_0 = \frac{\tau_0}{1 - \rho_0 \rho_L \exp(-2ikL)} V_S$ so no infinite sums needed \odot

Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time
 Constant
- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

Standing waves arise whenever a wave meets its reflection: at positions where the two waves are in phase their amplitudes add but where they are anti-phase their amplitudes subtract.

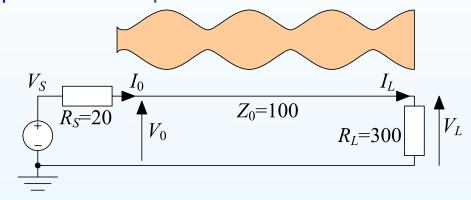


Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time
 Constant
- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

Standing waves arise whenever a wave meets its reflection: at positions where the two waves are in phase their amplitudes add but where they are anti-phase their amplitudes subtract.

At any point x, delay of $\frac{x}{u} \Rightarrow$ $F_x = F_0 e^{-jkx}$

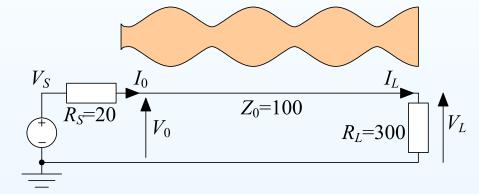


Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time
 Constant
- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

Standing waves arise whenever a wave meets its reflection: at positions where the two waves are in phase their amplitudes add but where they are anti-phase their amplitudes subtract.

At any point x, delay of $\frac{x}{u} \Rightarrow$ $F_x = F_0 e^{-jkx}$



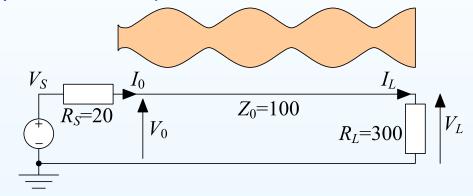
Backward wave: $G_x = \rho_L F_x e^{-2jk(L-x)}$

Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time
 Constant
- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

Standing waves arise whenever a wave meets its reflection: at positions where the two waves are in phase their amplitudes add but where they are anti-phase their amplitudes subtract.

At any point x, delay of $\frac{x}{u} \Rightarrow$ $F_x = F_0 e^{-jkx}$



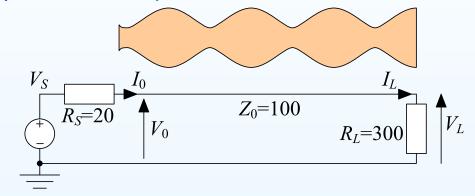
Backward wave: $G_x = \rho_L F_x e^{-2jk(L-x)}$: reflection + delay of $2\frac{L-x}{u}$

Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time
 Constant
- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

Standing waves arise whenever a wave meets its reflection: at positions where the two waves are in phase their amplitudes add but where they are anti-phase their amplitudes subtract.

At any point x, delay of $\frac{x}{u} \Rightarrow$ $F_x = F_0 e^{-jkx}$



Backward wave: $G_x = \rho_L F_x e^{-2jk(L-x)}$: reflection + delay of $2\frac{L-x}{u}$

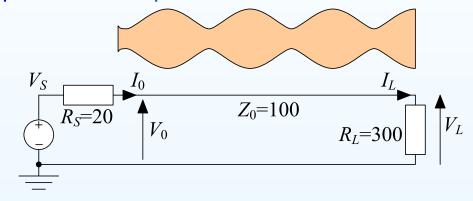
Voltage at x: $V_x = F_x + G_x$

Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time
 Constant
- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

Standing waves arise whenever a wave meets its reflection: at positions where the two waves are in phase their amplitudes add but where they are anti-phase their amplitudes subtract.

