Revision Lecture 2: Transients & Lines Transients: Basic Ideas Steady States Determining Time Constant Determining Transient Amplitude Transmission Lines Basics Reflections Sinewaves and Phasors Standing Waves

Revision Lecture 2: Transients & Lines

Revision Lecture 2: Transients & Lines Transients: Basic ▷ Ideas Steady States Determining Time Constant Determining Transient Amplitude Transmission Lines Basics Reflections Sinewaves and Phasors Standing Waves □ Transients happen in response to a sudden change

- Input voltage/current abruptly changes its magnitude, frequency or phase
- A switch alters the circuit

 $\hfill\square$ 1st order circuits only: one capacitor/inductor

□ All voltage/current waveforms are: Steady State + Transient

- Steady States: find with nodal analysis or transfer function
 - ▶ Note: Steady State is not the same as DC Level
 - Need steady states before and after the sudden change
- Transient: Always a negative exponential: $Ae^{-\frac{t}{\tau}}$
 - ▷ Time Constant: $\tau = RC$ or $\frac{L}{R}$ where R is the Thévenin resistance at the terminals of C or L
 - ▷ Find transient amplitude, A, from continuity since V_C or I_L cannot change instantly.
 - $_{\triangleright}\ \tau$ and A can also be found from the transfer function.

Steady States

Revision Lecture 2: Transients & Lines Transients: Basic Ideas ▷ Steady States Determining Time Constant Determining Transient Amplitude Transmission Lines Basics Reflections Sinewaves and Phasors Standing Waves

A steady-state output assumes the input frequency, phase and amplitude are constant forever. You need to determine two $y_{SS}(t)$ steady state outputs: one for before the transient (t < 0) and one after $(t \ge 0)$. At t = 0, $y_{SS}(0-)$ means the first one and $y_{SS}(0+)$ means the second.

Method 1: Nodal analysis

Input voltage is DC ($\omega = 0$) $\Rightarrow Z_L = 0$ (for capacitor: $Z_C = \infty$) So L acts as a short citcuit Potential divider: $y_{SS} = \frac{1}{2}x$ $y_{SS}(0-) = 1, y_{SS}(0+) = 3$

Method 2: Transfer function $\frac{Y}{X}(j\omega) = \frac{R+j\omega L}{2R+j\omega L}$ set $\omega = 0$: $\frac{Y}{X}(0) = \frac{1}{2}$ $y_{SS}(0-) = 1, y_{SS}(0+) = 3$

Sinusoidal input \Rightarrow Sinusoidal steady state \Rightarrow use phasors. Then convert phasors to time waveforms to calculate the actual output voltages $y_{SS}(0-)$ and $y_{SS}(0+)$ at t = 0. Revision Lecture 2: Transients & Lines Transients: Basic Ideas Steady States Determining Time ▷ Constant Determining Transient Amplitude Transmission Lines Basics Reflections Sinewaves and Phasors

Standing Waves

Method 1: Thévenin

(a) Remove the capacitor/inductor(b) Set all sources to zero (including the input voltage source). Leave output unconnected.

(c) Calculate the Thévenin resistance between the capacitor/inductor terminals:

 $R_{Th} = 8R||4R||(6R + 2R) = 2R$ (d) Time constant: $= R_{Th}C$ or $\frac{L}{R_{Th}}$ $\tau = R_{Th}C = 2RC$

Method 2: Transfer function

(a) Calculate transfer function using nodal analysis KCL @ V: V-X/4R + V/8R + jωCV + V-Y/2R = 0 KCL @ Y: Y-V/2R + Y-X/6R = 0
→ Eliminate V to get transfer Function: Y/X = 8jωRC+13/32jωRC+16
(b) Time Constant = 1/Demonstrate common function

$$\omega_d = \frac{16}{32RC} \Rightarrow \tau = \frac{1}{\omega_d} = 2RC$$

Revision Lecture 2: Transients & Lines Transients: Basic Ideas **Steady States Determining Time** Constant Determining Transient ▷ Amplitude **Transmission Lines** Basics Reflections Sinewaves and Phasors Standing Waves

After an input change at t = 0, $y(t) = y_{SS}(t) + Ae^{-\frac{t}{\tau}}$. $\Rightarrow y(0+) = y_{SS}(0+) + A \Rightarrow A = y(0+) - y_{SS}(0+)$ Method: (a) calculate true output y(0+), (b) subtract $y_{SS}(0+)$ to get A

(i) Version 1: v_C or i_L continuity $x(0-) = 2 \Rightarrow i_L(0-) = 1 \text{ mA}$ Continuity $\Rightarrow i_L(0+) = i_L(0-)$ Replace L with a 1 mA current source y(0+) = x(0+) - iR = 6 - 1 = 5

(i) Version 2: Transfer function $H(j\omega) = \frac{Y}{X}(j\omega) = \frac{R+j\omega L}{2R+j\omega L}$ Input step, $\Delta x = x(0+) - x(0-) = +4$ $y(0+) = y(0-) + H(j\infty) \times \Delta x$ $= 1 + \Delta y = 1 + 1 \times 4 = 5$ (ii) $A = y(0+) - y_{SS}(0+) = 5 - 3 = 2$ (iii) $y(t) = y_{SS}(t) + Ae^{-t/\tau}$ $= 3 + 2e^{-t/2\mu}$

Revision Lecture 2: <u>Transients & Lines</u> Transients: Basic Ideas Steady States Determining Time Constant Determining Transient Amplitude Transmission Lines ▷ Basics Reflections Sinewaves and Phasors Standing Waves

Transmission Line: constant L_0 and C_0 : inductance/capacitance per metre.

