Revision Lecture 2:

- Transients \& Lines Transients: Basic
Ideas
Steady States
Determining Time
Constant
Determining
Transient Amplitude
Transmission Lines

Basics

Reflections
Sinewaves and
Phasors
Standing Waves

Revision Lecture 2: Transients \& Lines

Transients: Basic Ideas

Revision Lecture 2 :

Transients \& Lines
Transients: Basic
D Ideas

Steady States

Determining Time
Constant

Determining

Transient Amplitude
Transmission Lines
Basics

Reflections

Sinewaves and
Phasors
Standing Waves
\square Transients happen in response to a sudden change

- Input voltage/current abruptly changes its magnitude, frequency or phase
- A switch alters the circuit
\square 1st order circuits only: one capacitor/inductor
\square All voltage/current waveforms are: Steady State + Transient
- Steady States: find with nodal analysis or transfer function
- Note: Steady State is not the same as DC Level
- Need steady states before and after the sudden change
- Transient: Always a negative exponential: $A e^{-\frac{t}{\tau}}$

Dime Constant: $\tau=R C$ or $\frac{L}{R}$ where R is the Thévenin resistance at the terminals of C or L

- Find transient amplitude, A, from continuity since V_{C} or I_{L} cannot change instantly.
- τ and A can also be found from the transfer function.

Steady States

Revision Lecture 2:

 Transients \& Lines Transients: Basic Ideas\triangleright Steady States Determining Time

Constant

Determining

Transient Amplitude
Transmission Lines

Basics

Reflections

Sinewaves and
Phasors
Standing Waves

A steady-state output assumes the input frequency, phase and amplitude are constant forever. You need to determine two $y_{S S}(t)$ steady state outputs: one for before the transient $(t<0)$ and one after $(t \geq 0)$. At $t=0, y_{S S}(0-)$ means the first one and $y_{S S}(0+)$ means the second.

Method 1: Nodal analysis
Input voltage is DC $(\omega=0)$
$\Rightarrow Z_{L}=0$ (for capacitor: $Z_{C}=\infty$)
So L acts as a short citcuit
Potential divider: $y_{S S}=\frac{1}{2} x$

$$
y_{S S}(0-)=1, y_{S S}(0+)^{2}=3
$$

Method 2: Transfer function

$$
\begin{aligned}
& \frac{Y}{X}(j \omega)=\frac{R+j \omega L}{2 R+j \omega L} \\
& \text { set } \omega=0: \frac{Y}{X}(0)=\frac{1}{2} \\
& \quad y_{S S}(0-) \stackrel{1}{=} y_{S S}(0+)=3
\end{aligned}
$$

Sinusoidal input \Rightarrow Sinusoidal steady state \Rightarrow use phasors.
Then convert phasors to time waveforms to calculate the actual output voltages $y_{S S}(0-)$ and $y_{S S}(0+)$ at $t=0$.

Determining Time Constant

Revision Lecture 2:

 Transients \& Lines
Transients: Basic

Ideas

Steady States
Determining Time
\triangleright Constant
Determining
Transient Amplitude
Transmission Lines

Basics

Reflections

Sinewaves and

Phasors
Standing Waves

Method 1: Thévenin

(a) Remove the capacitor/inductor
(b) Set all sources to zero (including the input voltage source). Leave output unconnected.

(c) Calculate the Thévenin resistance between the capacitor/inductor terminals:
$R_{T h}=8 R\|4 R\|(6 R+2 R)=2 R$
(d) Time constant: $=R_{T h} C$ or $\frac{L}{R_{T h}}$ $\tau=R_{T h} C=2 R C$

Method 2: Transfer function

(a) Calculate transfer function using nodal analysis KCL @ V: $\frac{V-X}{4 R}+\frac{V}{8 R}+j \omega C V+\frac{V-Y}{2 R}=0$ KCL © Y: $\frac{Y-V}{2 R}+\frac{Y-X}{6 R}=0$
\rightarrow Eliminate V to get transfer Function: $\frac{Y}{X}=\frac{8 j \omega R C+13}{32 j \omega R C+16}$
(b) Time Constant $=\frac{1}{\text { Denominator corner frequency }}$

$$
\omega_{d}=\frac{16}{32 R C} \Rightarrow \tau=\frac{1}{\omega_{d}}=2 R C
$$

Determining Transient Amplitude

Revision Lecture 2:

 Transients \& Lines Transients: Basic
Ideas

Steady States
Determining Time

Constant

Determining

Transient
\triangle Amplitude
Transmission Lines

Basics

Reflections

Sinewaves and

Phasors

Standing Waves

After an input change at $t=0, y(t)=y_{S S}(t)+A e^{-\frac{t}{\tau}}$.
$\Rightarrow y(0+)=y_{S S}(0+)+A \Rightarrow A=y(0+)-y_{S S}(0+)$
Method: (a) calculate true output $y(0+)$, (b) subtract $y_{S S}(0+$) to get A
(i) Version 1: v_{C} or i_{L} continuity $x(0-)=2 \Rightarrow i_{L}(0-)=1 \mathrm{~mA}$ Continuity $\Rightarrow i_{L}(0+)=i_{L}(0-)$ Replace L with a 1 mA current source $y(0+)=x(0+)-i R=6-1=5$
(i) Version 2: Transfer function

$$
H(j \omega)=\frac{Y}{X}(j \omega)=\frac{R+j \omega L}{2 R+j \omega L}
$$

Input step, $\Delta x=x(0+)-x(0-)=+4$
$y(0+)=y(0-)+H(j \infty) \times \Delta x$

$$
=1+\Delta y=1+1 \times 4=5
$$

(ii) $A=y(0+)-y_{S S}(0+)=5-3=2$
(iii) $y(t)=y_{S S}(t)+A e^{-t / \tau}$

$$
=3+2 e^{-t / 2 \mu}
$$

Transmission Lines Basics

Revision Lecture 2:

 Transients \& Lines Transients: Basic
Ideas

Steady States
Determining Time
Constant

Determining

Transient Amplitude
Transmission Lines

\triangleright Basics

Reflections

Sinewaves and

Phasors
Standing Waves

Transmission Line: constant L_{0} and C_{0} : inductance/capacitance per metre.
Forward wave travels along the line: $f_{x}(t)=f_{0}\left(t-\frac{x}{u}\right)$.
Velocity $u=\sqrt{\frac{1}{L_{0} C_{0}}} \approx \frac{1}{2} c=15 \mathrm{~cm} / \mathrm{ns}$
$f_{x}(t)$ equals $f_{0}(t)$ but delayed by $\frac{x}{u}$.

Knowing $f_{x}(t)$ for $x=x_{0}$ fixes it for all other x.

Backward wave: $g_{x}(t)$ is the same but travelling $\leftarrow: g_{x}(t)=g_{0}\left(t+\frac{x}{u}\right)$.
Voltage and current are: $v_{x}=f_{x}+g_{x}$ and $i_{x}=\frac{f_{x}-g_{x}}{Z_{0}}$ where i_{x} is positive in the $+x$ direction (\rightarrow) and $Z_{0}=\sqrt{\frac{L_{0}}{C_{0}}}$

Waveforms of f_{x} and g_{x} are determined by the connections at both ends.

Reflections

Revision Lecture 2: Transients \& Lines Transients: Basic
 Ideas
 Steady States
 Determining Time
 Constant
 Determining
 Transient Amplitude
 Transmission Lines
 Basics
 \triangleright Reflections
 Sinewaves and
 Phasors
 Standing Waves

At $x=L$, Ohm's law $\Rightarrow \frac{v_{L}(t)}{i_{L}(t)}=R_{L} \Rightarrow g_{L}(t)=\frac{R_{L}-Z_{0}}{R_{L}+Z_{0}} \times f_{L}(t)$.
Reflection coefficient: $\rho_{L}=\frac{g_{L}(t)}{f_{L}(t)}=\frac{R_{L}-Z_{0}}{R_{L}+Z_{0}}$
$\rho_{L} \in[-1,+1]$ and increases with R_{L}
Knowing $f_{x}(t)$ for $x=x_{0}$ now tells you $f_{x}, g_{x}, v_{x}, i_{x} \forall x$
At $x=0: f_{0}(t)=\frac{Z_{0}}{R_{S}+Z_{0}} v_{S}(t)+\frac{R_{S}-Z_{0}}{R_{S}+Z_{0}} g_{0}(t)=\tau_{0} v_{S}(t)+\rho_{0} g_{0}(t)$
Wave bounces back and forth getting smaller with each reflection:

$$
v_{S}(t) \xrightarrow{\times \tau_{0}} f_{0}(t) \xrightarrow{\times \rho_{L}} g_{0}\left(t+\frac{2 L}{u}\right) \xrightarrow{\times \rho_{0}} f_{0}\left(t+\frac{2 L}{u}\right) \xrightarrow{\times \rho_{L}} g_{0}\left(t+\frac{4 L}{u}\right) \xrightarrow{\times \rho_{0}} \cdots
$$