At any point x, delay of $\frac{x}{u} \Rightarrow$ $F_x = F_0 e^{-jkx}$



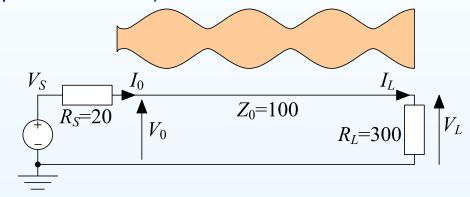
Backward wave: $G_x=\rho_L F_x e^{-2jk(L-x)}$: reflection + delay of $2\frac{L-x}{u}$ Voltage at x: $V_x=F_x+G_x=F_0e^{-jkx}\left(1+\rho_L e^{-2jk(L-x)}\right)$

Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time
 Constant
- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

Standing waves arise whenever a wave meets its reflection: at positions where the two waves are in phase their amplitudes add but where they are anti-phase their amplitudes subtract.

At any point x, delay of $\frac{x}{u} \Rightarrow$ $F_x = F_0 e^{-jkx}$



Backward wave: $G_x = \rho_L F_x e^{-2jk(L-x)}$: reflection + delay of $2\frac{L-x}{u}$

Voltage at x: $V_x = F_x + G_x = F_0 e^{-jkx} \left(1 + \rho_L e^{-2jk(L-x)} \right)$

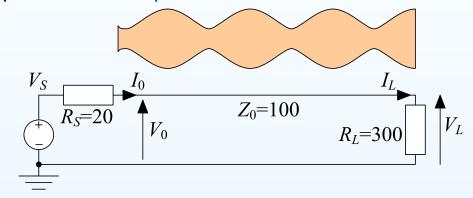
Voltage Magnitude : $|V_x| = |F_0| \left| 1 + \rho_L e^{-2jk(L-x)} \right|$

Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time
 Constant
- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

Standing waves arise whenever a wave meets its reflection: at positions where the two waves are in phase their amplitudes add but where they are anti-phase their amplitudes subtract.

At any point x, delay of $\frac{x}{u} \Rightarrow$ $F_x = F_0 e^{-jkx}$



Backward wave: $G_x = \rho_L F_x e^{-2jk(L-x)}$: reflection + delay of $2\frac{L-x}{u}$

Voltage at x: $V_x = F_x + G_x = F_0 e^{-jkx} \left(1 + \rho_L e^{-2jk(L-x)} \right)$

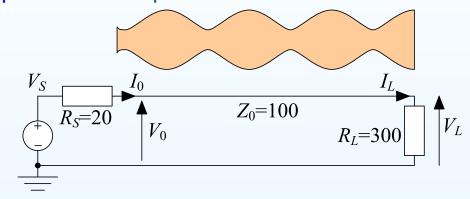
Voltage Magnitude : $|V_x| = |F_0| |1 + \rho_L e^{-2jk(L-x)}|$: depends on x

Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time
 Constant
- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

Standing waves arise whenever a wave meets its reflection: at positions where the two waves are in phase their amplitudes add but where they are anti-phase their amplitudes subtract.

At any point x, delay of $\frac{x}{u} \Rightarrow$ $F_x = F_0 e^{-jkx}$



Backward wave: $G_x = \rho_L F_x e^{-2jk(L-x)}$: reflection + delay of $2\frac{L-x}{u}$ Voltage at x: $V_x = F_x + G_x = F_0 e^{-jkx} \left(1 + \rho_L e^{-2jk(L-x)}\right)$ Voltage Magnitude : $|V_x| = |F_0| \left|1 + \rho_L e^{-2jk(L-x)}\right|$: depends on x

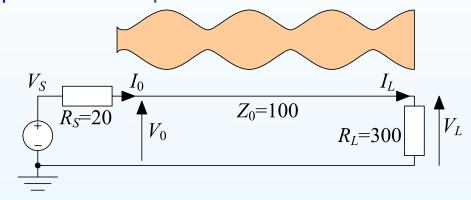
If $\rho_L \geq 0$, max magnitude is $(1 + \rho_L) |F_0|$ whenever $e^{-2jk(L-x)} = +1$

Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time
 Constant
- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

Standing waves arise whenever a wave meets its reflection: at positions where the two waves are in phase their amplitudes add but where they are anti-phase their amplitudes subtract.