Forward wave travels along the line: $f_x(t) = f_0 \left(t - \frac{x}{u}\right)$. Velocity $u = \sqrt{\frac{1}{L_0 C_0}} \approx \frac{1}{2}c = 15 \text{ cm/ns}$

Backward wave: $g_x(t)$ is the same but travelling $\leftarrow: g_x(t) = g_0 \left(t + \frac{x}{u}\right)$. Voltage and current are: $v_x = f_x + g_x$ and $i_x = \frac{f_x - g_x}{Z_0}$ where i_x is positive in the +x direction (\rightarrow) and $Z_0 = \sqrt{\frac{L_0}{C_0}}$

Waveforms of f_x and g_x are determined by the connections at both ends.

Reflections

Revision Lecture 2: <u>Transients & Lines</u> Transients: Basic Ideas Steady States Determining Time Constant Determining Transient Amplitude Transmission Lines Basics ▷ Reflections Sinewaves and Phasors Standing Waves

$$v_{s(t)} \xrightarrow{i_{0}(t)} Z_{0}=100$$

$$R_{L}=300$$

$$v_{u}(t)$$

$$v_{v}(t)$$

$$R_{L}=300$$

$$v_{v}(t)$$

$$v_{v}(t$$

Revision Lecture 2: Transients & Lines Transients: Basic Ideas Steady States Determining Time Constant Determining Transient Amplitude Transmission Lines Basics Reflections Sinewaves and ▷ Phasors

Standing Waves

Sinewaves are easier because:

- 1. Use phasors to eliminate t: $f_0(t) = A\cos(\omega t + \phi) \Leftrightarrow F_0 = Ae^{j\phi}$
- 2. Time delays are just phase shifts: $f_x(t) = A \cos \left(\omega \left(t - \frac{x}{u} \right) + \phi \right) \Leftrightarrow F_x = A e^{j \left(\phi - \frac{\omega}{u} x \right)} = F_0 e^{-jkx}$ $k = \frac{\omega}{u} = \frac{2\pi}{\lambda} \text{ is the wavenumber: radians per metre (c.f. <math>\omega \text{ in rad/s})$

As before:
$$V_x = F_x + G_x$$
 and $I_x = \frac{F_x - G_x}{Z_0}$
 $V_S = I_0$ As before:
 $R_S = 20$ V_0 $Z_0 = 100$ V_L $G_L = \rho_L F_L$
 $F_0 = \tau_0 V_S + \rho_0 G_0$
But $G_0 = F_0 \rho_L e^{-2jkL}$ roundtrip delay of $\frac{2L}{T}$ + reflection at $x = L$

But $G_0 = F_0 \rho_L e^{-2jkL}$: roundtrip delay of $\frac{2L}{u}$ + reflection at x = L. Substituting for G_0 in source end equation: $F_0 = \tau_0 V_S + \rho_0 F_0 \rho_L e^{-2jkL}$ $\Rightarrow F_0 = \frac{\tau_0}{1 - \rho_0 \rho_L \exp(-2jkL)} V_S$ so no infinite sums needed \odot

Standing Waves

Revision Lecture 2: Transients & Lines Transients: Basic Ideas Steady States Determining Time Constant Determining Transient Amplitude Transmission Lines Basics Reflections Sinewaves and Phasors ▷ Standing Waves Standing waves arise whenever a wave meets its reflection: at positions where the two waves are in phase their amplitudes add but where they are anti-phase their amplitudes subtract.

Backward wave: $G_x = \rho_L F_x e^{-2jk(L-x)}$: reflection + delay of $2\frac{L-x}{u}$ Voltage at x: $V_x = F_x + G_x = F_0 e^{-jkx} \left(1 + \rho_L e^{-2jk(L-x)}\right)$ Voltage Magnitude : $|V_x| = |F_0| \left|1 + \rho_L e^{-2jk(L-x)}\right|$: depends on x

If $\rho_L \ge 0$, max magnitude is $(1 + \rho_L) |F_0|$ whenever $e^{-2jk(L-x)} = +1$ $\Rightarrow x = L$ or $x = L - \frac{\pi}{k}$ or $x = L - \frac{2\pi}{k}$ or ...

Min magnitude is $(1 - \rho_L) |F_0|$ whenever $e^{-2jk(L-x)} = -1$ $\Rightarrow x = L - \frac{\pi}{2k}$ or $x = L - \frac{3\pi}{2k}$ or $x = L - \frac{5\pi}{2k}$ or ...