Infinite sum:
$f_{0}(t)=\tau_{0} v_{S}(t)+\tau_{0} \rho_{L} \rho_{0} v_{S}\left(t-\frac{2 L}{u}\right)+\ldots=\sum_{i=0}^{\infty} \tau_{0} \rho_{L}^{i} \rho_{0}^{i} v_{S}\left(t-\frac{2 L i}{u}\right)$

Sinewaves and Phasors

Revision Lecture 2: Transients \& Lines Transients: Basic Ideas

Steady States

Determining Time

Constant

Determining

Transient Amplitude
Transmission Lines

Basics

Reflections

Sinewaves and \triangleright Phasors Standing Waves

Sinewaves are easier because:

1. Use phasors to eliminate $t: f_{0}(t)=A \cos (\omega t+\phi) \Leftrightarrow F_{0}=A e^{j \phi}$
2. Time delays are just phase shifts:

$$
\begin{aligned}
& f_{x}(t)=A \cos \left(\omega\left(t-\frac{x}{u}\right)+\phi\right) \Leftrightarrow F_{x}=A e^{j\left(\phi-\frac{\omega}{u} x\right)}=F_{0} e^{-j k x} \\
& k=\frac{\omega}{u}=\frac{2 \pi}{\lambda} \text { is the wavenumber: radians per metre (c.f. } \omega \text { in rad/s) }
\end{aligned}
$$

As before: $V_{x}=F_{x}+G_{x}$ and $I_{x}=\frac{F_{x}-G_{x}}{Z_{0}}$

As before:

$$
\begin{aligned}
& G_{L}=\rho_{L} F_{L} \\
& F_{0}=\tau_{0} V_{S}+\rho_{0} G_{0}
\end{aligned}
$$

But $G_{0}=F_{0} \rho_{L} e^{-2 j k L}:$ roundtrip delay of $\frac{2 L}{u}+$ reflection at $x=L$. Substituting for G_{0} in source end equation: $\stackrel{u}{F_{0}}=\tau_{0} V_{S}+\rho_{0} F_{0} \rho_{L} e^{-2 j k L}$ $\Rightarrow F_{0}=\frac{\tau_{0}}{1-\rho_{0} \rho_{L} \exp (-2 j k L)} V_{S}$ so no infinite sums needed ©

Standing Waves

Revision Lecture 2:

 Transients \& Lines Transients: Basic IdeasSteady States
Determining Time

Constant

Determining

Transient Amplitude
Transmission Lines

Basics

Reflections
Sinewaves and
Phasors
\triangleright Standing Waves

Standing waves arise whenever a wave meets its reflection: at positions where the two waves are in phase their amplitudes add but where they are anti-phase their amplitudes subtract.
At any point x, delay of $\frac{x}{u} \Rightarrow$ $F_{x}=F_{0} e^{-j k x}$

Backward wave: $G_{x}=\rho_{L} F_{x} e^{-2 j k(L-x)}$: reflection + delay of $2 \frac{L-x}{u}$
Voltage at $x: V_{x}=F_{x}+G_{x}=F_{0} e^{-j k x}\left(1+\rho_{L} e^{-2 j k(L-x)}\right)$
Voltage Magnitude : $\left|V_{x}\right|=\left|F_{0}\right|\left|1+\rho_{L} e^{-2 j k(L-x)}\right|$: depends on x
If $\rho_{L} \geq 0$, max magnitude is $\left(1+\rho_{L}\right)\left|F_{0}\right|$ whenever $e^{-2 j k(L-x)}=+1$
$\Rightarrow x=L$ or $x=L-\frac{\pi}{k}$ or $x=L-\frac{2 \pi}{k}$ or \ldots
Min magnitude is $\left(1-\rho_{L}\right)\left|F_{0}\right|$ whenever $e^{-2 j k(L-x)}=-1$

$$
\Rightarrow x=L-\frac{\pi}{2 k} \text { or } x=L-\frac{3 \pi}{2 k} \text { or } x=L-\frac{5 \pi}{2 k} \text { or } \ldots
$$