At any point x, delay of $\frac{x}{u} \Rightarrow$ $F_x = F_0 e^{-jkx}$



Backward wave: $G_x = \rho_L F_x e^{-2jk(L-x)}$: reflection + delay of $2\frac{L-x}{u}$ Voltage at x: $V_x = F_x + G_x = F_0 e^{-jkx} \left(1 + \rho_L e^{-2jk(L-x)}\right)$ Voltage Magnitude : $|V_x| = |F_0| \left|1 + \rho_L e^{-2jk(L-x)}\right|$: depends on x

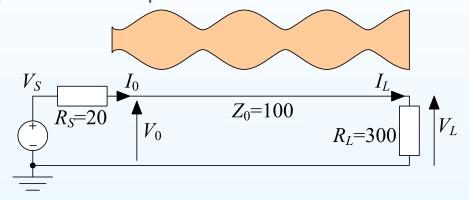
If $\rho_L \geq 0$, max magnitude is $(1+\rho_L) |F_0|$ whenever $e^{-2jk(L-x)} = +1$ $\Rightarrow x = L \text{ or } x = L - \frac{\pi}{k} \text{ or } x = L - \frac{2\pi}{k} \text{ or } \dots$

Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time
 Constant
- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

Standing waves arise whenever a wave meets its reflection: at positions where the two waves are in phase their amplitudes add but where they are anti-phase their amplitudes subtract.

At any point x, delay of $\frac{x}{u} \Rightarrow$ $F_x = F_0 e^{-jkx}$



Backward wave: $G_x = \rho_L F_x e^{-2jk(L-x)}$: reflection + delay of $2\frac{L-x}{u}$ Voltage at x: $V_x = F_x + G_x = F_0 e^{-jkx} \left(1 + \rho_L e^{-2jk(L-x)}\right)$ Voltage Magnitude : $|V_x| = |F_0| \left|1 + \rho_L e^{-2jk(L-x)}\right|$: depends on x

If $\rho_L \geq 0$, max magnitude is $(1+\rho_L) |F_0|$ whenever $e^{-2jk(L-x)} = +1$ $\Rightarrow x = L$ or $x = L - \frac{\pi}{k}$ or $x = L - \frac{2\pi}{k}$ or . . .

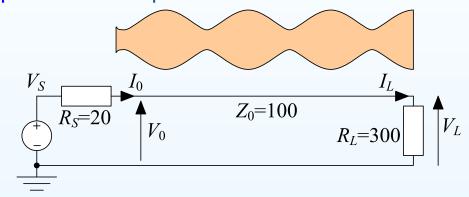
Min magnitude is $(1 - \rho_L) |F_0|$ whenever $e^{-2jk(L-x)} = -1$

Revision Lecture 2: Transients & Lines

- Transients: Basic Ideas
- Steady States
- Determining Time
 Constant
- Determining Transient Amplitude
- Transmission Lines Basics
- Reflections
- Sinewaves and Phasors
- Standing Waves

Standing waves arise whenever a wave meets its reflection: at positions where the two waves are in phase their amplitudes add but where they are anti-phase their amplitudes subtract.

At any point x, delay of $\frac{x}{u} \Rightarrow$ $F_x = F_0 e^{-jkx}$



Backward wave: $G_x = \rho_L F_x e^{-2jk(L-x)}$: reflection + delay of $2\frac{L-x}{u}$ Voltage at x: $V_x = F_x + G_x = F_0 e^{-jkx} \left(1 + \rho_L e^{-2jk(L-x)}\right)$ Voltage Magnitude : $|V_x| = |F_0| \left|1 + \rho_L e^{-2jk(L-x)}\right|$: depends on x

If $\rho_L \geq 0$, max magnitude is $(1+\rho_L) |F_0|$ whenever $e^{-2jk(L-x)} = +1$ $\Rightarrow x = L$ or $x = L - \frac{\pi}{k}$ or $x = L - \frac{2\pi}{k}$ or . . .

Min magnitude is $(1-\rho_L)\,|F_0|$ whenever $e^{-2jk(L-x)}=-1$ $\Rightarrow x=L-\frac{\pi}{2k}$ or $x=L-\frac{3\pi}{2k}$ or $x=L-\frac{5\pi}{2k}$ or \dots